Skip to main content
Log in

Machining metal matrix composites: novel analytical force model

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Outstanding mechanical characteristics make metal matrix composites (MMCs) applicable to many industrial applications. However, the very hard reinforcements that provide such remarkable features for MMCs also cause challenges during the machining process. This paper tries to address these challenges through development of a novel analytical model for prediction of cutting force during machining these composites. The force model is based on calculation of power consumption in different parts of the cutting system. The model considers the plastic deformations, different types of friction at various interfaces and debonding and fracture of reinforcements. The cutting force values predicted by the model are compared with experimental values for various MMCs at different cutting conditions. The close agreement between the results verifies the ability of the model to provide accurate estimation of the cutting force during machining MMCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kannan S, Kishawy H (2008) Tribological aspects of machining aluminium metal matrix composites. J Mater Process Technol 198(1):399–406

    Article  Google Scholar 

  2. Quigley O, Monaghan J, O'Reilly P (1994) Factors affecting the machinability of an Al/SiC metal-matrix composite. J Mater Process Technol 43(1):21–36. doi:10.1016/0924-0136(94)90159-7

    Article  Google Scholar 

  3. Lin JT, Bhattacharyya D, Lane C (1995) Machinability of a silicon carbide reinforced aluminium metal matrix composite. Wear 181–183:883–888. doi:10.1016/0043-1648(95)90211-2

    Article  Google Scholar 

  4. El-Gallab M, Sklad M (1998) Machining of Al/SiC particulate metal-matrix composites: part I: tool performance. J Mater Process Technol 83(1–3):151–158. doi:10.1016/S0924-0136(98)00054-5

    Article  Google Scholar 

  5. El-Gallab M, Sklad M (1998) Machining of Al/SiC particulate metal matrix composites: part II: workpiece surface integrity. J Mater Process Technol 83(1–3):277–285. doi:10.1016/S0924-0136(98)00072-7

    Article  Google Scholar 

  6. Umer U, Ashfaq M, Qudeiri JA, Hussein HMA, Danish SN, Al-Ahmari AR (2015) Modeling machining of particle-reinforced aluminum-based metal matrix composites using cohesive zone elements. Int J Adv Manuf Technol 7:1–9. doi:10.1007/s00170-014-6715-5

    Google Scholar 

  7. Ghandehariun A, Kishawy HA, Umer U, Hussein HM (2015) Analysis of tool-particle interactions during cutting process of metal matrix composites. International Journal of Advanced Manufacturing Technology In Press. doi:10.1007/s00170-015-7346-1

  8. Kishawy HA, Kannan S, Balazinski M (2004) An energy based analytical force model for orthogonal cutting of metal matrix composites. CIRP Ann Manuf Technol 53(1):91–94. doi:10.1016/S0007-8506(07)60652-0

    Article  Google Scholar 

  9. Pramanik A, Zhang LC, Arsecularatne JA (2006) Prediction of cutting forces in machining of metal matrix composites. Int J Mach Tool Manuf 46(14):1795–1803

    Article  Google Scholar 

  10. Sikder S, Kishawy HA (2012) Analytical model for force prediction when machining metal matrix composite. Int J Mech Sci 59(1):95–103. doi:10.1016/j.ijmecsci.2012.03.010

    Article  Google Scholar 

  11. Ernst H, Merchant ME (1941) Chip formation, friction and high quality machined surfaces. Surf Treat Met 29:299–378

    Google Scholar 

  12. Astakhov VP, Xiao X (2008) A methodology for practical cutting force evaluation based on the energy spent in the cutting system. Mach Sci Technol 12(3):325–347. doi:10.1080/10910340802306017

    Article  Google Scholar 

  13. Astakhov VP (2006) Tribology of metal cutting. Elsevier, London

    Google Scholar 

  14. Astakhov VP (2005) On the inadequacy of the single-shear plane model of chip formation. Int J Mech Sci 47(11):1649–1672. doi:10.1016/j.ijmecsci.2005.07.002

    Article  MATH  Google Scholar 

  15. Kishawy HA, Hosseini A, Moetakef-Imani B, Astakhov VP (2012) An energy based analysis of broaching operation: cutting forces and resultant surface integrity. CIRP Ann Manuf Technol 61(1):107–110. doi:10.1016/j.cirp.2012.03.004

    Article  Google Scholar 

  16. Johnson GR, Cook WH A (1983) Constitutive model and data for metals subjected to large strains, high strain rates and high temperatures. In: International Ballistics Committee, The Hague, Netherlands. p 1—2

  17. Ozel T, Zeren E (2004) Determination of work material flow stress and friction for FEA of machining using orthogonal cutting tests. J Mater Process Technol 153–154(0):1019–1025. doi:10.1016/j.jmatprotec.2004.04.162

    Article  Google Scholar 

  18. Astakhov VP, Shvets S (2004) The assessment of plastic deformation in metal cutting. J Mater Process Technol 146(2):193–202. doi:10.1016/j.jmatprotec.2003.10.015

    Article  Google Scholar 

  19. Dabade UA, Dapkekar D, Joshi SS (2009) Modeling of chip–tool interface friction to predict cutting forces in machining of Al/SiCp composites. Int J Mach Tool Manuf 49(9):690–700. doi:10.1016/j.ijmachtools.2009.03.003

    Article  Google Scholar 

  20. Jiang J, Sheng F, Ren F (1998) Modelling of two-body abrasive wear under multiple contact conditions. Wear 217(1):35–45

    Article  Google Scholar 

  21. Goddard J, Wilman H (1962) A theory of friction and wear during the abrasion of metals. Wear 5(2):114–135. doi:10.1016/0043-1648(62)90235-1

    Article  Google Scholar 

  22. Sin H, Saka N, Suh NP (1979) Abrasive wear mechanisms and the grit size effect. Wear 55(1):163–190. doi:10.1016/0043-1648(79)90188-1

    Article  Google Scholar 

  23. Nicholson DW (1979) On the detachment of a rigid inclusion from an elastic matrix. J Adhes 10(3):255–260

    Article  Google Scholar 

  24. Weibull W (1951) A statistical distribution function of wide applicability. J Appl Mech 18(3):293–297

    MATH  Google Scholar 

  25. Hauert A, Rossoll A, Mortensen A (2009) Particle fracture in high-volume-fraction ceramic-reinforced metals: governing parameters and implications for composite failure. J Mech Phys Solids 57(11):1781–1800

    Article  Google Scholar 

  26. Shackelford JF, Alexander W (2000) CRC materials science and engineering handbook, Third Edition. Taylor & Francis

  27. Munro RG (1997) Evaluated material properties for a sintered α-alumina. J Am Ceram Soc 80(8):1919–1928

    Article  Google Scholar 

  28. Holt JM, Gibson C, Ho CY (1999) Structural alloys handbook, vol v. 2. CINDAS/Purdue University, West Lafayette

    Google Scholar 

  29. Lesuer DR, Kay GJ, LeBlanc MM (1999) Modeling large-strain, high-rate deformation in metals. In: Third Biennial Tri-Laboratory Engineering Conference on Modeling and Simulation, Pleasanton, CA, United States of America

  30. Fang N (2005) A new quantitative sensitivity analysis of the flow stress of 18 engineering materials in machining. J Eng Mater Technol 127(2):192–196. doi:10.1115/1.1857935

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Ghandehariun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghandehariun, A., Hussein, H.M. & Kishawy, H.A. Machining metal matrix composites: novel analytical force model. Int J Adv Manuf Technol 83, 233–241 (2016). https://doi.org/10.1007/s00170-015-7554-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-015-7554-8

Keywords

Navigation