Skip to main content
Log in

Developing a Multidisciplinary Approach for Engineering Stem Cell Organoids

  • Biomaterials - Engineering Cell Behavior
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Recent advances in stem cell biology, synthetic biology, bioengineering, and biotechnology have included significant work leading to the development of stem cell-derived organoids. The growing popularity of organoid research and use of organoids is widely due to the fact that these three-dimensional cellular structures better model human physiology compared to traditional in vitro and in vivo methods by recapitulating many biologically relevant parameters. Organoids show great promise for a wide range of applications, such as for use in disease modeling, drug discovery, and regenerative medicine. However, many challenges associated with reproducibility and scale up still remain. Identification of the conditions which generate a robust environment that predictably promotes cellular self-assembly and organization leading to organoid formation is critical and requires a multidisciplinary approach. To accomplish this we need to identify a cellular source, engineer a matrix to stimulate cell–cell and cell–matrix interactions, and provide the biochemical and biophysical cues which mimic that of the in vivo environment. Discussion of the components needed for organoid development and formation is reviewed herein, as well as specific organoid examples and the promise of this research for the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Allazetta, S., and M. P. Lutolf. Stem cell niche engineering through droplet microfluidics. Curr. Opin. Biotechnol. 35:86–93, 2015.

    CAS  PubMed  Google Scholar 

  2. Annabi, N., A. Tamayol, S. R. Shin, A. M. Ghaemmaghami, N. A. Peppas, and A. Khademhosseini. Surgical materials: current challenges and nano-enabled solutions. Nano Today 9:574–589, 2014.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Barker, N., J. H. van Es, J. Kuipers, P. Kujala, M. van den Born, M. Cozijnsen, A. Haegebarth, J. Korving, H. Begthel, P. J. Peters, and H. Clevers. Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature 449:1003–1007, 2007.

    CAS  PubMed  Google Scholar 

  4. Bhatia, S. N., and D. E. Ingber. Microfluidic organs-on-chips. Nat. Biotechnol. 32:760–772, 2014.

    CAS  PubMed  Google Scholar 

  5. Brassard, J. A., and M. P. Lutolf. Engineering stem cell self-organization to build better organoids. Cell Stem Cell 24:860–876, 2019.

    CAS  PubMed  Google Scholar 

  6. Broguiere, N., L. Isenmann, C. Hirt, T. Ringel, S. Placzek, E. Cavalli, F. Ringnalda, L. Villiger, R. Züllig, R. Lehmann, G. Rogler, M. H. Heim, J. Schüler, M. Zenobi-Wong, and G. Schwank. Growth of epithelial organoids in a defined hydrogel. Adv. Mater. 30:1801621, 2018.

    Google Scholar 

  7. Broutier, L., A. Andersson-Rolf, C. J. Hindley, S. F. Boj, H. Clevers, B. K. Koo, and M. Huch. Culture and establishment of self-renewing human and mouse adult liver and pancreas 3D organoids and their genetic manipulation. Nat. Protoc. 11:1724–1743, 2016.

    CAS  PubMed  Google Scholar 

  8. Burdick, J. A., and G. Vunjak-Novakovic. Engineered microenvironments for controlled stem cell differentiation. Tissue Eng. A 15:205–219, 2009.

    CAS  Google Scholar 

  9. Capeling, M. M., M. Czerwinski, S. Huang, Y.-H. Tsai, A. Wu, M. S. Nagy, B. Juliar, N. Sundaram, Y. Song, W. M. Han, S. Takayama, E. Alsberg, A. J. Garcia, M. Helmrath, A. J. Putnam, and J. R. Spence. Nonadhesive alginate hydrogels support growth of pluripotent stem cell-derived intestinal organoids. Stem Cell Rep. 12:381–394, 2019.

    CAS  Google Scholar 

  10. Casey, J., X. Yue, T. D. Nguyen, A. Acun, V. R. Zellmer, S. Zhang, and P. Zorlutuna. 3D hydrogel-based microwell arrays as a tumor microenvironment model to study breast cancer growth. Biomed. Mater. 12:025009, 2017.

    PubMed  Google Scholar 

  11. Cha, C., W. B. Liechty, A. Khademhosseini, and N. A. Peppas. Designing biomaterials to direct stem cell fate. ACS Nano 6:9353–9358, 2012.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Chiu, L. L. Y., R. K. Iyer, J.-P. King, and M. Radisic. Biphasic electrical field stimulation aids in tissue engineering of multicell-type cardiac organoids. Tissue Eng. A 17:1465–1477, 2011.

    CAS  Google Scholar 

  13. Choi, Y. Y., B. G. Chung, D. H. Lee, A. Khademhosseini, J.-H. Kim, and S.-H. Lee. Controlled-size embryoid body formation in concave microwell arrays. Biomaterials 31:4296–4303, 2010.

    CAS  PubMed  Google Scholar 

  14. Cruz-Acuña, R., M. Quirós, A. E. Farkas, P. H. Dedhia, S. Huang, D. Siuda, V. García-Hernández, A. J. Miller, J. R. Spence, A. Nusrat, and A. J. García. Synthetic hydrogels for human intestinal organoid generation and colonic wound repair. Nat. Cell Biol. 19:1326–1335, 2017.

    PubMed  PubMed Central  Google Scholar 

  15. Devaud, Y. R., E. Avilla-Royo, C. Trachsel, J. Grossmann, I. Martin, M. P. Lutolf, and M. Ehrbar. Label-free quantification proteomics for the identification of mesenchymal stromal cell matrisome inside 3D poly(ethylene glycol) hydrogels. Adv. Healthc. Mater. 7:1800534, 2018.

    Google Scholar 

  16. Di Lullo, E., and A. R. Kriegstein. The use of brain organoids to investigate neural development and disease. Nat. Rev. Neurosci. 18:573–584, 2017.

    PubMed  PubMed Central  Google Scholar 

  17. DiMarco, R. L., R. E. Dewi, G. Bernal, C. Kuo, and S. C. Heilshorn. Protein-engineered scaffolds for in vitro 3D culture of primary adult intestinal organoids. Biomater. Sci. 3:1376–1385, 2015.

    CAS  PubMed  Google Scholar 

  18. Discher, D. E., D. J. Mooney, and P. W. Zandstra. Growth factors, matrices, and forces combine and control stem cells. Science 324:1673–1677, 2009.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Dutta, D., I. Heo, and H. Clevers. Disease modeling in stem cell-derived 3D organoid systems. Trends Mol. Med. 23:393–410, 2017.

    CAS  PubMed  Google Scholar 

  20. Dye, B. R., D. R. Hill, M. A. Ferguson, Y.-H. Tsai, M. S. Nagy, R. Dyal, J. M. Wells, C. N. Mayhew, R. Nattiv, O. D. Klein, E. S. White, G. H. Deutsch, and J. R. Spence. In vitro generation of human pluripotent stem cell derived lung organoids. eLife 2015. https://doi.org/10.7554/eLife.05098.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Gjorevski, N., A. Ranga, and M. P. Lutolf. Bioengineering approaches to guide stem cell-based organogenesis. Development 141:1794–1804, 2014.

    CAS  PubMed  Google Scholar 

  22. Gjorevski, N., N. Sachs, A. Manfrin, S. Giger, M. E. Bragina, P. Ordóñez-Morán, H. Clevers, and M. P. Lutolf. Designer matrices for intestinal stem cell and organoid culture. Nature 539:560–564, 2016.

    CAS  PubMed  Google Scholar 

  23. Guo, W. H., M. T. Frey, N. A. Burnham, and Y. L. Wang. Substrate rigidity regulates the formation and maintenance of tissues. Biophys. J. 90:2213–2220, 2006.

    CAS  PubMed  Google Scholar 

  24. Hoang, P., J. Wang, B. R. Conklin, K. E. Healy, and Z. Ma. Generation of spatial-patterned early-developing cardiac organoids using human pluripotent stem cells. Nat. Protoc. 13:723–737, 2018.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Huch, M., C. Dorrell, S. F. Boj, J. H. Van Es, V. S. W. Li, M. Van De Wetering, T. Sato, K. Hamer, N. Sasaki, M. J. Finegold, A. Haft, R. G. Vries, M. Grompe, and H. Clevers. In vitro expansion of single Lgr5+ liver stem cells induced by Wnt-driven regeneration. Nature 494:247–250, 2013.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Hughes, C. S., L. M. Postovit, and G. A. Lajoie. Matrigel: a complex protein mixture required for optimal growth of cell culture. Proteomics 10:1886–1890, 2010.

    CAS  PubMed  Google Scholar 

  27. Huh, D., G. A. Hamilton, and D. E. Ingber. From 3D cell culture to organs-on-chips. Trends Cell Biol. 21:745–754, 2011.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Hwang, Y.-S., B. G. Chung, D. Ortmann, N. Hattori, H.-C. Moeller, and A. Khademhosseini. Microwell-mediated control of embryoid body size regulates embryonic stem cell fate via differential expression of WNT5a and WNT11. Proc. Natl Acad. Sci. USA 106:16978–16983, 2009.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Iyer, R. K., L. L. Y. Chiu, and M. Radisic. Microfabricated poly(ethylene glycol) templates enable rapid screening of triculture conditions for cardiac tissue engineering. J. Biomed. Mater. Res. A 89:616–631, 2009.

    PubMed  Google Scholar 

  30. Karp, J. M., J. Yeh, G. Eng, J. Fukuda, J. Blumling, K.-Y. Suh, J. Cheng, A. Mahdavi, J. Borenstein, R. Langer, and A. Khademhosseini. Controlling size, shape and homogeneity of embryoid bodies using poly(ethylene glycol) microwells. Lab Chip 7:786–794, 2007.

    CAS  PubMed  Google Scholar 

  31. Khademhosseini, A., G. Eng, J. Yeh, P. A. Kucharczyk, R. Langer, G. Vunjak-Novakovic, and M. Radisic. Microfluidic patterning for fabrication of contractile cardiac organoids. Biomed. Microdevices 9:149–157, 2007.

    PubMed  Google Scholar 

  32. Lancaster, M. A., and J. A. Knoblich. Organogenesis in a dish: modeling development and disease using organoid technologies. Science 345:1247125, 2014.

    PubMed  Google Scholar 

  33. Lancaster, M. A., M. Renner, C. A. Martin, D. Wenzel, L. S. Bicknell, M. E. Hurles, T. Homfray, J. M. Penninger, A. P. Jackson, and J. A. Knoblich. Cerebral organoids model human brain development and microcephaly. Nature 501:373–379, 2013.

    CAS  PubMed  Google Scholar 

  34. Lindborg, B. A., J. H. Brekke, A. L. Vegoe, C. B. Ulrich, K. T. Haider, S. Subramaniam, S. L. Venhuizen, C. R. Eide, P. J. Orchard, W. Chen, Q. Wang, F. Pelaez, C. M. Scott, E. Kokkoli, S. A. Keirstead, J. R. Dutton, J. Tolar, and T. D. O’Brien. Rapid induction of cerebral organoids from human induced pluripotent stem cells using a chemically defined hydrogel and defined cell culture medium. Stem Cells Transl. Med. 5:970–979, 2016.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Matthys, O. B., T. A. Hookway, and T. C. McDevitt. Design principles for engineering of tissues from human pluripotent stem cells. Curr. Stem Cell Rep. 2:43–51, 2016.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. McCracken, K. W., E. M. Catá, C. M. Crawford, K. L. Sinagoga, M. Schumacher, B. E. Rockich, Y.-H. Tsai, C. N. Mayhew, J. R. Spence, Y. Zavros, and J. M. Wells. Modelling human development and disease in pluripotent stem-cell-derived gastric organoids. Nature 516:400–404, 2014.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. McCracken, K. W., J. C. Howell, J. M. Wells, and J. R. Spence. Generating human intestinal tissue from pluripotent stem cells in vitro. Nat. Protoc. 6:1920–1928, 2011.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Mori, R., Y. Sakai, and K. Nakazawa. Micropatterned organoid culture of rat hepatocytes and HepG2 cells. J. Biosci. Bioeng. 106:237–242, 2008.

    CAS  PubMed  Google Scholar 

  39. Murrow, L. M., R. J. Weber, and Z. J. Gartner. Dissecting the stem cell niche with organoid models: an engineering-based approach. Development 144:998–1007, 2017.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Purwada, A., M. K. Jaiswal, H. Ahn, T. Nojima, D. Kitamura, A. K. Gaharwar, L. Cerchietti, and A. Singh. Ex vivo engineered immune organoids for controlled germinal center reactions. Biomaterials 63:24–34, 2015.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Purwada, A., S. B. Shah, W. Beguelin, A. M. Melnick, and A. Singh. Modular immune organoids with integrin ligand specificity differentially regulate ex vivo B cell activation. ACS Biomater. Sci. Eng. 3:214–225, 2017.

    CAS  PubMed  Google Scholar 

  42. Purwada, A., and A. Singh. Immuno-engineered organoids for regulating the kinetics of B-cell development and antibody production. Nat. Protoc. 12:168–182, 2017.

    CAS  PubMed  Google Scholar 

  43. Qian, X., et al. Brain-region-specific organoids using mini-bioreactors for modeling ZIKV exposure. Cell 165:1238–1254, 2016.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Quadrato, G., J. Brown, and P. Arlotta. The promises and challenges of human brain organoids as models of neuropsychiatric disease. Nat. Med. 22:1220–1228, 2016.

    CAS  PubMed  Google Scholar 

  45. Roch, A., S. Giger, M. Girotra, V. Campos, N. Vannini, O. Naveiras, S. Gobaa, and M. P. Lutolf. Single-cell analyses identify bioengineered niches for enhanced maintenance of hematopoietic stem cells. Nat. Commun. 8:221, 2017.

    PubMed  PubMed Central  Google Scholar 

  46. Rock, J. R., M. W. Onaitis, E. L. Rawlins, Y. Lu, C. P. Clark, Y. Xue, S. H. Randell, and B. L. M. Hogan. Basal cells as stem cells of the mouse trachea and human airway epithelium. Proc. Natl Acad. Sci. USA 106:12771–12775, 2009.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Rossi, G., A. Manfrin, and M. P. Lutolf. Progress and potential in organoid research. Nat. Rev. Genet. 19:671–687, 2018.

    CAS  PubMed  Google Scholar 

  48. Sato, T., D. E. Stange, M. Ferrante, R. G. J. Vries, J. H. van Es, S. van den Brink, W. J. van Houdt, A. Pronk, J. van Gorp, P. D. Siersema, and H. Clevers. Long-term expansion of epithelial organoids from human colon, adenoma, adenocarcinoma, and Barrett’s epithelium. Gastroenterology 141:1762–1772, 2011.

    CAS  PubMed  Google Scholar 

  49. Sato, T., R. G. Vries, H. J. Snippert, M. van de Wetering, N. Barker, D. E. Stange, J. H. van Es, A. Abo, P. Kujala, P. J. Peters, and H. Clevers. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature 459:262–265, 2009.

    CAS  PubMed  Google Scholar 

  50. Scadden, D. T. Nice neighborhood: emerging concepts of the stem cell niche. Cell 157:41–50, 2014.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Schultz, K. M., K. A. Kyburz, and K. S. Anseth. Measuring dynamic cell–material interactions and remodeling during 3D human mesenchymal stem cell migration in hydrogels. Proc. Natl Acad. Sci. USA 112:E3757–E3764, 2015.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Schwartz, M. P., Z. Hou, N. E. Propson, J. Zhang, C. J. Engstrom, V. Santos Costa, P. Jiang, B. K. Nguyen, J. M. Bolin, W. Daly, Y. Wang, R. Stewart, C. D. Page, W. L. Murphy, and J. A. Thomson. Human pluripotent stem cell-derived neural constructs for predicting neural toxicity. Proc. Natl Acad. Sci. USA 112:12516–12521, 2015.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Shkumatov, A., K. Baek, and H. Kong. Matrix rigidity-modulated cardiovascular organoid formation from embryoid bodies. PLoS ONE 9:e94764, 2014.

    PubMed  PubMed Central  Google Scholar 

  54. Spence, J. R., C. N. Mayhew, S. A. Rankin, M. F. Kuhar, J. E. Vallance, K. Tolle, E. E. Hoskins, V. V. Kalinichenko, S. I. Wells, A. M. Zorn, N. F. Shroyer, and J. M. Wells. Directed differentiation of human pluripotent stem cells into intestinal tissue in vitro. Nature 470:105–109, 2011.

    PubMed  Google Scholar 

  55. Wells, J. M., J. R. Spence, and N. M. Le Douarin. How to make an intestine. Development 141:752–760, 2014.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Yang, C., F. W. DelRio, H. Ma, A. R. Killaars, L. P. Basta, K. A. Kyburz, and K. S. Anseth. Spatially patterned matrix elasticity directs stem cell fate. Proc. Natl Acad. Sci. USA 113:E4439–E4445, 2016.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Yang, C., M. W. Tibbitt, L. Basta, and K. S. Anseth. Mechanical memory and dosing influence stem cell fate. Nat. Mater. 13:645–652, 2014.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Yin, X., B. E. Mead, H. Safaee, R. Langer, J. M. Karp, and O. Levy. Engineering stem cell organoids. Cell Stem Cell 18:25–38, 2016.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We acknowledge support from the National Institutes of Health under Award Number R01-EB022025. In addition, N.A.P. acknowledges support from the Cockrell Family Chair Foundation, the Office of the Dean of the Cockrell School of Engineering at the University of Texas at Austin (UT) for the Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, and the UT-Portugal Collaborative Research Program. During this work, M.E.W. was supported by a National Science Foundation Graduate Research Fellowship (DGE-1610403).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicholas A. Peppas.

Additional information

Associate Editor Debra T. Auguste oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wechsler, M.E., Shevchuk, M. & Peppas, N.A. Developing a Multidisciplinary Approach for Engineering Stem Cell Organoids. Ann Biomed Eng 48, 1895–1904 (2020). https://doi.org/10.1007/s10439-019-02391-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-019-02391-1

Keywords

Navigation