Skip to main content
Log in

Exogenous 24-epibrassinolide ameliorates high temperature-induced inhibition of growth and photosynthesis in Cucumis melo

  • Original Papers
  • Published:
Biologia Plantarum

Abstract

This study was carried out to better understand the role of 24-epibrassinolide (EBR) in thermotolerance of melon (Cucumis melo L.). The melon seedlings were pretreated with various concentrations of EBR (0, 0.05, 0.1, 0.5, 1.0, and 1.5 mg dm−3) as foliar spray and then exposed to a high temperature (HT) stress. Exogenous EBR (0.5–1.5 mg dm−3) alleviated HT-caused growth suppression. In parallel, 1.0 mg dm−3 EBR attenuated the decrease in chlorophyll content, net photosynthetic rate, stomatal conductance, maximum quantum efficiency of photosystem (PS) II, quantum yield of PS II, and photochemical quenching of chlorophyll a fluorescence in HT-stressed plants, and inhibited transpiration rate and non-photochemical quenching. Furthermore, exogenous EBR also significantly reduced the content of malondialdehyde (MDA) and increased the content of soluble proteins and free proline, and activities of antioxidant enzymes including superoxide dismutase, guaiacol peroxidase, catalase, and ascorbate peroxidase under the HT stress. The results show that protective effects of EBR against the HT stress in the melon seedlings were most likely mediated through the improvement of photosynthesis and the stimulation of antioxidant capacity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

APX:

ascorbate peroxidase

BRs:

brassinosteroids

CAT:

catalase

Chl:

chlorophyll

ci :

intercellular CO2 concentration

E:

transpiration rate

EBR:

24-epibrassinolide

F0 :

minimal fluorescence

Fv/Fm :

variable to maximum fluorescence ratio in dark adapted leaves (maximum quantum yield of PS II photochemistry)

Fv′/Fm′:

variable to maximum fluorescence ratio in steady-state conditions (efficiency of excitation energy capture by open PS II centers)

gs :

stomatal conductance

MDA:

malondialdehyde

NBT:

nitroblue tetrazolium

NPQ:

non-photochemical quenching

ϕPSII :

effective quantum yield of PS II photochemistry

POD:

peroxidase

PS:

photosystem

qP:

photochemical quenching

ROS:

reactive oxygen species

SOD:

superoxide dismutase

References

  • Ábrahám, E., Rigó, G., Székely, G., Nagy, R., Koncz, C., Szabados, L.: Light-dependent induction of proline biosynthesis by abscisic acid and salt stress is inhibited by brassinosteroid in Arabidopsis. — Plant mol. Biol. 51: 363–372, 2003.

    Article  PubMed  Google Scholar 

  • Aebi, H.: Catalase. — Methods Enzymol. 105: 121–126, 1984.

    Article  PubMed  CAS  Google Scholar 

  • Ahammed, G.J., Zhou, Y.H., Xia, X.J., Mao, W.H., Shi, K., Yu, J.Q.: Brassinosteroid regulates secondary metabolism in tomato towards enhanced tolerance to phenanthrene. — Biol. Plant. 57: 154–158, 2013.

    Article  CAS  Google Scholar 

  • Aebi, H.: Catalase in vitro. — Methods Enzymol. 105: 121–126, 1984.

    Article  PubMed  CAS  Google Scholar 

  • Ainsworth, E.A., Ort, D.R.: How do we improve crop production in a warming world? — Plant Physiol. 154: 526–530, 2010.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Ali, B., Hasan, S., Hayat, S., Hayat, Q., Yadav, S., Fariduddin, Q., Ahmad, A.: A role for brassinosteroids in the amelioration of aluminium stress through antioxidant system in mung bean (Vigna radiata L. Wilczek). — Environ. exp. Bot. 62: 153–159, 2008.

    Article  CAS  Google Scholar 

  • Ali, B., Hayat, S., Ahmad, A.: 8-Homobrassinolide ameliorates the saline stress in chickpea (Cicer arietinum). — Environ. exp. Bot. 59: 217–223, 2007.

    Article  CAS  Google Scholar 

  • Asthir, B., Koundal, A., Bains, N.S.: Putrescine modulates antioxidant defense response in wheat under high temperature stress. — Biol. Plant. 56: 757–761, 2012.

    Article  CAS  Google Scholar 

  • Bajguz, A., Hayat, S.: Effects of brassinosteroids on the plant responses to environmental stresses. — Plant Physiol. Biochem. 47: 1–8, 2009.

    Article  PubMed  CAS  Google Scholar 

  • Bates, L.S., Waldren, R.P., Teare, I.D.: Rapid determination of free proline for water-stress studies. — Plant Soil 39: 205–207, 1973.

    Article  CAS  Google Scholar 

  • Beauchamp, C., Fridovich, I.: Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. — Anal Biochem. 44: 276–287, 1971.

    Article  PubMed  CAS  Google Scholar 

  • Bradford, M.M.: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. — Anal Biochem. 72: 248–254, 1976.

    Article  PubMed  CAS  Google Scholar 

  • Calatayud, A., Barreno, E.: Response to ozone in two lettuce varieties on chlorophyll a fluorescence, photosynthetic pigments and lipid peroxidation. — Plant Physiol. Biochem. 42: 549–555, 2004.

    Google Scholar 

  • Dhaubhadel, S., Browning, K.S., Gallie, D.R., Krishna, P.: Brassinosteroid functions to protect the translational machinery and heat-shock protein synthesis following thermal stress. — Plant J. 29: 681–691, 2002.

    Article  PubMed  CAS  Google Scholar 

  • Ding, H.D., Zhu, X.H., Zhu, Z.W., Yang, S.J., Zha, D.S., Wu, X.X.: Amelioration of salt-induced oxidative stress in Solanum melongena L. by application of 24-epibrassinolide. — Biol. Plant. 56: 767–770, 2012.

    Article  CAS  Google Scholar 

  • Dubey, R.S.: Photosynthesis in plants under stressful conditions. — In: Pessarakli, M. (ed.):Handbook of Photosynthesis. 2nd Ed. Pp. 717–737, CRC Press, Taylor and Francis Group, New York 2005.

    Google Scholar 

  • Fariduddin, Q., Yusuf, M., Hayat, Q., Ahmad, A.: Effects of 28-homobrassinolide on antioxidant capacity and photosynthesis in Brassica juncea plants exposed to different levels of copper. — Environ. exp. Bot. 66: 418–424, 2009.

    Article  CAS  Google Scholar 

  • Farooq, M., Basra, S.M.A., Wahid, A., Rehman, H.: Exogenously applied nitric oxide enhances the drought tolerance in fine grain aromatic rice (Oryza sativa L.). J. Agron. Crop Sci. 195: 254–261, 2009.

    Article  CAS  Google Scholar 

  • Farquhar, G.D., Sharkey, T.D.: Stomatal conductance and photosynthesis. — Annu. Rev. Plant Physiol. 33: 317–345, 1982.

    Article  CAS  Google Scholar 

  • Gilmore, A.M.: Mechanistic aspects of xanthophyll cycle dependent photo-protection in higher plant chloroplasts and leaves. — Physiol. Plant 99: 197–209, 1997.

    Article  CAS  Google Scholar 

  • Goda, H., Shimada, Y., Asami, T., Fujioka, S., Yoshida, S.: Microarray analysis of brassinosteroid-regulated genes in Arabidopsis. — Plant Physiol. 130: 1319–1334, 2002.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Hasan, S.A., Hayat, S., Ahmad, A.: Brassinosteroids protect photosynthetic machinery against the cadmium induced oxidative stress in two tomato cultivars. — Chemosphere 84: 1446–1451, 2011.

    Article  PubMed  CAS  Google Scholar 

  • Hasan, S.A., Hayat, S., Ali, B.B., Ahmad. A.: 28-Homobrassinolide protects chickpea (Cicer arietinum) from cadmium toxicity by stimulating antioxidants. — Environ. Polut. 151: 60–66, 2008.

    Article  CAS  Google Scholar 

  • Hayat, S., Hasan, S., Yusuf, M., Hayat, Q., Ahmad, A.: Effect of 28-homobrassinolide on photosynthesis, fluorescence and antioxidant system in the presence or absence of salinity and temperature in Vigna radiata. — Environ. exp. Bot. 69: 105–112, 2010.

    Article  CAS  Google Scholar 

  • Hayat, S., Yadav, S., Wani, A., Irfan, S.M., Ahmad, A.: Comparative effect of 28-homobrassinolide and 24-epibrassinolide on the growth, carbonic anhydrase activity and photosynthetic efficiency of Lycopersicon esculentum. — Photosynthetica 49: 397–404, 2011.

    Article  CAS  Google Scholar 

  • Janeczko, A., Oklestkova, J., Pociecha, E., Koscielniak, J., Mirek, M.: Physiological effects and transport of 24-epibrassinolide in heat-stressed barley. — Acta. Physiol. Plant. 33: 1249–1259, 2011.

    Article  CAS  Google Scholar 

  • Jiang, M.Y., Zhang, J.H.: Effect of abscisic acid on active oxygen species, antioxidative defence system and oxidative damage in leaves of maize seedlings. — Plant Cell Physiol. 42: 1265–1273, 2001.

    Google Scholar 

  • Kagale, S., Divi, U.K., Krochko, J.E., Séller, W.A., Krishna, P.: Brassinosteroid confers tolerance in Arabidopsis thaliana and Brassica napus to a range of abiotic stresses. — Planta 225: 353–364, 2007.

  • Li, Y.H., Liu, Y.J., Xu, X.L., Jin, M., An, L.Z., Zhang, H.: Effect of 24-epibrassinolide on drought stress-induced changes in Chorispora bungeana. — Biol. Plant. 56: 192–196, 2012.

    Article  CAS  Google Scholar 

  • Lichtenthaler, H.K.: Cholorophylls and carotenoids: pigments of photosynthetic biomembranes. — Methods Enzymol. 148: 350–382, 1987.

    Article  CAS  Google Scholar 

  • Liu, Y., Zhao, Z., Si, J., Di, C., Han, J., An, L.: Brassinosteriods alleviate chilling induced oxidative damage by enhancing antioxidant defense system in suspension cultured cells of Chorispora bungeana. — Plant Growth. Regul. 59: 207–214, 2009.

    Article  CAS  Google Scholar 

  • Mavi, K., Demir, I.: Controlled deterioration and accelerated ageing tests predict relative seedling emergence potential of melon seed lots. — HortScience 42: 1431–1435, 2007.

    Google Scholar 

  • Mazorra, L.M., Holton N., Bishop G.J., Núñez M.: Heat shock response in tomato brassinosteroid mutants indicates that thermotolerance is independent of brassinosteroid homeostasis. — Plant Physiol. Biochem. 49: 1420–1428, 2011.

    Article  PubMed  CAS  Google Scholar 

  • Mittler, R.: Oxidative stress, antioxidants and stress tolerance. — Trends Plant Sci. 7: 405–410, 2002.

    Article  PubMed  CAS  Google Scholar 

  • Nakano, Y., Asada, K.: Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. — Plant Cell Physiol. 22: 867–880, 1981.

    CAS  Google Scholar 

  • Nickel, R.S., Cunningham, B.A..: Improved peroxidase assay method using leuco-2,3′,6-trichloroindophenol and application to comparative measurements of peroxidase catalysis. — Anal. Biochem. 27: 292–299, 1969.

    Article  PubMed  CAS  Google Scholar 

  • Ogweno, J.O., Son, X.S., Shi, K., Hu, W.H., Mao, W.H., Zhou, Y.H., Yu, J.Q., Nogués, S.: Brassinosteroid alleviate heatinduced inhibition of photosynthesis by increasing carboxylation efficiency and enhancing antioxidant systems in Lycopersicon esculentum. — J. Plant Growth Regul. 27: 49–57, 2008.

    Article  CAS  Google Scholar 

  • Ramakrishna, B., Rao, S.S.R.: 24-Epibrassinolide alleviated zinc-induced oxidative stress in radish (Raphanus sativus L.) seedlings by enhancing antioxidative system. — Plant Growth Regul. 68: 249–259, 2012.

    Article  CAS  Google Scholar 

  • Sasse, J.M.: Physiological actions of brassinosteroids: an update. — J. Plant Growth Regul. 22: 276–288, 2003.

    Article  PubMed  CAS  Google Scholar 

  • Saygideger, S., Deniz, F.: Effect of 24-epibrassinolide on biomass, growth and free proline concentration in Spirulina platensis(Cyanophyta)under NaCl stress. — Plant Growth Regul. 56: 219–223, 2008.

    Article  CAS  Google Scholar 

  • Shahid, M.A., Pervez, M.A., Balal, R.M., Mattson, N.S., Rashid, A., Ahmad, R., Ayyub, C.M., Abbas, T.: Brassinosteroid (24-epibrassinolide) enhances growth and alleviates the deleterious effects induced by salt stress in pea (Pisum sativum L.). — Aust. J. Crop Sci. 5: 500–510, 2011.

    CAS  Google Scholar 

  • Singh, I., Shono, M.: Physiological and molecular effects of 24-epibrassinolide, a brassinosteroid, on thermotolerance of tomato. — Plant Growth Regul. 47: 111–119, 2005.

    Article  CAS  Google Scholar 

  • Wahid, A., Gelani, S., Ashraf, M., Foolad, M.R.: Heat tolerance in plants: an overview. — Environ. exp. Bot. 61: 199–223, 2007.

    Article  Google Scholar 

  • Wise, R.R., Olson, A.J., Schrader, S.M., Sharkey, T.D.: Electron transport is the functional limitation of photosynthesis in field-grown Pima cotton plants at high temperature. — Plant Cell Environ. 27: 717–724, 2004.

    Article  CAS  Google Scholar 

  • Xia, X.J., Wang, Y.J., Zhou, Y.H., Tao, Y., Mao, W.H., Shi, K., Asami, T., Chen, Z., Yu, J.Q.: Reactive oxygen species are involved in brassinosteroids-induced stress tolerance in Cucumis sativus. — Plant Physiol. 150: 801–814, 2009.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Yu, J.Q., Huang, L.F., Hu, W.H., Zhou, Y.H., Mao, W.H., Ye, S.F., Nogues, S.: A role for brassinosteroids in the regulation of photosynthesis in Cucumis sativus. — J. exp. Bot. 55: 1135–1143, 2004.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, J., Li, D.M., Gao, Y., Yu, B., Xia, C.X., Bai, J.G.: Pretreatment with 5-aminolevulinic acid mitigates heat stress of cucumber. — Biol. Plant. 56: 780–784, 2012.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Y. Chen.

Additional information

Acknowledgements: We are grateful for funding supported by the Shanghai Prosper Agriculture by Science and Technology Plan, China (Grant No. 2009-2-1) and the Open Fund of Shanghai Key Lab of Protected Horticultural Technology.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Y.P., He, J., Yang, S.J. et al. Exogenous 24-epibrassinolide ameliorates high temperature-induced inhibition of growth and photosynthesis in Cucumis melo . Biol Plant 58, 311–318 (2014). https://doi.org/10.1007/s10535-014-0395-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10535-014-0395-8

Additional key words

Navigation