Skip to main content

Advertisement

Log in

Endometrium Derived Stem Cells as Potential Candidates in Nervous System Repair

  • Review
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Limited cell division and lack of endogenous repair mechanisms in the central nervous system, hampers tissue repair following neurodegenerative diseases or tissue injuries. Unlike central nervous system; peripheral nervous system has some capacity to repair after injury, but in case of critical sized defects the use of supporting cells in the neural guidance channels seems inevitable to obtain a satisfactory functional recovery. Stem cell therapies have provided new frontiers in the repair of nervous system largely through paracrine secretion mechanisms. The therapeutic potential of stem cells differs according to their tissue of origin, mode of isolation, administration route, and passage number. During the past decades, studies have been focused on stem cells harvested from disposable tissues such as menstrual blood or biopsies from endometrium. These cells are characterized by their high differentiation and proliferation potential, ease of harvest, and lack of ethical concerns. In the current review, we will discuss the prospects and challenges of endometrial stem cells’ application in nervous system repair.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Ababzadeh, S., A. Farzin, A. Goodarzi, R. Karimi, M. Sagharjoghi Farahani, M. Eslami Farsani, et al. High porous electrospun poly (ε-caprolactone)/gelatin/MgO scaffolds preseeded with endometrial stem cells promote tissue regeneration in full-thickness skin wounds: an in vivo study. J. Biomed. Mater. Res. Part B: Appl. Biomater. 108:2961–2970, 2020.

    Article  CAS  Google Scholar 

  2. Abu-Rub, M., and R. H. Miller. Emerging cellular and molecular strategies for enhancing central nervous system (CNS) remyelination. Brain Sci. 8:111, 2018.

    Article  PubMed Central  CAS  Google Scholar 

  3. Agbay, A., J. M. Edgar, M. Robinson, T. Styan, K. Wilson, J. Schroll, et al. Biomaterial strategies for delivering stem cells as a treatment for spinal cord injury. Cells Tissues Organs. 202:42–51, 2016.

    Article  CAS  PubMed  Google Scholar 

  4. Almeida, B., Y. Wang, and A. Shukla. Effects of nanoparticle properties on kartogenin delivery and interactions with mesenchymal stem cells. Ann. Biomed. Eng. 48:2090–2102, 2020.

    Article  PubMed  Google Scholar 

  5. Astaneh, M. E., A. Goodarzi, M. Khanmohammadi, A. Shokati, S. Mohandesnezhad, M. R. Ataollahi, et al. Chitosan/gelatin hydrogel and endometrial stem cells with subsequent atorvastatin injection impact in regenerating spinal cord tissue. J. Drug Deliv. Sci. Technol. 58:101831, 2020.

    Article  CAS  Google Scholar 

  6. Babaloo, H., S. Ebrahimi-Barough, M. A. Derakhshan, M. Yazdankhah, N. Lotfibakhshaiesh, M. Soleimani, et al. PCL/gelatin nanofibrous scaffolds with human endometrial stem cells/Schwann cells facilitate axon regeneration in spinal cord injury. J Cell Physiol. 234:11060–11069, 2019.

    Article  CAS  PubMed  Google Scholar 

  7. Banerjee, S., D. Williamson, N. Habib, M. Gordon, and J. Chataway. Human stem cell therapy in ischaemic stroke: a review. Age Ageing. 40:7–13, 2011.

    Article  PubMed  Google Scholar 

  8. Bayat, N., S. Ebrahimi-Barough, M. M. M. Ardakan, A. Ai, A. Kamyab, N. Babaloo, et al. Differentiation of human endometrial stem cells into Schwann cells in fibrin hydrogel as 3D culture. Mol. Neurobiol. 53:7170–7176, 2016.

    Article  CAS  PubMed  Google Scholar 

  9. Bockeria, L., V. Bogin, O. Bockeria, T. Le, B. Alekyan, E. J. Woods, et al. Endometrial regenerative cells for treatment of heart failure: a new stem cell enters the clinic. J. Transl. Med. 11:56, 2013.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Boese, A. C., A. Eckert, M. H. Hamblin, and J.-P. Lee. Human neural stem cells improve early stage stroke outcome in delayed tissue plasminogen activator-treated aged stroke brains. Exp. Neurol. 329:13275, 2020.

    Article  CAS  Google Scholar 

  11. Borlongan, C. V., Y. Kaneko, M. Maki, S.-J. Yu, M. Ali, J. G. Allickson, et al. Menstrual blood cells display stem cell–like phenotypic markers and exert neuroprotection following transplantation in experimental stroke. Stem Cells Dev. 19:439–452, 2010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bucan, V., D. Vaslaitis, C.-T. Peck, S. Strauß, P. M. Vogt, and C. Radtke. Effect of exosomes from rat adipose-derived mesenchymal stem cells on neurite outgrowth and sciatic nerve regeneration after crush injury. Mol. Neurobiol. 56:1812–1824, 2019.

    Article  CAS  PubMed  Google Scholar 

  13. Carvalho, C. R., W. Chang, R. L. Reis, J. M. Oliveira, and J. Kohn. Delivery of neurotrophic factors in a silk-based nerve conduit for peripheral nerve repair. In: 42nd Society for Biomaterials Annual Meeting and Exposition 2019: The Pinnacle of Biomaterials Innovation and Excellence: Society for Biomaterials; 2019.

  14. Chen, H.-X., F.-C. Liang, P. Gu, B.-L. Xu, H.-J. Xu, W.-T. Wang, et al. Exosomes derived from mesenchymal stem cells repair a Parkinson’s disease model by inducing autophagy. Cell Death Dis. 11:1–17, 2020.

    CAS  Google Scholar 

  15. Chen, L., J. Qu, T. Cheng, X. Chen, and C. Xiang. Menstrual blood-derived stem cells: toward therapeutic mechanisms, novel strategies, and future perspectives in the treatment of diseases. Stem Cell Res. Ther. 10:1–12, 2019.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Chen, L., J. Qu, and C. Xiang. The multi-functional roles of menstrual blood-derived stem cells in regenerative medicine. Stem Cell Res. Ther. 10:1–10, 2019.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Chen, L., B. Xiang, X. Wang, and C. Xiang. Exosomes derived from human menstrual blood-derived stem cells alleviate fulminant hepatic failure. Stem Cell Res. Ther. 8:9, 2017.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Cho, Y. J., H. S. Song, S. Bhang, S. Lee, B. G. Kang, J. C. Lee, et al. Therapeutic effects of human adipose stem cell-conditioned medium on stroke. J. Neurosci. Res. 90:1794–1802, 2012.

    Article  CAS  PubMed  Google Scholar 

  19. Cui, L., J. Jiang, L. Wei, X. Zhou, J. L. Fraser, B. J. Snider, et al. Transplantation of embryonic stem cells improves nerve repair and functional recovery after severe sciatic nerve axotomy in rats. Stem Cells. 26:1356–1365, 2008.

    Article  CAS  PubMed  Google Scholar 

  20. Duijkers, I., I. Klingmann, R. Prinz, M. Wargenau, S. Hrafnsdottir, T. B. Magnusdottir, et al. Effect on endometrial histology and pharmacokinetics of different dose regimens of progesterone vaginal pessaries, in comparison with progesterone vaginal gel and placebo. Hum. Reprod. 33:2131–2140, 2018.

    Article  CAS  PubMed  Google Scholar 

  21. Ebrahimi, L., A. Farzin, Y. Ghasemi, A. Alizadeh, A. Goodarzi, A. Basiri, et al. Metformin-loaded PCL/PVA fibrous scaffold preseeded with human endometrial stem cells for effective guided bone regeneration membranes. ACS Biomater. Sci. Eng. 2020. https://doi.org/10.1021/acsbiomaterials.0c00958.

    Article  PubMed  Google Scholar 

  22. Ebrahimi-Barough, S., H. M. Kouchesfahani, J. Ai, and M. Massumi. Differentiation of human endometrial stromal cells into oligodendrocyte progenitor cells (OPCs). J. Mol. Neurosci. 51:265–273, 2013.

    Article  CAS  PubMed  Google Scholar 

  23. Fan, X., A. Rai, N. Kambham, J. F. Sung, N. Singh, M. Petitt, et al. Endometrial VEGF induces placental sFLT1 and leads to pregnancy complications. J. Clin. Investig. 124:4941–4952, 2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Farzamfar, S., A. Ehterami, M. Salehi, A. Vaeez, A. Atashi, and H. Sahrapeyma. Unrestricted somatic stem cells loaded in nanofibrous conduit as potential candidate for sciatic nerve regeneration. J. Mol. Neurosci. 67:48–61, 2019.

    Article  CAS  PubMed  Google Scholar 

  25. Farzamfar, S., M. Naseri-Nosar, A. Ghanavatinejad, A. Vaez, A. H. Zarnani, and M. Salehi. Sciatic nerve regeneration by transplantation of menstrual blood-derived stem cells. Mol. Biol. Rep. 44:407–412, 2017.

    Article  CAS  PubMed  Google Scholar 

  26. Farzamfar, S., M. Salehi, A. Ehterami, M. Naseri-Nosar, A. Vaez, A. H. Zarnani, et al. Promotion of excisional wound repair by a menstrual blood-derived stem cell-seeded decellularized human amniotic membrane. Biomed. Eng. Lett. 8:393–398, 2018.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Feng, Z., G. Zhao, and L. Yu. Neural stem cells and Alzheimer’s disease: challenges and hope. Am. J. Alzheimer’s Dis. Other Dementias. 24:52–7, 2009.

    Article  Google Scholar 

  28. Figueira, P. G. M., M. S. Abrão, G. Krikun, and H. Taylor. Stem cells in endometrium and their role in the pathogenesis of endometriosis. Ann. N. Y. Acad. Sci. 1221:10, 2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Gargett, C. E., R. W. Chan, and K. E. Schwab. Endometrial stem cells. Curr. Opin. Obstet. Gynecol. 19:377–383, 2007.

    Article  PubMed  Google Scholar 

  30. Gatti, M., M. Zavatti, F. Beretti, D. Giuliani, E. Vandini, A. Ottani, et al. Oxidative stress in Alzheimers disease: in vitro therapeutic effect of amniotic fluid stem cells extracellular vesicles. Oxid. Med. Cell. Longevity. 7:4, 2020.

    Google Scholar 

  31. Ghobadi, F., D. Mehrabani, and G. Mehrabani. Regenerative potential of endometrial stem cells: a mini review. World J. Plast. Surg. 4:3, 2015.

    PubMed  PubMed Central  Google Scholar 

  32. Hasanzadeh, E., S. Ebrahimi-Barough, N. Mahmoodi, A. Mellati, H. Nekounam, A. Basiri, et al. Defining the role of 17β-estradiol in human endometrial stem cells differentiation into neuron-like cells. Cell Biol. Int. 45:140–153, 2021.

    Article  CAS  PubMed  Google Scholar 

  33. Helms, F., S. Lau, M. Klingenberg, T. Aper, A. Haverich, M. Wilhelmi, et al. Complete myogenic differentiation of adipogenic stem cells requires both biochemical and mechanical stimulation. Ann. Biomed. Eng. 48:913–926, 2020.

    Article  PubMed  Google Scholar 

  34. Jalali Monfared, M., F. Nasirinezhad, S. Ebrahimi-Barough, G. Hasanzade, H. Saberi, S. M. Tavangar, et al. Transplantation of miR-219 overexpressed human endometrial stem cells encapsulated in fibrin hydrogel in spinal cord injury. J. Cell. Physiol. 234:18887–18896, 2019.

    Article  CAS  PubMed  Google Scholar 

  35. Jiang, Z., X. Hu, H. Yu, Y. Xu, L. Wang, H. Chen, et al. Human endometrial stem cells confer enhanced myocardial salvage and regeneration by paracrine mechanisms. J. Cell. Mol. Med. 17:1247–1260, 2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kadouri, A., A. Bar-Ilan, E. Melamed, D. Offen, O. Sadan, and M. Bahat-Stromza. Mesenchymal stem cells for the treatment of CNS diseases. Google Patents; 2018.

  37. Kim, K.-S., H. S. Kim, J.-M. Park, H. W. Kim, M.-K. Park, H.-S. Lee, et al. Long-term immunomodulatory effect of amniotic stem cells in an Alzheimer’s disease model. Neurobiol. Aging. 34:2408–20, 2013.

    Article  CAS  PubMed  Google Scholar 

  38. Kim, K. Y., Y.-H. Suh, and K.-A. Chang. Therapeutic effects of human amniotic epithelial stem cells in a transgenic mouse model of Alzheimer’s disease. Int. J. Mol. Sci. 21:2658, 2020.

    Article  CAS  PubMed Central  Google Scholar 

  39. Kim, C., J. L. Young, A. W. Holle, K. Jeong, L. G. Major, J. H. Jeong, et al. Stem cell mechanosensation on gelatin methacryloyl (GelMA) stiffness gradient hydrogels. Ann. Biomed. Eng. 48:893–902, 2020.

    Article  PubMed  Google Scholar 

  40. Kiros, S., S. Lin, M. Xing, and K. Mequanint. Embryonic mesenchymal multipotent cell differentiation on electrospun biodegradable poly (ester amide) scaffolds for model vascular tissue fabrication. Ann. Biomed. Eng. 48:980–991, 2020.

    Article  PubMed  Google Scholar 

  41. Kovina, M. V., M. E. Krasheninnikov, T. G. Dyuzheva, M. I. Danilevsky, I. D. Klabukov, M. V. Balyasin, et al. Human endometrial stem cells: high-yield isolation and characterization. Cytotherapy. 20:361–374, 2018.

    Article  CAS  PubMed  Google Scholar 

  42. Kwak, K.-A., H.-B. Kwon, J. W. Lee, and Y.-S. Park. Current perspectives regarding stem cell-based therapy for ischemic stroke. Curr. Pharm. Des. 24:3332–3340, 2018.

    Article  CAS  PubMed  Google Scholar 

  43. Lanza, R., R. Langer, J. P. Vacanti, and A. Atala. Principles of tissue engineering. Cambridge: Academic Press, 2020.

    Google Scholar 

  44. Li, B., H.-J. Jung, S.-M. Kim, M.-J. Kim, J. W. Jahng, and J.-H. Lee. Human periodontal ligament stem cells repair mental nerve injury. Neural Regen. Res. 8:2827, 2013.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Lin, X., Y. Zhang, Y. Pan, S. He, Y. Dai, B. Zhu, et al. Endometrial stem cell-derived G-CSF attenuates endometrial fibrosis via Sonic Hedgehog transcriptional activator Gli2. Biol. Reprod. 2018. https://doi.org/10.1093/biolre/ioy005.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Lindvall, O., and A. Björklund. Cell therapy in Parkinson’s disease. NeuroRx. 1:382–393, 2004.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Lindvall, O., and Z. Kokaia. Prospects of stem cell therapy for replacing dopamine neurons in Parkinson’s disease. Trends Pharmacol. Sci. 30:260–267, 2009.

    Article  CAS  PubMed  Google Scholar 

  48. Liu, T., Y. Huang, J. Zhang, W. Qin, H. Chi, J. Chen, et al. Transplantation of human menstrual blood stem cells to treat premature ovarian failure in mouse model. Stem Cells Dev. 23:1548–1557, 2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Liu, Y., R. Niu, F. Yang, Y. Yan, S. Liang, Y. Sun, et al. Biological characteristics of human menstrual blood-derived endometrial stem cells. J. Cell. Mol. Med. 22:1627–1639, 2018.

    Article  CAS  PubMed  Google Scholar 

  50. Liu, W., Y. Rong, J. Wang, Z. Zhou, X. Ge, C. Ji, et al. Exosome-shuttled miR-216a-5p from hypoxic preconditioned mesenchymal stem cells repair traumatic spinal cord injury by shifting microglial M1/M2 polarization. J. Neuroinflamm. 17:1–22, 2020.

    Article  CAS  Google Scholar 

  51. Liu, C. Y., G. Yin, Y. D. Sun, Y. F. Lin, Z. Xie, A. W. English, et al. Effect of exosomes from adipose-derived stem cells on the apoptosis of Schwann cells in peripheral nerve injury. CNS Neurosci. Therapeut. 26:189–196, 2020.

    Article  CAS  Google Scholar 

  52. Locatelli, F., A. Bersano, E. Ballabio, S. Lanfranconi, D. Papadimitriou, S. Strazzer, et al. Stem cell therapy in stroke. Cell. Mol. Life Sci. 66:757–772, 2009.

    Article  CAS  PubMed  Google Scholar 

  53. Lv, H., Y. Hu, Z. Cui, and H. Jia. Human menstrual blood: a renewable and sustainable source of stem cells for regenerative medicine. Stem Cell Res. Ther. 9:1–11, 2018.

    Article  CAS  Google Scholar 

  54. Lv, H., Y. Hu, Z. Cui, and H. Jia. Human menstrual blood: a renewable and sustainable source of stem cells for regenerative medicine. Stem Cell Res. Ther. 9:325, 2018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Mahmoodi, N., J. Ai, S. Ebrahimi-Barough, Z. Hassannejad, E. Hasanzadeh, A. Basiri, et al. Microtubule stabilizer epothilone B as a motor neuron differentiation agent for human endometrial stem cells. Cell Biol. Int. 44:1168–1183, 2020.

    Article  CAS  PubMed  Google Scholar 

  56. Mahzoon, S., J. M. Townsend, T. N. Lam, V. Sjoelund, and M. S. Detamore. Effects of a bioactive SPPEPS peptide on chondrogenic differentiation of mesenchymal stem cells. Ann. Biomed. Eng. 47:2308–2321, 2019.

    Article  PubMed  Google Scholar 

  57. Martino, G., R. J. Franklin, A. B. Van Evercooren, D. A. Kerr, Group SCiMSC. Stem cell transplantation in multiple sclerosis: current status and future prospects. Nat. Rev. Neurol. 6:247, 2010.

    Article  PubMed  Google Scholar 

  58. McGill, T. J., B. Cottam, B. Lu, S. Wang, S. Girman, C. Tian, et al. Transplantation of human central nervous system stem cells–neuroprotection in retinal degeneration. Eur. J. Neurosci. 35:468–477, 2012.

    Article  PubMed  Google Scholar 

  59. McLauchlan, D., and N. P. Robertson. Stem cells in the treatment of central nervous system disease. J. Neurol. 265:984–986, 2018.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Mita, T., Y. Furukawa-Hibi, H. Takeuchi, H. Hattori, K. Yamada, H. Hibi, et al. Conditioned medium from the stem cells of human dental pulp improves cognitive function in a mouse model of Alzheimer’s disease. Behav. Brain Res. 293:189–197, 2015.

    Article  CAS  PubMed  Google Scholar 

  61. Mobarakeh, Z. T., J. Ai, F. Yazdani, S. M. R. Sorkhabadi, Z. Ghanbari, A. N. Javidan, et al. Human endometrial stem cells as a new source for programming to neural cells. Cell. Biol. Int. Rep. 19:7–14, 2012.

    Article  Google Scholar 

  62. Muir, K. W., D. Bulters, M. Willmot, N. Sprigg, A. Dixit, N. Ward, et al. Intracerebral implantation of human neural stem cells and motor recovery after stroke: multicentre prospective single-arm study (PISCES-2). J. Neurol. Neurosurg. Psychiatry. 91:396–401, 2020.

    Article  PubMed  Google Scholar 

  63. Murakami, T., Y. Fujimoto, Y. Yasunaga, O. Ishida, N. Tanaka, Y. Ikuta, et al. Transplanted neuronal progenitor cells in a peripheral nerve gap promote nerve repair. Brain Res. 974:17–24, 2003.

    Article  CAS  PubMed  Google Scholar 

  64. Murdock, T. A., E. F. Veras, R. J. Kurman, and M. T. Mazur. The Normal Endometrium. Diagnosis of Endometrial Biopsies and Curettings. New York: Springer, pp. 9–37, 2019.

    Book  Google Scholar 

  65. Navaei-Nigjeh, M., G. Amoabedini, A. Noroozi, M. Azami, M. N. Asmani, S. Ebrahimi-Barough, et al. Enhancing neuronal growth from human endometrial stem cells derived neuron-like cells in three-dimensional fibrin gel for nerve tissue engineering. J. Biomed. Mater. Res. Part A. 102:2533–2543, 2014.

    Article  CAS  Google Scholar 

  66. Noureddini, M., J. Verdi, S. A. Mortazavi-Tabatabaei, S. Sharif, A. Azimi, P. Keyhanvar, et al. Human endometrial stem cell neurogenesis in response to NGF and bFGF. Cell. Biol. Int. 36:961–966, 2012.

    Article  CAS  PubMed  Google Scholar 

  67. Parekkadan, B., and J. M. Milwid. Mesenchymal stem cells as therapeutics. Annu. Rev. Biomed. Eng. 12:87–117, 2010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Peron, J. P. S., K. Yang, M.-L. Chen, W. N. Brandao, A. S. Basso, A. G. Commodaro, et al. Oral tolerance reduces Th17 cells as well as the overall inflammation in the central nervous system of EAE mice. J. Neuroimmunol. 227:10–17, 2010.

    Article  CAS  PubMed  Google Scholar 

  69. Rando, T. A., and F. Ambrosio. Regenerative rehabilitation: applied biophysics meets stem cell therapeutics. Cell Stem Cell. 22:306–309, 2018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Rippon, H., and A. Bishop. Embryonic stem cells. Cell Proliferation. 37:23–34, 2004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Robinson, A. P., C. T. Harp, A. Noronha, and S. D. Miller. The experimental autoimmune encephalomyelitis (EAE) model of MS: utility for understanding disease pathophysiology and treatment. Handb. Clin. Neurol. 2014. https://doi.org/10.1016/B978-0-444-52001-2.00008-X.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Rodríguez-Gómez, J. A., J. Q. Lu, I. Velasco, S. Rivera, S. S. Zoghbi, J. S. Liow, et al. Persistent dopamine functions of neurons derived from embryonic stem cells in a rodent model of Parkinson disease. Stem Cells. 25:918–928, 2007.

    Article  PubMed  CAS  Google Scholar 

  73. Ronaghi, M., S. Erceg, V. Moreno-Manzano, and M. Stojkovic. Challenges of stem cell therapy for spinal cord injury: human embryonic stem cells, endogenous neural stem cells, or induced pluripotent stem cells? Stem Cells. 28:93–99, 2010.

    Article  PubMed  Google Scholar 

  74. Ruff, C., and M. Fehlings. Neural stem cells in regenerative medicine: bridging the gap. Panminerva Med. 52:125–147, 2010.

    CAS  PubMed  Google Scholar 

  75. Sahni, V., and J. A. Kessler. Stem cell therapies for spinal cord injury. Nat. Rev. Neurol. 6:363, 2010.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Shalaby, S. M., S. Amal, F. E. Ahmed, S. F. Shaban, R. A. Wahdan, W. A. Kandel, et al. Combined Wharton’s jelly derived mesenchymal stem cells and nerve guidance conduit: a potential promising therapy for peripheral nerve injuries. Int. J. Biochem. Cell Biol. 86:67–76, 2017.

    Article  CAS  PubMed  Google Scholar 

  77. Shoae-Hassani, A., S. A. Mortazavi-Tabatabaei, S. Sharif, H. Rezaei-Khaligh, and J. Verdi. DHEA provides a microenvironment for endometrial stem cells neurogenesis. Med. Hypotheses. 76:843–846, 2011.

    Article  CAS  PubMed  Google Scholar 

  78. Simoni, M., and H. S. Taylor. Therapeutic strategies involving uterine stem cells in reproductive medicine. Curr. Opin. Obstet. Gynecol. 30:209–216, 2018.

    Article  PubMed  Google Scholar 

  79. Sittadjody, S., K. M. Enck, A. Wells, J. J. Yoo, A. Atala, J. M. Saul, et al. Encapsulation of mesenchymal stem cells in 3D ovarian cell constructs promotes stable and long-term hormone secretion with improved physiological outcomes in a syngeneic rat model. Ann. Biomed. Eng. 48:1058–1070, 2020.

    Article  PubMed  Google Scholar 

  80. Subbarao, R. B., I. Ullah, E.-J. Kim, S.-J. Jang, W.-J. Lee, R. H. Jeon, et al. Characterization and evaluation of neuronal trans-differentiation with electrophysiological properties of mesenchymal stem cells isolated from porcine endometrium. Int. J. Mol. Sci. 16:10934–10951, 2015.

    Article  CAS  PubMed  Google Scholar 

  81. di Summa, P. G., P. J. Kingham, C. C. Campisi, W. Raffoul, and D. F. Kalbermatten. Collagen (NeuraGen®) nerve conduits and stem cells for peripheral nerve gap repair. Neurosci. Lett. 572:26–31, 2014.

    Article  PubMed  CAS  Google Scholar 

  82. Sun, J. M., and J. Kurtzberg. Cell therapy for diverse central nervous system disorders: inherited metabolic diseases and autism. Pediatr. Res. 83:364, 2018.

    Article  CAS  PubMed  Google Scholar 

  83. Sun, P., J. Liu, W. Li, X. Xu, X. Gu, H. Li, et al. Human endometrial regenerative cells attenuate renal ischemia reperfusion injury in mice. J. Transl. Med. 14:28, 2016.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Suresh, V., and J. West. 3D Culture facilitates VEGF-stimulated endothelial differentiation of adipose-derived stem cells. Ann. Biomed. Eng. 48:1034–1044, 2020.

    Article  CAS  PubMed  Google Scholar 

  85. Tan, J., P. Li, Q. Wang, Y. Li, X. Li, D. Zhao, et al. Autologous menstrual blood-derived stromal cells transplantation for severe Asherman’s syndrome. Hum. Reprod. 31:2723–2729, 2016.

    Article  PubMed  Google Scholar 

  86. Tetzlaff, W., E. B. Okon, S. Karimi-Abdolrezaee, C. E. Hill, J. S. Sparling, J. R. Plemel, et al. A systematic review of cellular transplantation therapies for spinal cord injury. J. Neurotrauma. 28:1611–1682, 2011.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Tuan, R. S., and P. Alexander. Adult stem cell-based enhancement of nerve conduit for peripheral nerve repair. Pittsburgh: University of Pittsburgh, 2018.

    Google Scholar 

  88. Ulrich, D., S. L. Edwards, K. Su, K. S. Tan, J. F. White, J. A. Ramshaw, et al. Human endometrial mesenchymal stem cells modulate the tissue response and mechanical behavior of polyamide mesh implants for pelvic organ prolapse repair. Tissue Eng. Part A. 20:785–798, 2013.

    PubMed  PubMed Central  Google Scholar 

  89. Ulrich, D., R. Muralitharan, and C. E. Gargett. Toward the use of endometrial and menstrual blood mesenchymal stem cells for cell-based therapies. Expert Opin. Biol. Ther. 13:1387–1400, 2013.

    Article  CAS  PubMed  Google Scholar 

  90. Vazey, E. M., K. Chen, S. M. Hughes, and B. Connor. Transplanted adult neural progenitor cells survive, differentiate and reduce motor function impairment in a rodent model of Huntington’s disease. Exp. Neurol. 199:384–396, 2006.

    Article  PubMed  Google Scholar 

  91. Verdi, J., A. Tan, A. Shoae-Hassani, and A. M. Seifalian. Endometrial stem cells in regenerative medicine. J. Biol. Eng. 8:1–10, 2014.

    Article  CAS  Google Scholar 

  92. Verdi, J., A. Tan, A. Shoae-Hassani, and A. M. Seifalian. Endometrial stem cells in regenerative medicine. J. Biol. Eng. 8:20, 2014.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Wang, S.-M., C.-U. Lee, and H. K. Lim. Stem cell therapies for Alzheimer’s disease: is it time? Curr.Opin. Psychiatry. 32:105–116, 2019.

    Article  CAS  PubMed  Google Scholar 

  94. Wechsler, M. E., M. Shevchuk, and N. A. Peppas. Developing a multidisciplinary approach for engineering stem cell organoids. Ann. Biomed. Eng. 48:1895–1904, 2020.

    Article  PubMed  Google Scholar 

  95. Wolff, E. F., X. B. Gao, K. V. Yao, Z. B. Andrews, H. Du, J. D. Elsworth, et al. Endometrial stem cell transplantation restores dopamine production in a Parkinson’s disease model. J. Cell. Mol. Med. 15:747–755, 2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Wu, D. C., A. S. Boyd, and K. J. Wood. Embryonic stem cell transplantation: potential applicability in cell replacement therapy and regenerative medicine. Front. Biosci. 12:4525–4535, 2007.

    Article  CAS  PubMed  Google Scholar 

  97. Wu, X., Y. Luo, J. Chen, R. Pan, B. Xiang, X. Du, et al. Transplantation of human menstrual blood progenitor cells improves hyperglycemia by promoting endogenous progenitor differentiation in type 1 diabetic mice. Stem Cells Dev. 23:1245–1257, 2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Wu, Q., Q. Wang, Z. Li, X. Li, J. Zang, Z. Wang, et al. Human menstrual blood-derived stem cells promote functional recovery in a rat spinal cord hemisection model. Cell Death Dis. 9:882, 2018.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Xiang, B., L. Chen, X. Wang, Y. Zhao, Y. Wang, and C. Xiang. Transplantation of menstrual blood-derived mesenchymal stem cells promotes the repair of LPS-induced acute lung injury. Int. J. Mol. Sci. 18:689, 2017.

    Article  PubMed Central  CAS  Google Scholar 

  100. Xiong, N., Z. Zhang, J. Huang, C. Chen, M. Jia, J. Xiong, et al. VEGF-expressing human umbilical cord mesenchymal stem cells, an improved therapy strategy for Parkinson’s disease. Gene Ther. 18:394–402, 2011.

    Article  CAS  PubMed  Google Scholar 

  101. Yamout, B., R. Hourani, H. Salti, W. Barada, T. El-Hajj, A. Al-Kutoubi, et al. Bone marrow mesenchymal stem cell transplantation in patients with multiple sclerosis: a pilot study. J. Neuroimmunol. 227:185–189, 2010.

    Article  CAS  PubMed  Google Scholar 

  102. Yan, Y., T. Ma, K. Gong, Q. Ao, X. Zhang, and Y. Gong. Adipose-derived mesenchymal stem cell transplantation promotes adult neurogenesis in the brains of Alzheimer’s disease mice. Neural Regen. Res. 9:798, 2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Yang, Z., C. Zheng, F. Zhang, B. Lin, M. Cao, X. Tian, et al. Magnetic resonance imaging of enhanced nerve repair with mesenchymal stem cells combined with microenvironment immunomodulation in neurotmesis. Muscle Nerve. 61:815–825, 2020.

    Article  CAS  PubMed  Google Scholar 

  104. Zaky, S., C. S. Zaky, and A. Abd-Elsayed. Anatomy of the nervous system. Pain. 2019. https://doi.org/10.1007/978-3-319-99124-5_1.

    Article  Google Scholar 

  105. Zhang, Q., P. D. Nguyen, S. Shi, J. C. Burrell, D. K. Cullen, and A. D. Le. 3D bio-printed scaffold-free nerve constructs with human gingiva-derived mesenchymal stem cells promote rat facial nerve regeneration. Sci. Rep. 8:1–11, 2018.

    Google Scholar 

  106. Zhang, Q., P. Wu, F. Chen, Y. Zhao, Y. Li, X. He, et al. Brain derived neurotrophic factor and glial cell line-derived neurotrophic factor-transfected bone mesenchymal stem cells for the repair of periphery nerve injury. Front. Bioeng. Biotechnol. 8:874, 2020.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Zhao, Y., X. Chen, Y. Wu, Y. Wang, Y. Li, and C. Xiang. Transplantation of human menstrual blood-derived mesenchymal stem cells alleviates Alzheimer’s disease-like pathology in APP/PS1 transgenic mice. Front. Mol. Neurosci. 11:140, 2018.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Zhu, X., B. Péault, G. Yan, H. Sun, Y. Hu, and L. Ding. Stem cells and endometrial regeneration: from basic research to clinical trial. Curr. Stem Cell Res. Ther. 14:293–304, 2019.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guijuan Zhu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Associate Editor Stefan M. Duma oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, Y., Wang, X. & Zhu, G. Endometrium Derived Stem Cells as Potential Candidates in Nervous System Repair. Ann Biomed Eng 50, 485–498 (2022). https://doi.org/10.1007/s10439-022-02909-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-022-02909-0

Keywords

Navigation