Skip to main content
Log in

An Injectable Nanocomposite Hydrogel for Potential Application of Vascularization and Tissue Repair

  • Original Article
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

In this contribution, an injectable hydrogel was developed with chitosan, gelatin, β-glycerphosphate and Arg-Gly-Asp (RGD) peptide: this hydrogel is liquid in room temperature and rapidly gels at 37 °C; RGD peptide promises better growth microenvironment for various cells, especially endothelial cells (EC), smooth muscle cells (SMC) and mesenchymal stem cells (MSC). Both stromal cell-derived factor-1 (SDF-1) nanoparticle and vascular endothelial growth factor (VEGF) nanoparticles were loaded in the injectable hydrogel to simulate the natural nanoparticles in the extracellular matrix (ECM) to promote angiogenesis. In vitro EC/SMC and MSC/SMC co-culture experiment indicated that the nanocomposite hydrogel accelerated constructing embryonic form of blood vessels, and chick embryo chorioallantoic membrane model demonstrated its ability of improving cells migration and blood vessel regeneration. We injected this nanocomposite hydrogel into rat myocardial infarction (MI) model and the results indicated that the rats heart function recovered better compared control group. We hope this injectable nanocomposite hydrogel may possess wider application in tissue engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Arai, A. E. Fuzzy or sharp borders of acute myocardial ischemia and infarction? JACC Cardiovasc. Imaging 8(12):1390–1392, 2015.

    PubMed  Google Scholar 

  2. Auerbach, R., L. Kubai, D. Knighton, and J. Folkman. A simple procedure for the long-term cultivation of chicken embryos. Dev. Biol. 41(2):391–394, 1974.

    CAS  PubMed  Google Scholar 

  3. Bruzauskaite, I., D. Bironaite, E. Bagdonas, and E. Bernotiene. Scaffolds and cells for tissue regeneration: different scaffold pore sizes-different cell effects. Cytotechnology 68(3):355–369, 2016.

    CAS  PubMed  Google Scholar 

  4. Chen, L., J. A. Li, S. Wang, S. J. Zhu, C. Zhu, B. Y. Zheng, G. Yang, and S. K. Guan. Surface modification of the biodegradable cardiovascular stent material Mg–Zn–Y–Nd alloy via conjugating REDV peptide for better endothelialization. J. Mater. Res. 33(23):4123–4133, 2018.

    CAS  Google Scholar 

  5. Colazzo, F., F. Alrashed, P. Saratchandra, I. Carubelli, A. H. Chester, M. H. Yacoub, P. M. Taylor, and P. Somers. Shear stress and VEGF enhance endothelial differentiation of human adipose-derived stem cells. Growth Factors 32(5):139–149, 2014.

    CAS  PubMed  Google Scholar 

  6. Cosme, J., P. P. Liu, and A. O. Gramolini. The cardiovascular exosome: current perspectives and potential. Proteomics 13(10–11):1654–1659, 2013.

    CAS  PubMed  Google Scholar 

  7. Drury, J. L., and D. J. Mooney. Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials 24(24):4337–4351, 2003.

    CAS  PubMed  Google Scholar 

  8. Ekblom, P. Role of extracellular matrix in animal development-an introduction. Experientia 51(9–10):851–852, 1995.

    CAS  PubMed  Google Scholar 

  9. Fang, Z., J. F. Wang, X. F. Yang, Q. Sun, Y. Jia, H. R. Liu, T. F. Xi, and S. K. Guan. Adsorption of arginine, glycine and aspartic acid on Mg and Mg-based alloy surfaces: a first-principles study. Appl. Surf. Sci. 409:149–155, 2017.

    CAS  Google Scholar 

  10. Fang, Z., J. F. Wang, S. J. Zhu, X. F. Yang, Y. Jia, Q. Sun, and S. K. Guan. A DFT study of the adsorption of short peptides on Mg and Mg-based alloy surfaces. Phys. Chem. Chem. Phys. 20(5):3602–3607, 2018.

    CAS  PubMed  Google Scholar 

  11. Fish, J. E., and J. D. Wythe. The molecular regulation of arteriovenous specification and maintenance. Dev. Dyn. 244(3):391–409, 2015.

    CAS  PubMed  Google Scholar 

  12. Fonarow, G. C. Refining classification of heart failure based on ejection fraction. JACC Heart Fail 5(11):808–809, 2017.

    PubMed  Google Scholar 

  13. Freestone, B., S. Krishnamoorthy, and G. Y. H. Lip. Assessment of endothelial dysfunction. Expert Rev. Cardiovasc. Ther. 8:557–571, 2010.

    PubMed  Google Scholar 

  14. Gao, Y., Z. Lu, C. Chen, X. Cui, Y. Liu, T. Zheng, X. Jiang, C. Zeng, D. Quan, and Q. Wang. Mesenchymal stem cells and endothelial progenitor cells accelerate intra-aneurysmal tissue organization after treatment with SDF-1α-coated coils. Neurol. Res. 38(4):333–341, 2016.

    CAS  PubMed  Google Scholar 

  15. He, D., A. S. Zhao, H. Su, Y. Zhang, Y. N. Wang, D. Luo, Y. Gao, J. A. Li, and P. Yang. An Injectable scaffold based on temperature responsive hydrogel and factors loaded nano-particles for potential application of vascularization in tissue engineering. J. Biomed. Mater. Res. Part A 107A:2123–2134, 2019.

    Google Scholar 

  16. Hibbert, B., S. Olsen, and E. O’Brien. Involvement of progenitor cells in vascular repair. Trends Cardiovasc. Med. 13(8):322–326, 2003.

    CAS  PubMed  Google Scholar 

  17. Kemppainen, J. M., and S. J. Hollister. Tailoring the mechanical properties of 3D-designed poly(glycerol sebacate) scaffolds for cartilage applications. Biomed. Mater. Res. A 94A(1):9–18, 2010.

    CAS  Google Scholar 

  18. Kuo, K. C., R. Z. Lin, H. W. Tien, P. Y. Wu, Y. C. Li, J. M. Melero-Martin, and Y. C. Chen. Bioengineering vascularized tissue constructs using an injectable cell-laden enzymatically crosslinked collagen hydrogel derived from dermal extracellular matrix. Acta Biomater. 27:151–166, 2015.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Kvam, G., H. Dahle, J. E. Nordrehaug, T. I. Randa, and T. Tillung. The shortening fraction of myocardial fibers and its layered distribution, as derived from cine-MR imaged left ventriculograms. An approach for evaluating globar left ventricular function. Acta Radiol. 38(3):391–399, 1997.

    CAS  PubMed  Google Scholar 

  20. Leblanc, A. J., L. Krishnan, C. J. Sullivan, S. K. Williams, and J. B. Hoying. Microvascular repair: post-angiogenesis vascular dynamics. Microcirculation 19(8):676–695, 2012.

    PubMed  Google Scholar 

  21. Li, L. Q., and C. Cleo. Three-dimensional scaffolds for tissue engineering applications: role of porosity and pore size. Tissue Eng. Part B 19(6):485–502, 2013.

    Google Scholar 

  22. Li, J. A., G. C. Li, K. Zhang, Y. Z. Liao, P. Yang, M. F. Maitz, and N. Huang. Co-culture of vascular endothelial cells and smooth muscle cells by hyaluronic acid micro-pattern on titanium surface. Appl. Surf. Sci. 273:24–31, 2013.

    CAS  Google Scholar 

  23. Li, J. A., K. Zhang, P. Yang, L. L. Wu, J. L. Chen, A. S. Zhao, G. C. Li, and N. Huang. Research of smooth muscle cells response to fluid flow shear stress by hyaluronic acid micro-pattern on a titanium surface. Exp. Cell Res. 319(17):2663–2672, 2013.

    CAS  PubMed  Google Scholar 

  24. Li, J. A., K. Zhang, Y. Xu, J. Chen, P. Yang, Y. C. Zhao, A. S. Zhao, and N. Huang. A novel co-culture models of human vascular endothelial cells and smooth muscle cells by hyaluronic acid micro-pattern on titanium surface. J. Biomed. Mater. Res. Part A 102A:1950–1960, 2014.

    CAS  Google Scholar 

  25. Li, J. A., K. Zhang, H. Q. Chen, T. Liu, P. Yang, Y. C. Zhao, and N. Huang. A novel coating of type IV collagen and hyaluronic acid on stent material-titanium for promoting smooth muscle cells contractile phenotype. Mater. Sci. Eng. C 38:235–243, 2014.

    CAS  Google Scholar 

  26. Li, J. A., K. Zhang, J. J. Wu, Y. Z. Liao, P. Yang, and N. Huang. Co-culture of endothelial cells and patterned smooth muscle cells on titanium: construction with high density of endothelial cells and low density of smooth muscle cells. Biochem. Biophys. Res. Commun. 456:555–561, 2015.

    CAS  PubMed  Google Scholar 

  27. Li, J. A., K. Zhang, W. Y. Ma, F. Wu, P. Yang, Z. K. He, and N. Huang. Investigation of enhanced hemocompatibility and tissue compatibility associated with multi-functional coating based on hyaluronic acid and type IV collagen. Regener. Biomater. 3(3):149–157, 2016.

    CAS  Google Scholar 

  28. Li, J. A., W. Qin, K. Zhang, F. Wu, P. Yang, Z. K. He, A. S. Zhao, and N. Huang. Controlling mesenchymal stem cells differentiate into contractile smooth muscle cells on a TiO2 micro/nano interface: towards benign pericytes environment for endothelialization. Colloids Surf. B 145:410–419, 2016.

    CAS  Google Scholar 

  29. Li, J. A., F. Wu, K. Zhang, Z. K. He, D. Zou, X. Luo, Y. H. Fan, P. Yang, A. S. Zhao, and N. Huang. Controlling molecular weight of hyaluronic acid conjugated on amine-rich surface: towards better multifunctional biomaterials for cardiovascular implants. ACS Appl. Mater. Interfaces. 9:30343–30358, 2017.

    CAS  PubMed  Google Scholar 

  30. Liu, X., X. M. Wang, A. Horii, X. J. Wang, L. Qiao, S. G. Zhang, and F. Z. Cui. In vivo studies on angiogenic activity of two designer self-assembling peptide scaffold hydrogels in the chicken embryo chorioallantoic membrane. Nanoscale 4:2720–2727, 2012.

    CAS  PubMed  Google Scholar 

  31. Liu, Y., F. Luo, B. R. Wang, H. Q. Li, Y. Xu, X. L. Liu, L. Shi, X. L. Lu, W. C. Xu, L. Lu, Y. Qin, Q. Y. Xiang, and Q. Z. Liu. STAT3-regulated exosomal miR-21 promotes angiogenesis and is involved in neoplastic processes of transformed human bronchial epithelial cells. Cancer Lett. 370(1):125–135, 2016.

    CAS  PubMed  Google Scholar 

  32. Mathivanan, S., H. Ji, and R. J. Simpson. Exosomes: extracellular organelles important in intercellular communication. J. Proteomics 73(10):1907–1920, 2010.

    CAS  PubMed  Google Scholar 

  33. Melchiorri, A. J., B. N. B. Nguyen, and J. P. Fisher. Mesenchymal stem cells: roles and relationships in vascularization. Tissue Eng. Part B 20(3):218–228, 2014.

    Google Scholar 

  34. Min, P. K., and G. Sharon. Harnessing developmental processes for vascular engineering and regeneration. Development 141(14):2760–2769, 2014.

    Google Scholar 

  35. Mungadi, I. A. Bioengineering tissue for organ repair, regeneration, and renewal. J. Surg. Tech. Case Rep. 4(2):77–78, 2012.

    PubMed  PubMed Central  Google Scholar 

  36. Novosel, E. C., K. Claudia, and P. J. Kluger. Vascularization is the key challenge in tissue engineering. Adv. Drug Deliv. Rev. 63:300–311, 2011.

    CAS  PubMed  Google Scholar 

  37. Patra, S., M. Remy, A. R. Ray, B. Brouillaud, J. Amedee, B. Gupta, and L. Bordenave. A novel route to polycaprolactone scaffold for vascular tissue engineering. Biomaterials and Tissue Engineering 3:1–10, 2003.

    Google Scholar 

  38. Potente, M., H. Gerhardt, and P. Carmeliet. Basic and therapeutic aspects of angiogenesis. Cell 146(6):873–887, 2011.

    CAS  PubMed  Google Scholar 

  39. Sharma, P., L. Schiapparelli, and H. T. Cline. Exosomes function in cell–cell communication during brain circuit development. Curr. Opin. Neurobiol. 23(6):997–1004, 2013.

    CAS  PubMed  Google Scholar 

  40. Simpson, R. J., J. W. E. Lim, R. L. Moritz, and S. Mathivanan. Exosomes: proteomic insights and diagnostic potential. Expert Rev. Proteomics 6(3):267–283, 2009.

    CAS  PubMed  Google Scholar 

  41. Sivashanmugam, A., R. A. Kumar, M. V. Priya, S. V. Nair, and R. Jayakumar. An overview of injectable polymeric hydrogels for tissue engineering. Eur. Polym. J. 72:543–565, 2015.

    CAS  Google Scholar 

  42. Tousoulis, D., M. Koutsogiannis, N. Papageorgiou, G. Siasos, C. Antoniades, E. Tsiamis, and C. Stefanadis. Endothelial dysfunction: potential clinical implications. Minerva Med. 101(4):271–283, 2010.

    CAS  PubMed  Google Scholar 

  43. Tseliou, E., W. X. Liu, J. Valle, B. M. Sun, M. Mirotsou, and E. Marban. Newt exosomes are bioactive on mammalian heart, enhancing proliferation of rat cardiomyocytes and improving recovery after myocardial infarction. Circulation 132(S3):15925, 2015.

    Google Scholar 

  44. Tu, Q. F., Y. Zhang, D. X. Ge, J. Wu, and H. Q. Chen. Novel tissue-engineered vascular patches based on decellularized canine aortas and their recellularization in vitro. Appl. Surf. Sci. 255(2):282–285, 2008.

    CAS  Google Scholar 

  45. Wood, J. How cells bind biomaterials determines response: biomaterials. Mater. Today 8(6):16–19, 2005.

    Google Scholar 

  46. Wu, F., J. A. Li, K. Zhang, Z. K. He, P. Yang, D. Zou, and N. Huang. Multi-functional coating based on hyaluronic acid and dopamine conjugate for potential application on surface modification of cardiovascular implanted devices. ACS Appl. Mater. Interfaces. 8(1):109–121, 2016.

    CAS  PubMed  Google Scholar 

  47. Xu, Q. H., Z. Zhang, C. S. Xiao, C. L. He, and X. S. Chen. Injectable polypeptide hydrogel as biomimetic scaffolds with tunable bioactivity and controllable cell adhesion. Biomacromol 18:1411–1418, 2017.

    CAS  Google Scholar 

  48. Zhang, K., Z. Q. Shi, J. K. Zhou, Q. Xing, S. S. Ma, Q. H. Li, Y. T. Zhang, M. H. Yao, X. F. Wang, Q. Li, J. A. Li, and F. X. Guan. Potential application of an injectable hydrogel scaffold loaded with mesenchymal stem cells for treating traumatic brain injury. J. Mater. Chem. B 6:2982–2992, 2018.

    CAS  PubMed  Google Scholar 

  49. Zhou, J. K., K. Zhang, S. S. Ma, T. F. Liu, M. H. Yao, J. A. Li, X. F. Wang, and F. X. Guan. Preparing an injectable hydrogel with sodium alginate and type I collagen to create better MSCs growth microenvironment. e-Polymer 19:87–91, 2019.

    Google Scholar 

Download references

Acknowledgments

We appreciated the financial support of the National Natural Science Foundation of China (NSFC 81771988), Key Project and Special Foundation of Research, Development and Promotion in Henan province (No. 182102310076), and Top Doctor Program of Zhengzhou University (No. 32210475).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to An-sha Zhao or Jing-an Li.

Additional information

Associate Editor Jennifer West oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Yilei Ding and An-sha Zhao are joint-first-authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, Y., Zhao, As., Liu, T. et al. An Injectable Nanocomposite Hydrogel for Potential Application of Vascularization and Tissue Repair. Ann Biomed Eng 48, 1511–1523 (2020). https://doi.org/10.1007/s10439-020-02471-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-020-02471-7

Keywords

Navigation