Skip to main content
Log in

A simple coronary blood flow model to study the collateral flow index

  • Original Paper
  • Published:
Biomechanics and Modeling in Mechanobiology Aims and scope Submit manuscript

Abstract

In this work, we present a novel modeling framework to investigate the effects of collateral circulation into the coronary blood flow physiology. A prototypical model of the coronary tree, integrated with the concept of Collateral Flow Index (CFI), is employed to gain insight about the role of model parameters associated with the collateral circuitry, which results in physically-realizable solutions for specific CFI data. Then, we discuss the mathematical feasibility of pressure-derived CFI, anatomical implications and practical considerations involving the estimation of model parameters in collateral connections. A sensitivity analysis is carried out, and the investigation of the impact of the collateral circulation on FFR values is also addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. Successful in the sense that adequate \(\text {CFI}\) value is achieved after the collateral recruitment.

References

  • Allahwala UK, Kott K, Bland A, Ward M, Bhindi R (2020) Predictors and prognostic implications of well-matured coronary collateral circulation in patients with a chronic total occlusion (CTO). Int Heart J 61:223–230

    Article  Google Scholar 

  • Baroldi G, Mantero O, Scomazzoni G (1956) The Collaterals of the coronary arteries in normal and pathologic hearts. Circ Res 4(2):223–229

    Article  Google Scholar 

  • Berry C, Balachandran KP, L’Allier PL, Lesperance J, Bonan R, Oldroyd KG (2007) Importance of collateral circulation in coronary heart disease. Eur Heart J 28(3):278–291

    Article  Google Scholar 

  • Bezerra CG, Hideo-Kajita A, Bulant CA, Maso-Talou GD, Mariani J, Pinton FA, Falcão BAA, Esteves-Filho A, Franken M, Feijóo RA, Kalil-Filho R, García-García HM, Blanco PJ, Lemos PA (2019) Coronary fractional flow reserve derived from intravascular ultrasound imaging: validation of a new computational method of fusion between anatomy and physiology. Catheter Cardiovasc Interv 93(2):266–274

    Article  Google Scholar 

  • Blanco PJ, Queiroz RAB, Feijóo RA (2013) A computational approach to generate concurrent arterial networks in vascular territories. Int J Numer Methods Biomed Eng 29:601–614

    Article  MathSciNet  Google Scholar 

  • Blanco PJ, Watanabe SM, Dari EA, Passos MARF, Feijóo RA (2014) Blood flow distribution in an anatomically detailed arterial network model: criteria and algorithms. Biomech Model Mechanobiol 13(6):1303–1330

    Article  Google Scholar 

  • Blanco PJ, Watanabe SM, Passos MARF, Lemos PA, Feijóo RA (2015) An anatomically detailed arterial network model for one-dimensional computational hemodynamics. IEEE Trans Biomed Eng 62(2):736–753

    Article  Google Scholar 

  • Blanco PJ, Bulant CA, Müller LO, Talou GDM, Bezerra CG, Lemos PA, Feijóo RA (2018) Comparison of 1D and 3D models for the estimation of fractional flow reserve. Sci Rep 8(1):1–12

    Google Scholar 

  • Bulant CA, Blanco PJ, Maso Talou GD, Bezerra CG, Lemos PA, Feijóo RA (2017) A head-to-head comparison between CT- and IVUS-derived coronary blood flow models. J Biomech 51:65–76

    Article  Google Scholar 

  • Chilian WM, Penn MS, Pung YF, Dong F, Mayorga M, Ohanyan V, Logan S, Yin L (2012) Coronary collateral growth - back to the future. J Mol Cell Cardiol 52(4):905–911

    Article  Google Scholar 

  • Coleman TF, Li Y (1996) An interior trust region approach for nonlinear minimization subject to bounds. SIAM J Optim 6(2):418–445

    Article  MathSciNet  MATH  Google Scholar 

  • Coppel R et al (2019) Influence of collaterals on true FFR prediction for a left main stenosis with concomitant lesions: an in vitro study. Ann Biomed Eng 47(6):1409–1421

    Article  Google Scholar 

  • De Marchi SF, Streuli S, Haefeli P, Gloekler S, Traupe T, Warncke C, Rimoldi SF, Stortecky S, Steck H, Seiler C (2012) Determinants of prognostically relevant intracoronary electrocardiogram st-segment shift during coronary balloon occlusion. Am J Cardiol 110(9):1234–1239

    Article  Google Scholar 

  • De Marchi SF, Gassmann C, Traupe T, Gloekler S, Cook S, Vogel R, Gysi K, Seiler C (2019) Coronary wave intensity patterns in stable coronary artery disease: influence of stenosis severity and collateral circulation. Open Heart 6:e000999

    Article  Google Scholar 

  • Di Mario C, Bambagioni G (2020) Coronary collaterals, the natural grafts of CTO lesions - good enough to keep most myocardium alive, unable to prevent ischaemia. EuroIntervention 16(6):e441–e444

    Article  Google Scholar 

  • Fossan FE, Sturdy J, Müller LO, Strand A, Bråten AT, Jørgensen A, Wiseth R, Hellevik LR (2018) Uncertainty quantification and sensitivity analysis for computational FFR estimation in stable coronary artery disease. Cardiovasc Eng Technol 9(4):597–622

    Article  Google Scholar 

  • Fulton WF (1964) The time factor in the enlargement of anastomoses in coronary artery disease. Scott Med J 9:18–23

    Article  Google Scholar 

  • Gao F, Han L (2012) Implementing the nelder-mead simplex algorithm with adaptive parameters. Comput Optim Appl 51(1):259–277

    Article  MathSciNet  MATH  Google Scholar 

  • Ge X, Liu Y, Tu S, Simakov S, Vassilevski Y, Liang F (2019) Model-based analysis of the sensitivities and diagnostic implications of ffr and cfr under various pathological conditions. Int J Num Methods Biomedi Eng. https://doi.org/10.1002/cnm.3257

  • Grundmann S, Piek JJ, Pasterkamp G, Hoefer IE (2007) Arteriogenesis: basic mechanisms and therapeutic stimulation. Eurn J Clin Investig 37(10):755–766

    Article  Google Scholar 

  • Guyton AC, Hall JE (2006) Textbook of medical physiology, 11th edn. Elsevier Saunders, Philadelphia

    Google Scholar 

  • Hearse DJ, Yellon DM, Maxwell MP (1987) Species variation in the coronary collateral circulation during regional myocardial ischaemia: a critical determinant of the rate of evolution and extent of myocardial infarction. Cardiovasc Res 21(10):737–746

    Article  Google Scholar 

  • Heil M, Schaper W (2004) Influence of mechanical, cellular, and molecular factors on collateral artery growth (arteriogenesis). Circ Res 95(5):449–458

    Article  Google Scholar 

  • Jamaiyar A, Juguilon C, Dong F, Cumpston D, Enrick M, Chilian WM, Yin L (2019) Cardioprotection during ischemia by coronary collateral growth. Am J Physiol Heart Circ Physiol 316(1):H1–H9

    Article  Google Scholar 

  • Johnson NP, Kirkeeide RL, Gould KL (2012a) Is discordance of coronary flow reserve and fractional flow reserve due to methodology or clinically relevant coronary pathophysiology. JACC Cardiovasc Imaging 5(2):193–202

    Article  Google Scholar 

  • Johnson NP, Kirkeeide RL, Gould KL (2012b) Is discordance of coronary flow reserve and fractional flow reserve due to methodology or clinically relevant coronary pathophysiology. JACC Cardiovasc Imaging 5(2):193–202

    Article  Google Scholar 

  • Karrowni W, El Accaoui RN, Chatterjee K (2013) Coronary collateral circulation: its relevance: coronary collateral circulation. Catheter Cardiovasc Interv 82(6):915–928

    Article  Google Scholar 

  • Koerselman J (2003) Coronary collaterals: an important and underexposed aspect of coronary artery disease. Circulation 107(19):2507–2511

    Article  Google Scholar 

  • Kruk M, Wardziak L, Mintz GS, Achenbach S, Pregowski J, Ruzyllo W, Dzielinska Z, Demkow M, Witkowski A, Kepka C (2014) Accuracy of coronary computed tomography angiography vs intravascular ultrasound for evaluation of vessel area. J Cardiovasc Comput Tomogr 8(2):141–148

    Article  Google Scholar 

  • Kweon J, Kim YH, Yang D, Lee JG, Roh JH, Mintz G, Lee SW, Park SW (2016) In vivo validation of mathematically derived fractional flow reserve for assessing haemodynamics of coronary tandem lesions. EuroIntervention 12(11):e1375–e1384

    Article  Google Scholar 

  • Leber AW, Knez A, von Ziegler F, Becker A, Nikolaou K, Paul S, Wintersperger B, Reiser M, Becker CR, Steinbeck G, Boekstegers P (2005) Quantification of obstructive and nonobstructive coronary lesions by 64-slice computed tomography. J Am Coll Cardiol 46(1):147–154

    Article  Google Scholar 

  • Levin DC (1974) Pathways and functional significance of the coronary collateral circulation. Circulation 50(4):831–837

    Article  Google Scholar 

  • Meier P, Schirmer SH, Lansky AJ, Timmis A, Pitt B, Seiler C (2013) The collateral circulation of the heart. BMC Med 11(1):1–7

    Article  Google Scholar 

  • Müller LO, Fossan FE, Braten AT, Jorgensen A, Wiseth R, Hellevik LR (2019) Impact of baseline coronary flow and its distribution on fractional flow reserve prediction. Int J Num Methods Biomed Eng. https://doi.org/10.1002/cnm.3246

  • Peelukhana SV, Back LH, Banerjee RK (2009) Influence of coronary collateral flow on coronary diagnostic parameters: an in vitro study. J Biomech 42(16):2753–2759

    Article  Google Scholar 

  • Pijls NH, van Son JA, Kirkeeide RL, De Bruyne B, Gould KL (1993) Experimental basis of determining maximum coronary, myocardial, and collateral blood flow by pressure measurements for assessing functional stenosis severity before and after percutaneous transluminal coronary angioplasty. Circulation 87(4):1354–1367

    Article  Google Scholar 

  • Sankaran S, Grady L, Taylor CA (2015) Impact of geometric uncertainty on hemodynamic simulations using machine learning. Comput Methods Appl Mech Eng 297:167–190

    Article  MathSciNet  MATH  Google Scholar 

  • Schaper W, Scholz D (2003) Factors regulating arteriogenesis. Arterioscler Thromb Vasc Biol 23(7):1143–1151

    Article  Google Scholar 

  • Seiler C (2013) Assessment and impact of the human coronary collateral circulation on myocardial ischemia and outcome. Circ Cardiovasc Interv 6(6):719–728

    Article  Google Scholar 

  • Seiler C, Fleisch M, Garachemani A, Meier B (1998) Coronary collateral quantitation in patients with coronary artery disease using intravascular flow velocity or pressure measurements. J Am Coll Cardiol 32:1272–1279

    Article  Google Scholar 

  • Seiler C, Stoller M, Pitt B, Meier P (2013) The human coronary collateral circulation: development and clinical importance. Eur Heart J 34(34):2674–2682

    Article  Google Scholar 

  • Suter MJ, Nadkarni SK, Weisz G, Tanaka A, Jaffer FA, Bouma BE, Tearney GJ (2011) Intravascular optical imaging technology for investigating the coronary artery. JACC Cardiovasc Imaging 4(9):1022–1039

    Article  Google Scholar 

  • Taylor CA, Fonte TA, Min JK (2013) Computational fluid dynamics applied to cardiac computed tomography for noninvasive quantification of fractional flow reserve. J Am Coll Cardiol 61(22):2233–2241

    Article  Google Scholar 

  • Tröbs M, Achenbach S, Röther J, Redel T, Scheuering M, Winneberger D, Klingenbeck K, Itu L, Passerini T, Kamen A, Sharma P, Comaniciu D, Schlundt C (2016) Comparison of fractional flow reserve based on computational fluid dynamics modeling using coronary angiographic vessel morphology versus invasively measured fractional flow reserve. Am J Cardiol 117(1):29–35

    Article  Google Scholar 

  • Van Royen N, Piek JJ, Buschmann I, Hoefer I, Voskuil M, Schaper W (2001) Stimulation of arteriogenesis; a new concept for the treatment of arterial occlusive disease. Cardiovasc Res 49(3):543–553

    Article  Google Scholar 

  • Wustmann K (2003) Is there functional collateral flow during vascular occlusion in angiographically normal coronary arteries? Circulation 107(17):2213–2220

    Article  Google Scholar 

  • Young DF, Tsai FY (1973) Flow characteristics in models of arterial stenoses. I Steady Flow. J Biomech 6(4):395–410

    Article  Google Scholar 

  • Zimarino M, D’Andreamatteo M, Waksman R, Epstein SE, De Caterina R (2014) The dynamics of the coronary collateral circulation. Nat Revi Cardiol 11(4):191–197

    Article  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the Brazilian agencies CNPq (grants 301224/2016-1 and 407751/2018-1), and FAPESP (grant 2014/50889-7). Also by Argentinean agency ANPCyT (grant PICT-2018-02427).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pablo J. Blanco.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Governing equations for the blood flow model

Appendix: Governing equations for the blood flow model

1.1 LAD totally occluded

In this case it is assumed that \(R_l\rightarrow \infty\), and so \(Q_l=0\). Also, the resistance \(R_{pl}\) enters in hyperemic state, that is \(R_{pl}\rightarrow R_{pl}^h=\frac{R_{pl}}{\text{ CFR }}\). In such situation, the pressure \(P_l\) turns into the wedge pressure \(P_l^w\). The formulae for the circuit reads

$$\begin{aligned} Q_{pl}&= Q_{rl} + Q_{xl}, \end{aligned}$$
(23a)
$$\begin{aligned} Q_{pl} R_{pl}^h&= P_l^w - P_v, \end{aligned}$$
(23b)
$$\begin{aligned} Q_r R_r + Q_{rl} R_{rl}&= P_a - P_l^w, \end{aligned}$$
(23c)
$$\begin{aligned} Q_x R_x + Q_{xl} R_{xl}&= P_a - P_l^w, \end{aligned}$$
(23d)
$$\begin{aligned} Q_r R_r&= P_a - P_r, \end{aligned}$$
(23e)
$$\begin{aligned} Q_x R_x&= P_a - P_x, \end{aligned}$$
(23f)
$$\begin{aligned} Q_{pr} R_{pr}&= P_r - P_v, \end{aligned}$$
(23g)
$$\begin{aligned} Q_{px} R_{px}&= P_x - P_v, \end{aligned}$$
(23h)
$$\begin{aligned} Q_{rx} R_{rx}&= P_r - P_x, \end{aligned}$$
(23i)
$$\begin{aligned} Q_r&= Q_{pr} + Q_{rl} + Q_{rx}, \end{aligned}$$
(23j)
$$\begin{aligned} Q_x&= Q_{px} + Q_{xl} - Q_{rx}. \end{aligned}$$
(23k)

Combining (23b) and (23a), and then using (23j) and (23k) gives

$$\begin{aligned} \dfrac{P_l^w - P_v}{R_{pl}^h} = Q_{rl} + Q_{xl} = Q_x + Q_r - Q_{pr} - Q_{px}. \end{aligned}$$
(24)

Now, introducing (23e), (23f), (23g) and (23h) yields

$$\begin{aligned} \dfrac{P_l^w - P_v}{R_{pl}^h}= \dfrac{P_a-P_x}{R_x} + \dfrac{P_a-P_r}{R_r} - \dfrac{P_r-P_v}{R_{pr}} - \dfrac{P_x-P_v}{R_{px}}. \end{aligned}$$
(25)

Further manipulations yield

$$\begin{aligned}&\dfrac{P_l^w - P_v}{R_{pl}^h}= \dfrac{P_a - P_v}{R_x} - \dfrac{P_x-P_v}{R_x} \nonumber \\&\quad + \dfrac{P_a-P_v}{R_r} - \dfrac{P_r-P_v}{R_r} - \dfrac{P_r-P_v}{R_{pr}} - \dfrac{P_x-P_v}{R_{px}}. \end{aligned}$$
(26)

Now, we define the pressure drops

$$\begin{aligned} \varDelta P_a&= P_a - P_v, \end{aligned}$$
(27)
$$\begin{aligned} \varDelta P_r^l&= P_r - P_v, \end{aligned}$$
(28)
$$\begin{aligned} \varDelta P_x^l&= P_x - P_v, \end{aligned}$$
(29)
$$\begin{aligned} \varDelta P_l^w&= P_l^w - P_v, \end{aligned}$$
(30)

where the superscript \((\cdot )^l\) makes reference to the fact that we are considering the occlusion of the LAD. Then, expressing equation (26) in terms of pressure drops and rearranging terms yields

$$\begin{aligned}&\dfrac{\varDelta P_l^w}{R_{pl}^h} + \left( \dfrac{1}{R_r}+\dfrac{1}{R_{pr}}\right) \varDelta P_r^l + \left( \dfrac{1}{R_x}+\dfrac{1}{R_{px}}\right) \varDelta P_x^l \nonumber \\&\quad =\left( \dfrac{1}{R_r} + \dfrac{1}{R_x}\right) \varDelta P_a. \end{aligned}$$
(31)

Note that the problem has three unknowns, in short denoted by \(\varDelta {\mathbf {P}}_l=(\varDelta P_l^w, \varDelta P_r^l, \varDelta P_x^l)\). We now employ (23c), (23e), (23j), (23g) and (23i) to obtain the second equation

$$\begin{aligned}&P_a - P_l^w = Q_r R_r + Q_{rl} R_{rl} = P_a - P_r + (Q_r - Q_{pr} - Q_{rx}) R_{rl} \nonumber \\&\quad = P_a - P_r + \left( \dfrac{P_a-P_r}{R_r} - \dfrac{P_r-P_v}{R_{pr}} - \dfrac{P_r-P_x}{R_{rx}}\right) R_{rl}. \end{aligned}$$
(32)

Adding and subtracting \(P_v\), and manipulating the equation above

$$\begin{aligned}&- \frac{P_l^w-P_v}{R_{rl}} = - \frac{P_r-P_v}{R_{rl}} + \dfrac{P_a-P_v}{R_r} \nonumber \\&\quad - \dfrac{P_r-P_v}{R_r} - \dfrac{P_r-P_v}{R_{pr}} - \dfrac{P_r-P_v}{R_{rx}} + \dfrac{P_x-P_v}{R_{rx}}. \end{aligned}$$
(33)

Using the definition of pressure drops, we finally get

$$\begin{aligned} - \dfrac{\varDelta P_l^w}{R_{rl}} + \left( \dfrac{1}{R_{rl}} +\dfrac{1}{R_r} + \dfrac{1}{R_{pr}} + \dfrac{1}{R_{rx}} \right) \varDelta P_r^l - \dfrac{\varDelta P_x^l}{R_{rx}} = \dfrac{\varDelta P_a}{R_r}. \end{aligned}$$
(34)

The third equation is obtained analogously. Using (23d), (23f), (23h), (23i) and (23k) we get

$$\begin{aligned}&P_a - P_l^w = Q_x R_x + Q_{xl} R_{xl} = P_a - P_x + (Q_x - Q_{px} + Q_{rx}) R_{xl} \nonumber \\&\quad = P_a - P_x + \left( \dfrac{P_a-P_x}{R_x} - \dfrac{P_x-P_v}{R_{px}} + \dfrac{P_r-P_x}{R_{rx}}\right) R_{xl}. \end{aligned}$$
(35)

Rewriting the equation in terms of pressure drops gives

$$\begin{aligned} - \dfrac{\varDelta P_l^w}{R_{xl}} - \dfrac{\varDelta P_r^l}{R_{rx}} + \left( \dfrac{1}{R_{xl}} + \dfrac{1}{R_x} + \dfrac{1}{R_{px}} + \dfrac{1}{R_{rx}} \right) \varDelta P_x^l = \dfrac{\varDelta P_a}{R_x}. \end{aligned}$$
(36)

And, so, we arrive at the system of equations

$$\begin{aligned}&\begin{pmatrix} \frac{1}{R_{pl}^h} &{} \frac{1}{R_r}+\frac{1}{R_{pr}} &{} \frac{1}{R_x}+\frac{1}{R_{px}}\\ -\frac{1}{R_{rl}} &{} \frac{1}{R_r^{\parallel }} &{} -\frac{1}{R_{rx}}\\ -\frac{1}{R_{xl}} &{} -\frac{1}{R_{rx}} &{} \frac{1}{R_x^{\parallel }} \end{pmatrix} \begin{pmatrix} \varDelta P_l^w\\ \varDelta P_r^l\\ \varDelta P_x^l \end{pmatrix} \frac{1}{\varDelta P_a} = \begin{pmatrix} \frac{1}{R_r}+\frac{1}{R_x}\\ \frac{1}{R_r}\\ \frac{1}{R_x} \end{pmatrix} \end{aligned}$$
(37)

where

$$\begin{aligned} \frac{1}{R_r^{\parallel }}&= \dfrac{1}{R_{rl}} +\dfrac{1}{R_r} + \dfrac{1}{R_{pr}} + \dfrac{1}{R_{rx}}, \end{aligned}$$
(38)
$$\begin{aligned} \frac{1}{R_x^{\parallel }}&= \dfrac{1}{R_{xl}} + \dfrac{1}{R_x} + \dfrac{1}{R_{px}} + \dfrac{1}{R_{rx}}. \end{aligned}$$
(39)

1.2 RCA totally occluded

Now, it is assumed that \(R_r\rightarrow \infty\), and so \(Q_r=0\), and that the hyperemic state renders \(R_{pr}\rightarrow R_{pr}^h=\frac{R_{pr}}{\text {CFR}}\), with the wedge pressure being \(P_r^w\). The formulae for this new circuit becomes

$$\begin{aligned} Q_{pr}&= -(Q_{rx} + Q_{rl}), \end{aligned}$$
(40a)
$$\begin{aligned} Q_{pr} R_{pr}^h&= P_r^w - P_v, \end{aligned}$$
(40b)
$$\begin{aligned} Q_l R_l - Q_{rl} R_{rl}&= P_a - P_r^w, \end{aligned}$$
(40c)
$$\begin{aligned} Q_x R_x - Q_{rx} R_{rx}&= P_a - P_r^w, \end{aligned}$$
(40d)
$$\begin{aligned} Q_l R_l&= P_a - P_l, \end{aligned}$$
(40e)
$$\begin{aligned} Q_x R_x&= P_a - P_x, \end{aligned}$$
(40f)
$$\begin{aligned} Q_{pl} R_{pl}&= P_l - P_v, \end{aligned}$$
(40g)
$$\begin{aligned} Q_{px} R_{px}&= P_x - P_v, \end{aligned}$$
(40h)
$$\begin{aligned} Q_{xl} R_{xl}&= P_x - P_l, \end{aligned}$$
(40i)
$$\begin{aligned} Q_l&= Q_{pl} - Q_{rl} - Q_{xl}, \end{aligned}$$
(40j)
$$\begin{aligned} Q_x&= Q_{px} - Q_{rx} + Q_{xl}. \end{aligned}$$
(40k)

Combining (40b) and (40a), and then using (40j) and (40k) gives

$$\begin{aligned} \dfrac{P_r^w - P_v}{R_{pr}^h} = -(Q_{rx} + Q_{rl}) = Q_x + Q_l - Q_{px} - Q_{pl}. \end{aligned}$$
(41)

Putting (40e), (40f), (40g) and (40h) results

$$\begin{aligned} \dfrac{P_r^w - P_v}{R_{pr}^h}= \dfrac{P_a-P_x}{R_x} + \dfrac{P_a-P_l}{R_l} - \dfrac{P_x-P_v}{R_{px}} - \dfrac{P_l-P_v}{R_{pl}}. \end{aligned}$$
(42)

After some rearrangements

$$\begin{aligned}&\dfrac{P_r^w - P_v}{R_{pr}^h}= \dfrac{P_a - P_v}{R_x} - \dfrac{P_x-P_v}{R_x} \nonumber \\&\quad + \dfrac{P_a-P_v}{R_l} - \dfrac{P_l-P_v}{R_l} - \dfrac{P_x-P_v}{R_{px}} - \dfrac{P_l-P_v}{R_{pl}}. \end{aligned}$$
(43)

Now, we define the pressure drops

$$\begin{aligned} \varDelta P_a&= P_a - P_v, \end{aligned}$$
(44)
$$\begin{aligned} \varDelta P_l^r&= P_l - P_v, \end{aligned}$$
(45)
$$\begin{aligned} \varDelta P_x^r&= P_x - P_v, \end{aligned}$$
(46)
$$\begin{aligned} \varDelta P_r^w&= P_r^w - P_v, \end{aligned}$$
(47)

with superscript \((\cdot )^r\) indicating that we are occluding the RCA. Then, in term of pressure drops, (43) yields

$$\begin{aligned}&\dfrac{\varDelta P_r^w}{R_{pr}^h} + \left( \dfrac{1}{R_l}+\dfrac{1}{R_{pl}}\right) \varDelta P_l^r + \left( \dfrac{1}{R_x}+\dfrac{1}{R_{px}}\right) \varDelta P_x^r \nonumber \\&\quad = \left( \dfrac{1}{R_l} + \dfrac{1}{R_x}\right) \varDelta P_a. \end{aligned}$$
(48)

The three unknowns in this situation are \(\varDelta {\mathbf {P}}_r=( \varDelta P_l^r, \varDelta P_r^w,\varDelta P_x^r)\). We now use (40c), (40e), (40j), (40g) and (40i) to arrive at the second equation

$$\begin{aligned}&P_a - P_r^w = Q_l R_l - Q_{rl} R_{rl} = P_a - P_l + (Q_l - Q_{pl} + Q_{xl}) R_{rl} \nonumber \\&\quad = P_a - P_l + \left( \dfrac{P_a-P_l}{R_l} - \dfrac{P_l-P_v}{R_{pl}} + \dfrac{P_x-P_l}{R_{xl}}\right) R_{rl}. \end{aligned}$$
(49)

Adding and subtracting \(P_v\), and manipulating the equation above

$$\begin{aligned}&- \frac{P_r^w-P_v}{R_{rl}} = - \frac{P_l-P_v}{R_{rl}} + \dfrac{P_a-P_v}{R_l} \nonumber \\&\quad - \dfrac{P_l-P_v}{R_l} - \dfrac{P_l-P_v}{R_{pl}} - \dfrac{P_l-P_v}{R_{xl}} + \dfrac{P_x-P_v}{R_{xl}}. \end{aligned}$$
(50)

Using the definition of pressure drops, we get

$$\begin{aligned} - \dfrac{\varDelta P_r^w}{R_{rl}} + \left( \dfrac{1}{R_{rl}} +\dfrac{1}{R_l} + \dfrac{1}{R_{pl}} + \dfrac{1}{R_{xl}} \right) \varDelta P_l^r - \dfrac{\varDelta P_x^r}{R_{xl}} = \dfrac{\varDelta P_a}{R_l}. \end{aligned}$$
(51)

The last equation is obtained similarly. Using (40d), (40f), (40h), (40i) and (40k) we get

$$\begin{aligned}&P_a - P_r^w = Q_x R_x - Q_{rx} R_{rx} = P_a - P_x + (Q_x - Q_{px} - Q_{xl}) R_{rx} \nonumber \\&\quad = P_a - P_x + \left( \dfrac{P_a-P_x}{R_x} - \dfrac{P_x-P_v}{R_{px}} - \dfrac{P_x-P_l}{R_{xl}}\right) R_{rx}. \end{aligned}$$
(52)

In terms of pressure drops, the equation reads

$$\begin{aligned} - \dfrac{\varDelta P_r^w}{R_{rx}} - \dfrac{\varDelta P_l^r}{R_{xl}} + \left( \dfrac{1}{R_{xl}} + \dfrac{1}{R_x} + \dfrac{1}{R_{px}} + \dfrac{1}{R_{rx}} \right) \varDelta P_x^r = \dfrac{\varDelta P_a}{R_x}. \end{aligned}$$
(53)

Hence, the system of equations results

$$\begin{aligned} \begin{pmatrix} \frac{1}{R_l^{\parallel }} &{} -\frac{1}{R_{rl}} &{} -\frac{1}{R_{xl}}\\ \frac{1}{R_l}+\frac{1}{R_{pl}} &{} \frac{1}{R_{pr}^h} &{} \frac{1}{R_x}+\frac{1}{R_{px}}\\ -\frac{1}{R_{xl}} &{} -\frac{1}{R_{rx}} &{} \frac{1}{R_x^{\parallel }} \end{pmatrix} \begin{pmatrix} \varDelta P_l^r\\ \varDelta P_r^w\\ \varDelta P_x^r \end{pmatrix} \frac{1}{\varDelta P_a} = \begin{pmatrix} \frac{1}{R_l}\\ \frac{1}{R_l}+\frac{1}{R_x}\\ \frac{1}{R_x} \end{pmatrix}, \end{aligned}$$
(54)

where

$$\begin{aligned} \frac{1}{R_l^{\parallel }}=\frac{1}{R_{rl}}+\frac{1}{R_l}+\frac{1}{R_{pl}}+\frac{1}{R_{xl}}. \end{aligned}$$
(55)

1.3 LCX totally occluded

Finally, it is considered \(R_x\rightarrow \infty\), leading to \(Q_x=0\), and therefore \(R_{px}\rightarrow R_{px}^h=\frac{R_{px}}{\text {CFR}}\), with the wedge pressure being \(P_x^w\). The formulae for this new circuit becomes

$$\begin{aligned} Q_{px}&= Q_{rx} - Q_{xl}, \end{aligned}$$
(56a)
$$\begin{aligned} Q_{px} R_{px}&= P_x^w - P_v, \end{aligned}$$
(56b)
$$\begin{aligned} Q_l R_l - Q_{xl} R_{xl}&= P_a - P_x^w, \end{aligned}$$
(56c)
$$\begin{aligned} Q_r R_r + Q_{rx} R_{rx}&= P_a - P_x^w, \end{aligned}$$
(56d)
$$\begin{aligned} Q_l R_l&= P_a - P_l , \end{aligned}$$
(56e)
$$\begin{aligned} Q_r R_r&= P_a - P_r , \end{aligned}$$
(56f)
$$\begin{aligned} Q_{pl} R_{pl}&= P_l - P_v , \end{aligned}$$
(56g)
$$\begin{aligned} Q_{pr} R_{pr}&= P_r - P_v , \end{aligned}$$
(56h)
$$\begin{aligned} Q_{rl} R_{rl}&= P_r - P_l , \end{aligned}$$
(56i)
$$\begin{aligned} Q_l&= Q_{pl} - Q_{xl} - Q_{rl}, \end{aligned}$$
(56j)
$$\begin{aligned} Q_r&= Q_{pr} + Q_{rx} + Q_{rl}. \end{aligned}$$
(56k)

Combining (56b) and (56a), and using (56j) and (56k) gives

$$\begin{aligned} \dfrac{P_x^w - P_v}{R_{px}^h} = (Q_{rx} - Q_{xl}) = Q_r + Q_l - Q_{pr} - Q_{pl}. \end{aligned}$$
(57)

Putting (56e), (56f), (56g) and (56h) results

$$\begin{aligned} \dfrac{P_x^w - P_v}{R_{px}^h}= \dfrac{P_a-P_r}{R_r} + \dfrac{P_a-P_l}{R_l} - \dfrac{P_r-P_v}{R_{pr}} - \dfrac{P_l-P_v}{R_{pl}}. \end{aligned}$$
(58)

After some rearrangements

$$\begin{aligned}&\dfrac{P_x^w - P_v}{R_{px}^h}= \dfrac{P_a - P_v}{R_r} - \dfrac{P_r-P_v}{R_r}\nonumber \\&\quad + \dfrac{P_a-P_v}{R_l} - \dfrac{P_l-P_v}{R_l} - \dfrac{P_r-P_v}{R_{pr}} - \dfrac{P_l-P_v}{R_{pl}}. \end{aligned}$$
(59)

Now, we introduce the pressure drops

$$\begin{aligned} \varDelta P_a&= P_a - P_v, \end{aligned}$$
(60)
$$\begin{aligned} \varDelta P_l^x&= P_l - P_v,\end{aligned}$$
(61)
$$\begin{aligned} \varDelta P_r^x&= P_r - P_v, \end{aligned}$$
(62)
$$\begin{aligned} \varDelta P_x^w&= P_x^w - P_v, \end{aligned}$$
(63)

where superscript \((\cdot )^x\) denotes occlusion of the LCX. Thus, using the definition of pressure drops, (59) gives

$$\begin{aligned}&\dfrac{\varDelta P_x^w}{R_{px}^h} + \left( \dfrac{1}{R_l}+\dfrac{1}{R_{pl}}\right) \varDelta P_l^x + \left( \dfrac{1}{R_r}+\dfrac{1}{R_{pr}}\right) \varDelta P_r^x \nonumber \\&\quad = \left( \dfrac{1}{R_r} + \dfrac{1}{R_l}\right) \varDelta P_a. \end{aligned}$$
(64)

The unknowns in this case are \(\varDelta {\mathbf {P}}_x=(\varDelta P_l^x, \varDelta P_r^x,\varDelta P_x^w)\). We now use (56c), (56e), (56j), (56g) and (56i) to get the second equation

$$\begin{aligned}&P_a - P_x^w = Q_r R_r + Q_{rx} R_{rx} = P_a - P_r + (Q_r - Q_{pr} - Q_{rl}) R_{rx} \nonumber \\&\quad = P_a - P_r + \left( \dfrac{P_a-P_r}{R_r} - \dfrac{P_r-P_v}{R_{pr}} - \dfrac{P_r-P_l}{R_{rl}}\right) R_{rx}. \end{aligned}$$
(65)

Adding and subtracting \(P_v\), and manipulating the equation above

$$\begin{aligned}&- \frac{P_x^w-P_v}{R_{rx}} = - \frac{P_r-P_v}{R_{rx}} + \dfrac{P_a-P_v}{R_r}\nonumber \\&\quad - \dfrac{P_r-P_v}{R_r} - \dfrac{P_r-P_v}{R_{pr}} - \dfrac{P_r-P_v}{R_{rl}} + \dfrac{P_l-P_v}{R_{rl}}. \end{aligned}$$
(66)

Using the definition of pressure drops, we get

$$\begin{aligned} - \dfrac{\varDelta P_x^w}{R_{rx}} + \left( \dfrac{1}{R_{rx}} +\dfrac{1}{R_r} + \dfrac{1}{R_{pr}} + \dfrac{1}{R_{rl}} \right) \varDelta P_r^x - \dfrac{\varDelta P_l^x}{R_{rl}} = \dfrac{\varDelta P_a}{R_r}. \end{aligned}$$
(67)

To obtain the last equation is obtained we employ (56d), (56f), (56h), (56i) and (56k) as follows

$$\begin{aligned}&P_a - P_x^w = Q_r R_r + Q_{rx} R_{rx} = P_a - P_r + (Q_r - Q_{pr} - Q_{rl}) R_{rx} \nonumber \\&\quad = P_a - P_r + \left( \dfrac{P_a-P_r}{R_r} - \dfrac{P_r-P_v}{R_{pr}} - \dfrac{P_r-P_l}{R_{rl}}\right) R_{rx}. \end{aligned}$$
(68)

In terms of pressure drops, the equation reads

$$\begin{aligned} - \dfrac{\varDelta P_x^w}{R_{rx}} - \dfrac{\varDelta P_l^x}{R_{rl}} + \left( \dfrac{1}{R_{rx}} + \dfrac{1}{R_r} + \dfrac{1}{R_{pr}} + \dfrac{1}{R_{rl}} \right) \varDelta P_r^x = \dfrac{\varDelta P_a}{R_x}. \end{aligned}$$
(69)

So, the system of equations can be arranged as follows

$$\begin{aligned} \begin{pmatrix} \frac{1}{R_l^\parallel } &{} -\frac{1}{R_{rl}} &{} -\frac{1}{R_{xl}}\\ -\frac{1}{R_{rl}} &{} \frac{1}{R_r^\parallel } &{} -\frac{1}{R_{rx}}\\ \frac{1}{R_l}+\frac{1}{R_{pl}} &{} \frac{1}{R_r}+\frac{1}{R_{pr}} &{} \frac{1}{R_{px}^h} \end{pmatrix} \begin{pmatrix} \varDelta P_l^x\\ \varDelta P_r^x\\ \varDelta P_x^w \end{pmatrix} \frac{1}{\varDelta P_a} = \begin{pmatrix} \frac{1}{R_l}\\ \frac{1}{R_r}\\ \frac{1}{R_l}+\frac{1}{R_r} \end{pmatrix}. \end{aligned}$$
(70)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Blanco, P.J., Bulant, C.A., Ares, G.D. et al. A simple coronary blood flow model to study the collateral flow index. Biomech Model Mechanobiol 20, 1365–1382 (2021). https://doi.org/10.1007/s10237-021-01449-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10237-021-01449-1

Keywords

Navigation