Skip to main content
Log in

Towards the discovery of alcohol dehydrogenases: NAD(P)H fluorescence-based screening and characterization of the newly isolated Rhodococcus erythropolis WZ010 in the preparation of chiral aryl secondary alcohols

  • Biocatalysis
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

A simple and reliable procedure was developed to screen biocatalysts with high alcohol dehydrogenase activity, efficient internal coenzyme regeneration, and high stereoselectivity. The strategy of activity screening in a microtitre plate format was based on the detection of fluorescence of NAD(P)H originating from the oxidation of alcohols. The primary and secondary screenings from soil samples yielded a versatile bacterial biocatalyst Rhodococcus erythropolis WZ010 demonstrating potential for the preparation of chiral aryl secondary alcohols. In terms of activity and stereoselectivity, the optimized reaction conditions in the stereoselective oxidation were 30 °C, pH 10.5, and 250 rpm, whereas bioreduction using glucose as co-substrate was the most favorable at 35 °C and pH 7.5 in the static reaction mixture. Under the optimized conditions, fresh cells of the strain stereoselectively oxidized the (S)-enantiomer of racemic 1-phenylethanol (120 mM) to acetophenone and afforded the unoxidized (R)-1-phenylethanol in 49.4 % yield and >99.9 % enantiomeric excess (e.e.). In the reduction of 10 mM acetophenone, the addition of 100 mM glucose significantly increased the conversion rate from 3.1 to 97.4 %. In the presence of 800 mM glucose, acetophenone and other aromatic ketones (80 mM) were enantioselectively reduced to corresponding (S)-alcohols with excellent e.e. values. Both stereoselective oxidation and asymmetric reduction required no external cofactor regeneration system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Abokitse K, Hummel W (2003) Cloning, sequence analysis, and heterologous expression of the gene encoding a (S)-specific alcohol dehydrogenase from Rhodococcus erythropolis DSM 43297. Appl Microbiol Biotechnol 62:380–386

    Article  PubMed  CAS  Google Scholar 

  2. Adékambi T, Drancourt M, Raoult D (2009) The rpoB gene as a tool for clinical microbiologists. Trends Microbiol 17:37–45

    Article  PubMed  Google Scholar 

  3. Čejková A, Masák J, Jirků V, Veselý M, Pátek M, Nešvera J (2005) Potential of Rhodococcus erythropolis as a bioremediation organism. World J Micriob Biotechnol 21:317–321

    Article  Google Scholar 

  4. Cole JR, Wang Q, Cardenas E, Fish J, Chai B, Farris RJ, Kulam-Syed-Mohideen AS, McGarrell DM, Marsh T, Garrity GM, Tiedje JM (2009) The Ribosomal Database Project: improved alignments and new tools for rRNA analysis. Nucleic Acids Res 37:D141–D145

    Article  PubMed  CAS  Google Scholar 

  5. Conway T, Sewell GW, Osman YA, Ingram LO (1987) Cloning and sequencing of the alcohol dehydrogenase II gene from Zymomonas mobilis. J Bacteriol 169:2591–2597

    PubMed  CAS  Google Scholar 

  6. Fan Y, Xie Z, Zhang H, Qian J (2011) Kinetic resolution of both 1-phenylethanol enantiomers produced by hydrolysis of 1-phenylethyl acetate with Candida antarctica lipase B in different solvent systems. Kinet Catal 52:686–690

    Article  CAS  Google Scholar 

  7. Frings K, Koch M, Hartmeier W (1999) Kinetic resolution of 1-phenyl ethanol with high enantioselectivity with native and immobilized lipase in organic solvents. Enzyme Microb Technol 25:303–309

    Article  CAS  Google Scholar 

  8. Goldberg K, Schroer K, Lütz S, Liese A (2007) Biocatalytic ketone reduction—a powerful tool for the production of chiral alcohols—part II: whole-cell reductions. Appl Microbiol Biotechnol 76:249–255

    Article  PubMed  CAS  Google Scholar 

  9. Hasegawa Y, Uosaki H, Adachi S, Matsuno R (1996) Production of (R)-1-phenylethanol through enantioselective oxidation of (S)-isomer from their racemic mixture by Pachysolen tannophilus IFO 1007. Biotechnol Lett 18:367–372

    Article  CAS  Google Scholar 

  10. Hollmann F, Arends IWCE, Holtmann D (2011) Enzymatic reductions for the chemist. Green Chem 13:2285–2313

    Article  CAS  Google Scholar 

  11. Itoh K, Nakamura K, Utsukihara T, Sakamaki H, Horiuchi A (2008) Stereoselective oxidation of racemic 1-arylethanols by basil cultured cells of Ocimum basilicum cv. Purpurascens. Biotechnol Lett 30:951–954

    Article  PubMed  CAS  Google Scholar 

  12. Jin J, Li H, Zhang J (2010) Improved synthesis of (S)-1-phenyl-2-propanol in high concentration with coupled whole cells of Rhodococcus erythropolis and Bacillus subtilis on preparative scale. Appl Biochem Biotechnol 163:2075–2086

    Article  Google Scholar 

  13. Kataoka M, Nakamura Y, Urano N, Ishige T, Shi G, Kita S, Sakamoto K, Shimizu S (2006) A novel NADP+-dependent l-1-amino-2-propanol dehydrogenase from Rhodococcus erythropolis MAK154: a promising enzyme for the production of double chiral aminoalcohols. Lett Appl Microbiol 43:430–435

    Article  PubMed  CAS  Google Scholar 

  14. Kataoka M, Ishige T, Urano N, Nkamura Y, Sakuradani E, Fukui S, Kita S, Sakamoto K, Shimizu S (2008) Cloning and expression of the L-1-amino-2-propanol dehydrogenase gene from Rhodococcus erythropolis and its application to double chiral compound production. Appl Microbiol Biotechnol 80:597–604

    Article  PubMed  CAS  Google Scholar 

  15. Li Y, Xu J, Xu Y (2010) Deracemization of aryl secondary alcohols via enantioselective oxidation and stereoselective reduction with tandem whole-cell biocatalysts. J Mol Catal B Enzym 64:48–52

    Article  CAS  Google Scholar 

  16. Lin W, Chen C, Chen H, Hsu W (2010) Enantioselective synthesis of (S)-phenylephrine by whole cells of recombinant Escherichia coli expressing the amino alcohol dehydrogenase gene from Rhodococcus erythropolis BCRC 10909. Process Biochem 45:1529–1536

    Article  CAS  Google Scholar 

  17. Nie Y, Xu Y, Lv T, Xiao R (2009) Enhancement of Candida parapsilosis catalysing deracemization of (R,S)-1-phenyl-1,2-ethanediol: agitation speed control during cell cultivation. J Chem Technol Biotechnol 84:468–472

    Article  CAS  Google Scholar 

  18. Mayer KM, Arnold F (2002) A colorimetric assay to quantify dehydrogenase activity in crude cell lysates. J Biomol Screen 7:135–140

    Article  PubMed  CAS  Google Scholar 

  19. Reisinger C, van Assema F, Schürmann M, Hussain Z, Remler P, Schwab H (2006) A versatile colony assay based on NADH fluorescence. J Mol Catal B Enzym 39:149–155

    Article  CAS  Google Scholar 

  20. Rodríguez S, Kayser M, Stewart JD (1999) Improving the stereoselectivity of bakers’ yeast reductions by genetic engineering. Org Lett 1:1153–1155

    Article  PubMed  Google Scholar 

  21. Sekine M, Tanikawa S, Omata S, Saito M, Fujisawa T, Tsukatani N, Tajima T, Sekigawa T, Kosugi H, Matsuo Y, Nishiko R, Imamura K, Ito M, Narita H, Tago S, Fujita N, Harayama S (2006) Sequence analysis of three plasmids harboured in Rhodococcus erythropolis strain PR4. Environ Microbiol 8:334–346

    Article  PubMed  CAS  Google Scholar 

  22. Skurský L, Kovář J, Štachová M (1979) A sensitive photometric assay for alcohol dehydrogenase activity in blood serum. Anal Biochem 99:65–71

    Article  PubMed  Google Scholar 

  23. Stoecker MA, Herwig RP, Staley JT (1994) Rhodococcus zopfii sp. nov., a toxicant-degrading bacterium. Int J Syst Bacteriol 44:106–110

    Article  PubMed  CAS  Google Scholar 

  24. Suan CL, Sarmidi MR (2004) Immobilised lipase-catalysed resolution of (R,S)-1-phenylethanol in recirculated packed bed reactor. J Mol Catal B Enzym 28:111–119

    Article  Google Scholar 

  25. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  PubMed  CAS  Google Scholar 

  26. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  PubMed  CAS  Google Scholar 

  27. Truppo MD, Escalettes F, Turner NJ (2008) Rapid determination of both the activity and enantioselectivity of ketoreductases. Angew Chem Int Ed 47:2639–2641

    Article  CAS  Google Scholar 

  28. Tsotsou GE, Cass AEG, Gilardi G (2002) High throughput assay for cytochrome P450 BM3 for screening libraries of substrates and combinatorial mutants. Biosens Bioelectron 17:119–131

    Article  PubMed  CAS  Google Scholar 

  29. Utsukihara T, Misumi O, Nakjima K, Koshimura M, Kuniyoshi M, Kuroiwa T, Horiuchi CA (2008) Stereoinversion of 1-arylethanols by Cyanidioschyzon merolae NEIS-1332. J Mol Catal B Enzym 51:19–23

    Article  CAS  Google Scholar 

  30. Wang P, Cai J, Ouyang Q, He J, Su H (2011) Asymmetric biocatalytic reduction of 3,5-bis(trifluoromethyl) acetophenone to (1R)-[3,5-bis(trifluoromethyl)phenyl] ethanol using whole cells of newly isolated Leifsonia xyli HS0904. Appl Microbiol Biotechnol 90:1897–1904

    Article  PubMed  CAS  Google Scholar 

  31. Xie Y, Xu J, Xu Y (2010) Isolation of a Bacillus strain producing ketone reductase with high substrate tolerance. Bioresour Technol 101:1054–1059

    Article  PubMed  CAS  Google Scholar 

  32. Yadav S, Yadav RSS, Yadava S, Yadav KDS (2011) Stereoselective hydroxylation of ethylbenzene to (R)-1-phenylethanol using mycelia of Aspergillus niger as catalyst. Catal Commun 12:781–784

    Article  CAS  Google Scholar 

  33. Ying X, Grunden AM, Nie L, Adams MWWW, Ma K (2009) Molecular characterization of the recombinant iron-containing alcohol dehydrogenase from the hyperthermophilic archaeon, Thermococcus strain ES1. Extremophiles 13:299–311

    Article  PubMed  CAS  Google Scholar 

  34. Ying X, Ma K (2011) Characterization of a zinc-containing alcohol dehydrogenase with stereoselectivity from the hyperthermophilic archaeon Thermococcus guaymasensis. J Bacteriol 193:3009–3019

    Article  PubMed  CAS  Google Scholar 

  35. Ying X, Wang Y, Badiei HR, Karanassios V, Ma K (2007) Purification and characterization of an iron-containing alcohol dehydrogenase in extremely thermophilic bacterium Thermotoga hypogea. Arch Microbiol 187:499–510

    Article  PubMed  CAS  Google Scholar 

  36. Zhu Q, Jia H, Li Y, Jia L, Ma Y, Wei P (2012) Cloning, expression and characterization of chiral alcohol dehydrogenase from Rhodococcus erythropolis ATCC 4277. Acta Microbiol Sin 52:83–89

    Google Scholar 

  37. Zilbeyaz K, Kurbanoglu EB (2010) Highly enantiomeric reduction of acetophenone and its derivatives by locally isolated Rhodotorula glutinis. Chirality 22:849–854

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by Qianjiang Talent Program of Zhejiang Province (No. 2009R10048), Scientific Research Foundation of Zhejiang University of Technology (No. 20090172), Zhejiang Provincial Top Academic Discipline of Applied Chemistry and Eco-Dyeing and Finishing Engineering (No. ZYG2010016 and YR2010011) and Key Scientific and Technological Program of Zhejiang Province, China (No. 2009C13033-3). The authors thank Feng Cheng of Lehrstuhl für Biotechnologie, RWTH Aachen University for reading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhao Wang.

Additional information

Chi Yang and Xiangxian Ying contributed equally to this study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, C., Ying, X., Yu, M. et al. Towards the discovery of alcohol dehydrogenases: NAD(P)H fluorescence-based screening and characterization of the newly isolated Rhodococcus erythropolis WZ010 in the preparation of chiral aryl secondary alcohols. J Ind Microbiol Biotechnol 39, 1431–1443 (2012). https://doi.org/10.1007/s10295-012-1160-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-012-1160-7

Keywords

Navigation