Skip to main content
Log in

Multi-scale finite element simulation on large deformation behavior of wood under axial and transverse compression conditions

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

Multi-scale finite element method is adopted to simulate wood compression behavior under axial and transverse loading. Representative volume elements (RVE) of wood microfibril and cell are proposed to analyze orthotropic mechanical behavior. Lignin, hemicellulose and crystalline-amorphous cellulose core of spruce are concerned in spruce nanoscale model. The equivalent elastic modulus and yield strength of the microfibril are gained by the RVE simulation. The anisotropism of the crystalline-amorphous cellulose core brings the microfibril buckling deformation during compression loading. The failure mechanism of the cell-wall under axial compression is related to the distribution of amorphous cellulose and crystalline cellulose. According to the spruce cell observation by scanning electron microscope, numerical model of spruce cell is established using simplified circular hole and regular hexagon arrangement respectively. Axial and transverse compression loadings are taken into account in the numerical simulations. It indicates that the compression stress–strain curves of the numerical simulation are consistent with the experimental results. The wood microstructure arrangement has an important effect on the stress plateau during compression process. Cell-wall buckling in axial compression induces the stress value drops rapidly. The wide stress plateau duration means wood is with large energy dissipation under a low stress level. The numerical results show that loading velocity affects greatly wood microstructure failure modes in axial loading. For low velocity axial compression, shear sliding is the main failure mode. For high velocity axial compression, wood occur fold and collapse. In transverse compression, wood deformation is gradual and uniform, which brings stable stress plateau.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  1. Oudjene, M., Khelifa, M.: Elasto-plastic constitutive law for wood behaviour under compressive loadings. Constr. Build. Mater. 23, 3359–3366 (2009)

    Article  Google Scholar 

  2. Wang, D., Lin, L.Y., Fu, F.: Deformation mechanisms of wood cell walls under tensile loading: a comparative study of compression wood (CW) and normal wood (NW). Cellulose 27, 4161–4172 (2020)

    Article  Google Scholar 

  3. Bader, M., Nemeth, R., Konnerth, J.: Micromechanical properties of longitudinally compressed wood. Holz. Roh. Werkst. 77, 341–351 (2019)

    Article  Google Scholar 

  4. Kojima, E., Yamasaki, M., Imaeda, K., et al.: Effects of thermal modification on the mechanical properties of the wood cell wall of soft wood: behavior of S2 cellulose microfibrils under tensile loading. J. Mater. Sci. 55, 5038–5047 (2020)

    Article  Google Scholar 

  5. Amer, M., Kabouchi, B., Rahout, M., et al.: Mechanical properties of clonal eucalyptus wood. Int. J. Thermophys. 42, 1–15 (2021)

    Article  Google Scholar 

  6. Dou, Q.B., Wu, K.R., Suo, T., et al.: Experimental methods for determination of mechanical behaviors of materials at high temperatures via the split Hopkinson bars. Acta Mech. Sin. 36, 1275–1293 (2020)

    Article  Google Scholar 

  7. Song, B., Chen, W.: Dynamic stress equilibration in split Hopkinson pressure bar tests on soft materials. Exp. Mech. 44, 300–312 (2004)

    Article  Google Scholar 

  8. Lu, B.J., Li, J.R., Tai, H.C., et al.: A facile ionic-liquid pretreatment method for the examination of archaeological wood by scanning electron microscopy. Sci. Rep. UK 9, 13253 (2019)

    Article  Google Scholar 

  9. Song, J., Fan, C., Ma, H., et al.: Crack deflection occurs by constrained microcracking in nacre. Acta Mech. Sin. 34, 143–150 (2018)

    Article  Google Scholar 

  10. Oliver, M., Kim, C.K., Matthias, W., et al.: Performance of thermomechanical wood fibers in polypropylene composites. Wood. Mater. Sci. Eng. 15, 114–122 (2020)

    Article  Google Scholar 

  11. Adalian, C., Morlier, P.: A model for the behavior of wood under dynamic multiaxial compression. Compos. Sci. Technol. 61, 403–408 (2001)

    Article  Google Scholar 

  12. Reiterer, A., Lichtenegger, H., Fratzl, P., et al.: Deformation and energy absorption of wood cell walls with different nanostructure under tensile loading. J. Mater. Sci. 36, 4681–4686 (2001)

    Article  Google Scholar 

  13. Gong, M., Smith, I.: Effect of load type on failure mechanisms of spruce in compression parallel to grain. Wood Sci. Technol. 37, 435–445 (2004)

    Article  Google Scholar 

  14. Johnson, W.: Historical and present-day references concerning impact on wood. Int. J. Impact Eng. 4, 161–174 (1986)

    Article  Google Scholar 

  15. Reid, S.R., Peng, C.: Dynamic uniaxial crushing of wood. Int. J. Impact Eng. 19, 531–570 (1997)

    Article  Google Scholar 

  16. Speck, T.: The mechanics of Norway spruce [picea abies (L.) Karst]: mechanical properties of standing trees from different thinning regimes. For. Ecol. Manag. 135, 45–62 (2000)

    Article  Google Scholar 

  17. Widehammar, S.: Stress-strain relationships for spruce wood: influence of strain rate, moisture content and loading direction. Exp. Mech. 44, 44–48 (2004)

    Article  Google Scholar 

  18. Buchar, J., Rolc, S., Lisy, J. et al.: Model of the wood response to the high velocity of loading. In: 19th International Symposium of Ballistics. pp. 7–11 (2001)

  19. Holmgren, S.E., Svensson, B.A., Gradin, P.A., et al.: An encapsulated split Hopkinson pressure bar for testing of wood at elevated strain rate, temperature, and pressure. Exp. Tech. 32, 44–50 (2008)

    Article  Google Scholar 

  20. Vural, M., Ravichandran, G.: Dynamic response and energy dissipation characteristics of balsa wood: experiment and analysis. Int. J. Solids Struct. 40, 2147–2170 (2003)

    Article  Google Scholar 

  21. Uhmeier, A., Salmen, L.: Influence of strain rate and temperature on the radial compression behavior of wet spruce. J. Eng. Mater. Technol. ASME 118, 289–294 (1996)

    Article  Google Scholar 

  22. Zhong, W.Z., Song, S.C., Huang, X.C., et al.: Research on static and dynamic mechanical properties of spruce wood by three loading directions. Chin. J. Theor. Appl. Mech. 43, 1141–1150 (2011)

    Google Scholar 

  23. Zhong, W.Z., Song, S.C., Chen, G., et al.: Stress field of orthotropic cylinder subjected to axial compression. Appl. Math. Mech. 31, 305–316 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  24. Frantisek, S., Petr, K., Martin, B., et al.: Modelling of impact behaviour of European beech subjected to split Hopkinson pressure bar test. Compos. Struct. 245, (2020)

    Article  Google Scholar 

  25. Keckes, J., Burgert, I., Frühmann, K., et al.: Cell-wall recovery after irreversible deformation of wood. Nat. Mater. 2, 810–813 (2003)

    Article  Google Scholar 

  26. Clair, B., Thibaut, B.: Shrinkage of the gelatinous layer of poplar and beech tension wood. Iawa. J. 22, 121–131 (2001)

    Article  Google Scholar 

  27. Salmén, L.: Micromechanical understanding of the cell-wall structure. C. R. Biol. 327, 873–880 (2004)

    Article  Google Scholar 

  28. Li, Z., Zhan, T., Eder, M., et al.: Comparative studies on wood structure and microtensile properties between compression and opposite wood fibers of Chinese fir plantation. J. Wood. Sci. 67, 1–6 (2021)

    Article  Google Scholar 

  29. Jäger, A., Bader, T., Hofstetter, K., et al.: The relation between indentation modulus, microfibril angle, and elastic properties of wood cell walls. Compos. A 42, 677–685 (2011)

    Article  Google Scholar 

  30. Vasic, S., Smith, I., Landis, E.: Finite element techniques and models for wood fracture mechanics. Wood Sci. Technol. 39, 3–17 (2005)

    Article  Google Scholar 

  31. Vasic, S., Smith, I.: Bridging crack model for fracture of spruce. Eng. Fract. Mech. 69, 745–760 (2002)

    Article  Google Scholar 

  32. Dubois, F., Randriambololona, H., Petit, C.: Creep in wood under variable climate conditions: numerical modeling and experimental validation. Mech. Time-Depend. Mat. 9, 173–202 (2005)

    Article  Google Scholar 

  33. Flores, E.I.S., Friswell, M.I.: Multi-scale finite element model for a new material inspired by the mechanics and structure of wood cell-walls. J. Mech. Phys. Solids 60, 1296–1309 (2012)

    Article  MathSciNet  Google Scholar 

  34. Flores, E.I.S., Neto, E.A.S., Pearce, C.: A large strain computational multi-scale model for the dissipative behavior of wood cell-wall. Comp. Mater. Sci. 50, 1202–1211 (2011)

    Article  Google Scholar 

  35. Clouston, P.L., Lam, F.: Computational modeling of strand-based wood composites. J. Eng. Mech. 127, 844–851 (2001)

    Google Scholar 

  36. Li, P., Guo, Y.B., Shim, V.P.W.: Micro and mesoscale modelling of the response of transversely isotropic foam to impact: a structural cell-assembly approach. Int. J. Impact Eng. 135, (2020)

    Article  Google Scholar 

  37. Talebi, S., Sadighi, M., Aghdam, M.M.: Numerical and experimental analysis of the closed-cell aluminium foam under low velocity impact using computerized tomography technique. Acta Mech. Sin. 35, 144–155 (2019)

    Article  Google Scholar 

  38. Trtik, P., Dual, J., Keunecke, D., et al.: 3D imaging of microstructure of spruce wood. J. Struct. Biol. 159, 46–55 (2007)

    Article  Google Scholar 

  39. Smith, I., Landis, E., Gong, M.: Fracture and Fatigue in Wood. Wiley, Chichester (2003)

    Google Scholar 

  40. Xu, P., Donaldson, L.A., Gergely, Z.R., et al.: Dual-axis electron tomography: a new approach for investigating the spatial organization of wood cellulose microfibrils. Wood Sci. Technol. 41, 101–116 (2007)

    Article  Google Scholar 

  41. Donaldson, L.A., Singh, A.P.: Bridge-like structures between cellulose microfibrils in radiata pine (Pinus radiata D. Don) kraft pulp and holocellulose. Holzforsch. Int. J. Biol. Chem. Phys. Tech. Wood. 52, 449–454 (1998)

    Google Scholar 

  42. Andersson, S., Wikberg, H., Pesonen, E., et al.: Studies of crystallinity of Scots pine and Norway spruce cellulose. Trees 18, 346–353 (2004)

    Article  Google Scholar 

  43. Andersson, S., Serimaa, R., Paakkari, T., et al.: Crystallinity of wood and the size of cellulose crystallites in Norway spruce (Picea abies). J. Wood. Sci. 49, 531–537 (2003)

    Article  Google Scholar 

  44. Chen, W., Lickfield, G.C., Yang, C.Q.: Molecular modeling of cellulose in amorphous state. Part I: model building and plastic deformation study. Polymer. 45, 1063–1071 (2004)

    Article  Google Scholar 

  45. Hofstetter, K., Hellmich, C., Eberhardsteiner, J.: Development and experimental validation of a continuum micromechanics model for the elasticity of wood. Eur. J. Mech. A. 24, 1030–1053 (2005)

    Article  MATH  Google Scholar 

  46. Kilingar, N.G., Kamel, K.E.M., Sonon, B., et al.: Computational generation of open-foam representative volume elements with morphological control using distance fields. Eur. J. Mech. A 78, (2019)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgement

This work was supported by the National Natural Science Foundation of China (Grants Nos 11302211, 11390361, and 11572299).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weizhou Zhong.

Additional information

Executive Editor: Xi-Qiao Feng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhong, W., Zhang, Z., Chen, X. et al. Multi-scale finite element simulation on large deformation behavior of wood under axial and transverse compression conditions. Acta Mech. Sin. 37, 1136–1151 (2021). https://doi.org/10.1007/s10409-021-01112-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-021-01112-z

Keywords

Navigation