Skip to main content
Log in

Prediction and Verification of Cutting Force in Machining of SiCp/Al Composites Based on Dynamic Mechanical Characteristics of Cutting Deformation Zone

  • Published:
Applied Composite Materials Aims and scope Submit manuscript

Abstract

Metal matrix composites (MMCs) reinforced by ceramic particles have been gradually applied in modern industry because of their excellent mechanical characteristics. However, the addition of high hardness particles also produces a significant challenge for machining of MMCs. Cutting force characterizes the dynamic mechanical characteristics of cutting deformation zone by reflecting the interaction of tool-workpiece, which is of great significance to describe the machinability of MMCs. This paper aims to propose a geometric model of cutting force to predict the cutting force and monitor the cutting state during machining of SiCp/Al composites. The shear deformation force, friction force in tool-chip interface and ploughing force in tool-workpiece interface, corresponding to shear deformation zone (plastic deformation of Al matrix mainly), fraction zone (tool-chip interaction) and ploughing zone (tool-workpiece interaction and fracture and debonding of SiC particles) were considered in predicted model. Meanwhile, the influence of tool cutting edge radius was considered. The results obtained by systematic cutting experiment with different cutting conditions were compared with predicted results, and the maximum error between predicted and measured value was within 12%, indicating the validity of predicted model in machining of SiCp/Al composites. With the increase of cutting depth (0.1 mm-1.5 mm), the roughness of machined surface increased from 149 to 377 nm, which can be explained by a larger deformation resistance caused by a deeper cutting depth. In addition, the applicability of the proposed model under different volume fraction of SiCp/Al composites were studied, and the maximum error between predicted and measured value is within 5%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig.4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Availability of Data and Material

Not applicable.

Abbreviations

R :

Average diameter of particles (μm)

V p :

Volume fraction of SiC particle (%)

a p :

Cutting depth (mm)

f :

Feed rate (mm/rev)

v c :

Cutting speed (m/min)

γ :

Rake angle (degree)

\({r}_{\varepsilon }\) :

Tool nose radius (mm)

\({r}_{z}\) :

Cutting edge radius (mm)

\({\upkappa }_{r}\) :

Approach angle (degree)

\({\kappa }_{r1}\) :

Departure angle (degree)

\({\kappa }_{r}*\) :

Effective approach angle (degree)

\({\tau }_{s}\) :

Shear flow stress of material (MPa)

\({F}_{OC}\) :

Main force (N)

\({F}_{X}\) :

Radial force (N)

\({F}_{Y}\) :

Feed force (N)

\({F}_{Z}\) :

Main cutting force (N)

ε :

Equivalent shear strain

\(\dot{\varepsilon }\) :

Strain state (s1)

T :

Absolute temperature (℃)

\({T}_{r}\) :

Ambient temperature (℃)

\({T}_{m}\) :

Melting temperature (℃)

φ :

Shear angle (degree)

μ :

Friction angle (degree)

\({\mu }_{3-bodv}\) :

Coefficient of rolling friction

l :

Contact length (mm)

h :

Contact width (mm)

a :

Initial crack length (mm)

δ :

Angle between the cutting force and the cutting direction (degree)

\({\delta }_{p0}\) :

Critical penetration depth (mm)

A :

Contact area in tool-chip interface (mm2)

\({A}_{sic}\) :

Contact area between SiC particles of chip bottom and rake face (mm2)

u :

Energy consumed by fracture and debonding of individual particle (J)

G :

Shear modulus of material before fracture (MPa)

w :

Initial crack width (mm)

\({\tau }_{crit}\) :

Limit of shear stress (MPa)

\({\tau }_{ea}\) :

Shear stress keeping adhesion (MPa)

\({\sigma }_{0}\) :

Tensile stress of material (MPa)

\({\sigma }^{*}\) :

Stress triaxiality

p :

Normal stress acting on chip (MPa)

\({\mu }_{f}\) :

Friction coefficient in Coulomb

d 1 …d 5 :

Fracture parameters

\(p,{e}_{\text{max}}^{ck}\) :

Material parameter

\({\varepsilon }_{m}^{\text{max}}\) :

Maximum effective separation

\({\tau }_{crit}\) :

Limit of shear stress (MPa)

\({F}_{I-x},{F}_{II-x},{F}_{III-x}\) :

Force components along the direction of cutting speed in three cutting deformation zones (N)

\({F}_{I-y},{F}_{II-y},{F}_{III-y}\) :

Force components along the direction of cutting feed in three cutting deformation zones (N)

\({F}_{I-z},{F}_{II-z},{F}_{III-z}\) :

Force components along the direction of cutting depth in three cutting deformation zones (N)

\({\varepsilon }^{f}\) :

Equivalent strain of fracture

\({\sigma }_{tu}^{I}\) :

Fracture stress of particles (MPa)

A,B,C,n,m :

J-C equation constants

b :

Cutting width (mm)

\({F}_{n}\) :

Normal force in rake face (N)

\({F}_{f}\) :

Friction force in the shear deformation zone (N)

\({F}_{s}\) :

Shear forces along shear plane (N)

\({F}_{\tau }\) :

Normal force perpendicular to the shear plane (N)

F g :

Friction in tool-chip interface (N)

F g 1 :

Friction force produced by SiC particles in tool-chip interface (N)

F g 2 :

Friction force produced by metallic matrix in tool-chip interface (N)

\({F}_{2-body}\) :

Sliding friction (N)

\({F}_{3-body}\) :

Rolling friction (N)

\({F}_{p}\) :

Normal force of ploughing (N)

\({F}_{t}\) :

Tangential force of ploughing (N)

\({F}_{N}\) :

Normal force on rake face produced by total reinforcement particles (N)

\({F}_{N1}\) :

Normal force on rake face produced by individual particle (N)

\({N}_{p}\) :

Number of reinforcement particles at tool-chip interface

Ф:

Fraction of particles involved in two-body abrasion (%)

\({\sigma }_{1},{\sigma }_{2},{\sigma }_{3}\) :

Main stress component (MPa)

\({G}_{c}\) :

Shear modulus of SiC (MPa)

\({e}_{nn}^{ck}\) :

Shear transfer coefficient

\({e}_{nn}^{ck}\) :

Initial strain of crack

References

  1. Nicholls, C.J., Boswell, B., Davies, I.J., Islam, M.N.: Review of machining metal matrix composites. Int. J. Adv. Manuf. Technol. 90, 2429–2441 (2017). https://doi.org/10.1007/s00170-016-9558-4

    Article  Google Scholar 

  2. Liao, Z., Abdelhafeez, A., Li, H., Yang, Y., Diaz, O.G., Axinte, D.: State-of-the-art of surface integrity in machining of metal matrix composites. Int. J. Mach. Tools Manuf. 143, 63–91 (2019). https://doi.org/10.1016/j.ijmachtools.2019.05.006

    Article  Google Scholar 

  3. Sekhar, R., Singh, T.P.: Mechanisms in turning of metal matrix composites: A review. J. Mater. Res. Technol. 4, 197–207 (2015). https://doi.org/10.1016/j.jmrt.2014.10.013

    Article  Google Scholar 

  4. Singh, A., Singh, J., Sinha, M.K., Kumar, R., Verma, V.: Compaction and Densification Characteristics of Iron Powder/Coal Fly Ash Mixtures Processed by Powder Metallurgy Technique. J. Materi. Eng. Perform. 30, 1207–1220 (2021). https://doi.org/10.1007/s11665-020-05429-x

    Article  CAS  Google Scholar 

  5. Singh, A., Singh, J., Sinha, M.K., Kumar, R., Verma, V.: Investigations on microstructural and microhardness developments in sintered iron–coal fly ash composites. Sādhanā. 45, 1–13 (2020). https://doi.org/10.1007/s12046-020-01408-z

    Article  CAS  Google Scholar 

  6. Hasan, M., Zhao, J., Jiang, Z.: Micromanufacturing of composite materials: A review. Int. J. Extrem. Manuf. 1, 012004 (2019). https://doi.org/10.1088/2631-7990/ab0f74

    Article  CAS  Google Scholar 

  7. Saba, F., Sajjadi, S.A., Haddad-Sabzevar, M., Zhang, F.: TiC-modified carbon nanotubes, TiC nanotubes and TiC nanorods: Synthesis and characterization. Ceram. Int. 44, 7949–7954 (2018). https://doi.org/10.1016/j.ceramint.2018.01.233

    Article  CAS  Google Scholar 

  8. Dandekar, C.R., Shin, Y.C.: Modeling of machining of composite materials: A review. Int. J. Mach. Tools Manuf. 57, 102–121 (2012). https://doi.org/10.1016/j.ijmachtools.2012.01.006

    Article  Google Scholar 

  9. Li, J., Laghari, R.A.: A review on machining and optimization of particle-reinforced metal matrix composites. Int. J. Adv. Manuf. Technol. 100, 2929–2943 (2019). https://doi.org/10.1007/s00170-018-2837-5

    Article  Google Scholar 

  10. Cakir, F.H., Gurgen, S., Sofuoglu, M.A., Celik, O.N., Kushan, M.C.: Finite element modeling of ultrasonic assisted turning of Ti6Al4V alloy. Procedia Soc. Behav. Sci. 195, 2839–2848 (2015). https://doi.org/10.1016/j.sbspro.2015.06.404

    Article  Google Scholar 

  11. Sofuoğlu, M.A., Çakır, F.H., Gürgen, S., Orak, S., Kuşhan, M.C.: Numerical investigation of hot ultrasonic assisted turning of aviation alloys. J. Braz. Soc. Mech. Sci. Eng. 40, 1–12 (2018). https://doi.org/10.1007/s40430-018-1037-4

    Article  Google Scholar 

  12. Sofuoğlu, M.A., Çakır, F.H., Gürgen, S., Orak, S., Kuşhan, M.C.: Experimental investigation of machining characteristics and chatter stability for Hastelloy-X with ultrasonic and hot turning. Int. J. Adv. Manuf. Technol. 95, 83–97 (2018). https://doi.org/10.1007/s00170-017-1153-9

    Article  Google Scholar 

  13. Gurgen, S., Sofuoglu, M.A., Cakir, F.H., Orak, S., Kushan, M.C.: Multi response optimization of turning operation with self-propelled rotary tool. Procedia Soc. Behav. Sci. 195, 2592–2600 (2015). https://doi.org/10.1016/j.sbspro.2015.06.459

    Article  Google Scholar 

  14. Kannan, S., Kishawy, H.A., Deiab, I.: Cutting forces and TEM analysis of the generated surface during machining metal matrix composites. J. Mater. Process. Technol. 209, 2260–2269 (2009). https://doi.org/10.1016/j.jmatprotec.2008.05.025

    Article  CAS  Google Scholar 

  15. Kishawy, H.A., Kannan, S., Balazinski, M.: An energy based analytical force model for orthogonal cutting of metal matrix composites. CIRP Ann. Manuf. Technol. 53, 91–94 (2004). https://doi.org/10.1016/S0007-8506(07)60652-0

    Article  Google Scholar 

  16. Pramanik, A., Zhang, L.C., Arsecularatne, J.A.: Prediction of cutting forces in machining of metal matrix composites. Int. J. Mach. Tools Manuf. 46, 1795–1803 (2006). https://doi.org/10.1016/j.ijmachtools.2005.11.012

    Article  Google Scholar 

  17. Dabade, U.A., Dapkekar, D., Joshi, S.S.: Modeling of chip-tool interface friction to predict cutting forces in machining of Al/SiCp composites. Int. J. Mach. Tools Manuf. 49, 690–700 (2009). https://doi.org/10.1016/j.ijmachtools.2009.03.003

    Article  Google Scholar 

  18. Sikder, S., Kishawy, H.A.: Analytical model for force prediction when machining metal matrix composite. Int. J. Mech. Sci. 59, 95–103 (2012). https://doi.org/10.1016/j.ijmecsci.2012.03.010

    Article  Google Scholar 

  19. Ghandehariun, A., Hussein, H.M., Kishawy, H.A.: Machining metal matrix composites: Novel analytical force model. Int. J. Adv. Manuf. Technol. 83, 233–241 (2016). https://doi.org/10.1007/s00170-015-7554-8

    Article  Google Scholar 

  20. Duan, C., Sun, W., Fu, C., Zhang, F.: Modeling and simulation of tool-chip interface friction in cutting Al/SiCp composites based on a three-phase friction model. Int. J. Mech. Sci. 142–143, 384–396 (2018). https://doi.org/10.1016/j.ijmecsci.2018.05.014

    Article  Google Scholar 

  21. Wang, J., Zuo, J., Shang, Z., Fan, X.: Modeling of cutting force prediction in machining high-volume SiCp/Al composites. Appl. Math. Model. 70, 1–17 (2019). https://doi.org/10.1016/j.apm.2019.01.015

    Article  CAS  Google Scholar 

  22. Lin, J.T., Bhattacharyya, D., Ferguson, W.G.: Chip formation in the machining of SiC-particle-reinforced aluminium-matrix composites. Compos. Sci. Technol. 58, 285–291 (1998). https://doi.org/10.1016/S0266-3538(97)00126-7

    Article  Google Scholar 

  23. Merchant, M.E.: Mechanics of the Metal Cutting Process. I. Orthogonal Cutting and a Type 2 Chip. J. Appl. Phys. 16, 267–275 (1945). https://doi.org/10.1063/1.1707586

    Article  Google Scholar 

  24. Waldorf, D.J.: A simplified model for ploughing forces in turning. J. Manuf. Process. 8, 76–82 (2006). https://doi.org/10.1016/S1526-6125(07)00005-9

    Article  Google Scholar 

  25. Li, X., Seah, W.K.H.: Tool wear acceleration in relation to workpiece reinforcement percentage in cutting of metal matrix composites. Wear 247, 161–171 (2001). https://doi.org/10.1016/S0043-1648(00)00524-X

    Article  CAS  Google Scholar 

  26. El-Gallab, M., Sklad, M.: Machining of Al/SiC particulate metal-matrix composites Part I: Tool performance. J. Mater. Process. Technol. 83, 151–158 (1998). https://doi.org/10.1016/S0924-0136(98)00054-5

    Article  Google Scholar 

  27. Sahin, Y., Sur, G.: The effect of Al2O3, TiN and Ti (C, N) based CVD coatings on tool wear in machining metal matrix composites. Surf. Coatings Technol. 179, 349–355 (2004). https://doi.org/10.1016/S0257-8972(03)00802-8

    Article  CAS  Google Scholar 

  28. Jiang, J., Sheng, F., Ren, F.: Modelling of two-body abrasive wear under multiple contact conditions. Wear 217, 35–45 (1998). https://doi.org/10.1016/S0043-1648(98)00161-6

    Article  CAS  Google Scholar 

  29. Astakhov, V.P., Xiao, X.: A methodology for practical cutting force evaluation based on the energy spent in the cutting system. Mach. Sci. Technol. 12, 325–347 (2008). https://doi.org/10.1080/10910340802306017

    Article  CAS  Google Scholar 

  30. Budak, E., Ozlu, E., Bakioglu, H., Barzegar, Z.: Thermo-mechanical modeling of the third deformation zone in machining for prediction of cutting forces. CIRP Ann. Manuf. Technol. 65, 121–124 (2016). https://doi.org/10.1016/j.cirp.2016.04.110

    Article  Google Scholar 

  31. Liu, C.S., Zhao, B., Gao, G.F., Jiao, F.: Research on the characteristics of the cutting force in the vibration cutting of a particle-reinforced metal matrix composites SiCp/Al[J]. J. Mater. Process. Technol. 129(1–3), 196–199 (2002). https://doi.org/10.1016/S0924-0136(02)00649-0

    Article  CAS  Google Scholar 

  32. Wu, Q., Xu, W., Zhang, L.: Machining of particulate-reinforced metal matrix composites: An investigation into the chip formation and subsurface damage. J. Mater. Process. Technol. 274, 116315 (2019). https://doi.org/10.1016/j.jmatprotec.2019.116315

    Article  CAS  Google Scholar 

  33. Yu, W., Chen, J., Ming, W., An, Q., Chen, M.: Experimental and FEM study of cutting mechanism and damage behavior of ceramic particles in orthogonal cutting SiCp/Al composites. Ceram. Int. 47, 7183–7194 (2021). https://doi.org/10.1016/j.ceramint.2020.11.072

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (U19A20104), Micro-Nano and Ultra-Precision Key Laboratory of Jilin Province (20140622008JC), Science and Technology Development Projects of Jilin Province (20190201303JC).

Author information

Authors and Affiliations

Authors

Contributions

Jiakang Zhou: Conceptualization, Writing- Original draft preparation, Methodology, Software, Validation, Data curation. Jieqiong Lin: Conceptualization, Funding acquisition, Supervision. Mingming Lu: Investigation, Methodology, Validation, Writing—Review & Editing. Xiaoqin Zhou: Conceptualization and Supervision. Yongsheng Du: Visualization, Investigation, Data curation, Formal Analysis. Chao Wang: Methodology, Data curation, Formal analysis.

Corresponding authors

Correspondence to Jieqiong Lin or Mingming Lu.

Ethics declarations

Code Availability

Not applicable.

Conflicts of Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, J., Lin, J., Lu, M. et al. Prediction and Verification of Cutting Force in Machining of SiCp/Al Composites Based on Dynamic Mechanical Characteristics of Cutting Deformation Zone. Appl Compos Mater 28, 2105–2126 (2021). https://doi.org/10.1007/s10443-021-09958-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10443-021-09958-z

Keywords

Navigation