Skip to main content

Advertisement

Log in

Dual energy CT in clinical routine: how it works and how it adds value

  • Review Article
  • Published:
Emergency Radiology Aims and scope Submit manuscript

Abstract

Dual energy computed tomography (DECT), also known as spectral CT, refers to advanced CT technology that separately acquires high and low energy X-ray data to enable material characterization applications for substances that exhibit different energy-dependent x-ray absorption behavior. DECT supports a variety of post-processing applications that add value in routine clinical CT imaging, including material selective and virtual non-contrast images using two- and three-material decomposition algorithms, virtual monoenergetic imaging, and other material characterization techniques. Following a review of acquisition and post-processing techniques, we present a case-based approach to highlight the added value of DECT in common clinical scenarios. These scenarios include improved lesion detection, improved lesion characterization, improved ease of interpretation, improved prognostication, inherently more robust imaging protocols to account for unexpected pathology or suboptimal contrast opacification, length of stay reduction, reduced utilization by avoiding unnecessary follow-up examinations, and radiation dose reduction. A brief discussion of post-processing workflow approaches, challenges, and solutions is also included.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

CT:

Computed tomography

DE:

Dual energy

DECT:

Dual energy CT

HU:

Hounsfield Units

keV:

Kilo-electron volts

kVp:

Peak kilovoltage

VME:

Virtual monoenergetic

VNC:

Virtual non-contrast

VNCa:

Virtual non-calcium

PACS:

Picture archiving and communication system

References

  1. Hounsfield GN (1973) Computerized transverse axial scanning (tomography). 1. Description of system. Br J Radiol 46(552):1016–1022. https://doi.org/10.1259/0007-1285-46-552-1016

    Article  CAS  PubMed  Google Scholar 

  2. McCollough CH, Leng S, Yu L, Fletcher JG (2015) Dual- and multi-energy CT: principles, technical approaches, and clinical applications. Radiology 276(3):637–653. https://doi.org/10.1148/radiol.2015142631

    Article  PubMed  Google Scholar 

  3. Johnson TR (2012) Dual-energy CT: general principles. AJR Am J Roentgenol 199(5 Suppl):S3–S8. https://doi.org/10.2214/AJR.12.9116

    Article  PubMed  Google Scholar 

  4. Patino M, Prochowski A, Agrawal MD, Simeone FJ, Gupta R, Hahn PF, Sahani DV (2016) Material separation using dual-energy CT: current and emerging applications. Radiographics 36(4):1087–1105. https://doi.org/10.1148/rg.2016150220

    Article  PubMed  Google Scholar 

  5. Machida H, Tanaka I, Fukui R, Shen Y, Ishikawa T, Tate E, Ueno E (2016) Dual-energy spectral CT: various clinical vascular applications. Radiographics 36(4):1215–1232. https://doi.org/10.1148/rg.2016150185

    Article  PubMed  Google Scholar 

  6. Wortman JR, Sodickson AD (2018) Pearls, pitfalls, and problems in dual-energy computed tomography imaging of the body. Radiol Clin N Am 56(4):625–640. https://doi.org/10.1016/j.rcl.2018.03.007

    Article  PubMed  Google Scholar 

  7. Botsikas D, Triponez F, Boudabbous S, Hansen C, Becker CD, Montet X (2014) Incidental adrenal lesions detected on enhanced abdominal dual-energy CT: can the diagnostic workup be shortened by the implementation of virtual unenhanced images? Eur J Radiol 83(10):1746–1751. https://doi.org/10.1016/j.ejrad.2014.06.017

    Article  PubMed  Google Scholar 

  8. Wortman JR, Shyu JY, Dileo J, Uyeda JW, Sodickson AD (2020) Dual-energy CT for routine imaging of the abdomen and pelvis: radiation dose and image quality. Emerg Radiol 27(1):45–50. https://doi.org/10.1007/s10140-019-01733-9

    Article  PubMed  Google Scholar 

  9. Thomas C, Ketelsen D, Tsiflikas I, Reimann A, Brodoefel H, Claussen CD, Heuschmid M (2010) Dual-energy computed tomography: is there a penalty in image quality and radiation dose compared with single-energy computed tomography? J Comput Assist Tomogr 34(2):309–315. https://doi.org/10.1097/RCT.0b013e3181c9b9ff

    Article  PubMed  Google Scholar 

  10. Uhrig M, Simons D, Kachelriess M, Pisana F, Kuchenbecker S, Schlemmer HP (2016) Advanced abdominal imaging with dual energy CT is feasible without increasing radiation dose. Cancer Imaging 16(1):15. https://doi.org/10.1186/s40644-016-0073-5

    Article  PubMed  PubMed Central  Google Scholar 

  11. Duan X, Ananthakrishnan L, Guild JB, Xi Y, Rajiah P (2019) Radiation doses and image quality of abdominal CT scans at different patient sizes using spectral detector CT scanner: a phantom and clinical study. Abdom Radiol (NY). https://doi.org/10.1007/s00261-019-02247-1

  12. Sodickson A (2012) Strategies for reducing radiation exposure in multi-detector row CT. Radiol Clin N Am 50(1):1–14. https://doi.org/10.1016/j.rcl.2011.08.006

    Article  PubMed  Google Scholar 

  13. Alvarez RE, Macovski A (1976) Energy-selective reconstructions in X-ray computerized tomography. Phys Med Biol 21(5):733–744. https://doi.org/10.1088/0031-9155/21/5/002

    Article  CAS  PubMed  Google Scholar 

  14. Kalender WA, Perman WH, Vetter JR, Klotz E (1986) Evaluation of a prototype dual-energy computed tomographic apparatus. I. Phantom studies. Med Phys 13(3):334–339. https://doi.org/10.1118/1.595958

    Article  CAS  PubMed  Google Scholar 

  15. Maass C, Baer M, Kachelriess M (2009) Image-based dual energy CT using optimized precorrection functions: a practical new approach of material decomposition in image domain. Med Phys 36(8):3818–3829. https://doi.org/10.1118/1.3157235

    Article  PubMed  Google Scholar 

  16. Yu L, Christner JA, Leng S, Wang J, Fletcher JG, McCollough CH (2011) Virtual monochromatic imaging in dual-source dual-energy CT: radiation dose and image quality. Med Phys 38(12):6371–6379. https://doi.org/10.1118/1.3658568

    Article  PubMed  PubMed Central  Google Scholar 

  17. Albrecht MH, Vogl TJ, Martin SS, Nance JW, Duguay TM, Wichmann JL, De Cecco CN, Varga-Szemes A, van Assen M, Tesche C, Schoepf UJ (2019) Review of clinical applications for virtual monoenergetic dual-energy CT. Radiology 293(2):260–271. https://doi.org/10.1148/radiol.2019182297

    Article  PubMed  Google Scholar 

  18. Sun EX, Wortman JR, Uyeda JW, Lacson R, Sodickson AD (2019) Virtual monoenergetic dual-energy CT for evaluation of hepatic and splenic lacerations. Emerg Radiol 26(4):419–425. https://doi.org/10.1007/s10140-019-01687-y

    Article  PubMed  Google Scholar 

  19. Schabel C, Patel B, Harring S, Duvnjak P, Ramirez-Giraldo JC, Nikolaou K, Nelson RC, Farjat AE, Marin D (2018) Renal lesion characterization with spectral CT: determining the optimal energy for virtual monoenergetic reconstruction. Radiology 287(3):874–883. https://doi.org/10.1148/radiol.2018171657

    Article  PubMed  Google Scholar 

  20. Beer L, Toepker M, Ba-Ssalamah A, Schestak C, Dutschke A, Schindl M, Wressnegger A, Ringl H, Apfaltrer P (2019) Objective and subjective comparison of virtual monoenergetic vs. polychromatic images in patients with pancreatic ductal adenocarcinoma. Eur Radiol 29(7):3617–3625. https://doi.org/10.1007/s00330-019-06116-9

    Article  PubMed  PubMed Central  Google Scholar 

  21. Lenga L, Lange M, Arendt CT, Booz C, Yel I, Bodelle B, D'Angelo T, Hammerstingl RM, Huizinga NA, Vogl TJ, Martin SS, Albrecht MH (2019) Measurement reliability and diagnostic accuracy of virtual monoenergetic dual-energy CT in patients with colorectal liver metastases. Acad Radiol. https://doi.org/10.1016/j.acra.2019.09.020

  22. Forghani R, Levental M, Gupta R, Lam S, Dadfar N, Curtin HD (2015) Different spectral hounsfield unit curve and high-energy virtual monochromatic image characteristics of squamous cell carcinoma compared with nonossified thyroid cartilage. AJNR Am J Neuroradiol 36(6):1194–1200. https://doi.org/10.3174/ajnr.A4253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Bodanapally UK, Shanmuganathan K, Issa G, Dreizin D, Li G, Sudini K, Fleiter TR (2018) Dual-energy CT in hemorrhagic progression of cerebral contusion: overestimation of hematoma volumes on standard 120-kV images and rectification with virtual high-energy monochromatic images after contrast-enhanced whole-body imaging. AJNR Am J Neuroradiol 39(4):658–662. https://doi.org/10.3174/ajnr.A5558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bamberg F, Marcus R, Petersilka M, Nikolaou K, Becker CR, Reiser MF, Johnson T (2011) Challenges for computed tomography of overweight patients. Radiologe 51(5):366–371. https://doi.org/10.1007/s00117-010-2087-5

    Article  CAS  PubMed  Google Scholar 

  25. Meinel FG, Bischoff B, Zhang Q, Bamberg F, Reiser MF, Johnson TR (2012) Metal artifact reduction by dual-energy computed tomography using energetic extrapolation: a systematically optimized protocol. Investig Radiol 47(7):406–414. https://doi.org/10.1097/RLI.0b013e31824c86a3

    Article  Google Scholar 

  26. Pessis E, Campagna R, Sverzut JM, Bach F, Rodallec M, Guerini H, Feydy A, Drape JL (2013) Virtual monochromatic spectral imaging with fast kilovoltage switching: reduction of metal artifacts at CT. Radiographics 33(2):573–583. https://doi.org/10.1148/rg.332125124

    Article  PubMed  Google Scholar 

  27. Fletcher JG, Takahashi N, Hartman R, Guimaraes L, Huprich JE, Hough DM, Yu L, McCollough CH (2009) Dual-energy and dual-source CT: is there a role in the abdomen and pelvis? Radiol Clin N Am 47(1):41–57. https://doi.org/10.1016/j.rcl.2008.10.003

    Article  PubMed  Google Scholar 

  28. Zhang LJ, Peng J, Wu SY, Wang ZJ, Wu XS, Zhou CS, Ji XM, Lu GM (2010) Liver virtual non-enhanced CT with dual-source, dual-energy CT: a preliminary study. Eur Radiol 20(9):2257–2264. https://doi.org/10.1007/s00330-010-1778-7

    Article  PubMed  Google Scholar 

  29. Yang Y, Jia X, Deng Y, Chen J, Zhang LJ (2014) Can virtual non-enhanced CT be used to replace true non-enhanced CT for the detection of palpable cervical lymph nodes? A preliminary study. Jpn J Radiol 32(6):324–330. https://doi.org/10.1007/s11604-014-0308-y

    Article  PubMed  Google Scholar 

  30. De Cecco CN, Buffa V, Fedeli S, Luzietti M, Vallone A, Ruopoli R, Miele V, Rengo M, Paolantonio P, Maurizi Enrici M, Laghi A, David V (2010) Dual energy CT (DECT) of the liver: conventional versus virtual unenhanced images. Eur Radiol 20(12):2870–2875. https://doi.org/10.1007/s00330-010-1874-8

    Article  PubMed  Google Scholar 

  31. Masy M, Giordano J, Petyt G, Hossein-Foucher C, Duhamel A, Kyheng M, De Groote P, Fertin M, Lamblin N, Bervar JF, Remy J, Remy-Jardin M (2018) Dual-energy CT (DECT) lung perfusion in pulmonary hypertension: concordance rate with V/Q scintigraphy in diagnosing chronic thromboembolic pulmonary hypertension (CTEPH). Eur Radiol 28(12):5100–5110. https://doi.org/10.1007/s00330-018-5467-2

    Article  PubMed  Google Scholar 

  32. Gupta R, Phan CM, Leidecker C, Brady TJ, Hirsch JA, Nogueira RG, Yoo AJ (2010) Evaluation of dual-energy CT for differentiating intracerebral hemorrhage from iodinated contrast material staining. Radiology 257(1):205–211. https://doi.org/10.1148/radiol.10091806

    Article  PubMed  Google Scholar 

  33. Kellock TT, Nicolaou S, Kim SSY, Al-Busaidi S, Louis LJ, O'Connell TW, Ouellette HA, McLaughlin PD (2017) Detection of bone marrow edema in nondisplaced hip fractures: utility of a virtual noncalcium dual-energy CT application. Radiology 284(3):798–805. https://doi.org/10.1148/radiol.2017161063

    Article  PubMed  Google Scholar 

  34. Baffour FI, Glazebrook KN, Morris JM, Michalak GJ, Fletcher JG, Leng S, McCollough CH (2019) Clinical utility of virtual noncalcium dual-energy CT in imaging of the pelvis and hip. Skelet Radiol 48(12):1833–1842. https://doi.org/10.1007/s00256-019-03243-8

    Article  Google Scholar 

  35. Issa G, Mulligan M (2020) Dual energy CT can aid in the emergent differentiation of acute traumatic and pathologic fractures of the pelvis and long bones. Emerg Radiol 27:285–292. https://doi.org/10.1007/s10140-020-01753-w

    Article  PubMed  Google Scholar 

  36. Kosmala A, Weng AM, Heidemeier A, Krauss B, Knop S, Bley TA, Petritsch B (2018) Multiple myeloma and dual-energy CT: diagnostic accuracy of virtual noncalcium technique for detection of bone marrow infiltration of the spine and pelvis. Radiology 286(1):205–213. https://doi.org/10.1148/radiol.2017170281

    Article  PubMed  Google Scholar 

  37. Potter CA, Sodickson AD (2016) Dual-energy CT in emergency neuroimaging: added value and novel applications. Radiographics 36(7):2186–2198. https://doi.org/10.1148/rg.2016160069

    Article  PubMed  Google Scholar 

  38. Wiggins WF, Potter CA, Sodickson AD (2020) Dual-energy CT to differentiate small foci of intracranial hemorrhage from calcium. Radiology 294(1):129–138. https://doi.org/10.1148/radiol.2019190792

    Article  PubMed  Google Scholar 

  39. Bongartz T, Glazebrook KN, Kavros SJ, Murthy NS, Merry SP, Franz WB 3rd, Michet CJ, Veetil BM, Davis JM 3rd, Mason TG 2nd, Warrington KJ, Ytterberg SR, Matteson EL, Crowson CS, Leng S, McCollough CH (2015) Dual-energy CT for the diagnosis of gout: an accuracy and diagnostic yield study. Ann Rheum Dis 74(6):1072–1077. https://doi.org/10.1136/annrheumdis-2013-205095

    Article  CAS  PubMed  Google Scholar 

  40. Dalbeth N, Nicolaou S, Baumgartner S, Hu J, Fung M, Choi HK (2018) Presence of monosodium urate crystal deposition by dual-energy CT in patients with gout treated with allopurinol. Ann Rheum Dis 77(3):364–370. https://doi.org/10.1136/annrheumdis-2017-212046

    Article  CAS  PubMed  Google Scholar 

  41. Finkenstaedt T, Manoliou A, Toniolo M, Higashigaito K, Andreisek G, Guggenberger R, Michel B, Alkadhi H (2016) Gouty arthritis: the diagnostic and therapeutic impact of dual-energy CT. Eur Radiol 26(11):3989–3999. https://doi.org/10.1007/s00330-016-4237-2

    Article  PubMed  Google Scholar 

  42. Primak AN, Fletcher JG, Vrtiska TJ, Dzyubak OP, Lieske JC, Jackson ME, Williams JC Jr, McCollough CH (2007) Noninvasive differentiation of uric acid versus non-uric acid kidney stones using dual-energy CT. Acad Radiol 14(12):1441–1447. https://doi.org/10.1016/j.acra.2007.09.016

    Article  PubMed  PubMed Central  Google Scholar 

  43. Qu M, Ramirez-Giraldo JC, Leng S, Williams JC, Vrtiska TJ, Lieske JC, McCollough CH (2011) Dual-energy dual-source CT with additional spectral filtration can improve the differentiation of non-uric acid renal stones: an ex vivo phantom study. AJR Am J Roentgenol 196(6):1279–1287. https://doi.org/10.2214/AJR.10.5041

    Article  PubMed  PubMed Central  Google Scholar 

  44. Parakh A, Patino M, Muenzel D, Kambadakone A, Sahani DV (2018) Role of rapid kV-switching dual-energy CT in assessment of post-surgical local recurrence of pancreatic adenocarcinoma. Abdom Radiol (NY) 43(2):497–504. https://doi.org/10.1007/s00261-017-1390-2

    Article  Google Scholar 

  45. El Kayal N, Lennartz S, Ekdawi S, Holz J, Slebocki K, Haneder S, Wybranski C, Mohallel A, Eid M, Grull H, Persigehl T, Borggrefe J, Maintz D, Heneweer C (2019) Value of spectral detector computed tomography for assessment of pancreatic lesions. Eur J Radiol 118:215–222. https://doi.org/10.1016/j.ejrad.2019.07.016

    Article  PubMed  Google Scholar 

  46. Wortman JR, Uyeda JW, Fulwadhva UP, Sodickson AD (2018) Dual-energy CT for abdominal and pelvic trauma. Radiographics 38(2):586–602. https://doi.org/10.1148/rg.2018170058

    Article  PubMed  Google Scholar 

  47. Uyeda JW, Richardson IJ, Sodickson AD (2017) Making the invisible visible: improving conspicuity of noncalcified gallstones using dual-energy CT. Abdom Radiol (NY) 42(12):2933–2939. https://doi.org/10.1007/s00261-017-1229-x

    Article  Google Scholar 

  48. Yang CB, Zhang S, Jia YJ, Duan HF, Ma GM, Zhang XR, Yu Y, He TP (2017) Clinical application of dual-energy spectral computed tomography in detecting cholesterol gallstones from surrounding bile. Acad Radiol 24(4):478–482. https://doi.org/10.1016/j.acra.2016.10.006

    Article  PubMed  Google Scholar 

  49. Ratanaprasatporn L, Uyeda JW, Wortman JR, Richardson I, Sodickson AD (2018) Multimodality imaging, including dual-energy CT, in the evaluation of gallbladder disease. Radiographics 38(1):75–89. https://doi.org/10.1148/rg.2018170076

    Article  PubMed  Google Scholar 

  50. Soesbe TC, Lewis MA, Xi Y, Browning T, Ananthakrishnan L, Fielding JR, Lenkinski RE, Leyendecker JR (2019) A technique to identify isoattenuating gallstones with dual-layer spectral CT: an ex vivo phantom study. Radiology 292(2):400–406. https://doi.org/10.1148/radiol.2019190083

    Article  PubMed  Google Scholar 

  51. Diekhoff T, Hermann KG, Pumberger M, Hamm B, Putzier M, Fuchs M (2017) Dual-energy CT virtual non-calcium technique for detection of bone marrow edema in patients with vertebral fractures: a prospective feasibility study on a single- source volume CT scanner. Eur J Radiol 87:59–65. https://doi.org/10.1016/j.ejrad.2016.12.008

    Article  CAS  PubMed  Google Scholar 

  52. Booz C, Noske J, Lenga L, Martin SS, Yel I, Eichler K, Gruber-Rouh T, Huizinga N, Albrecht MH, Vogl TJ, Wichmann JL (2020) Color-coded virtual non-calcium dual-energy CT for the depiction of bone marrow edema in patients with acute knee trauma: a multireader diagnostic accuracy study. Eur Radiol 30(1):141–150. https://doi.org/10.1007/s00330-019-06304-7

    Article  CAS  PubMed  Google Scholar 

  53. Petritsch B, Kosmala A, Weng AM, Krauss B, Heidemeier A, Wagner R, Heintel TM, Gassenmaier T, Bley TA (2017) Vertebral compression fractures: third-generation dual-energy CT for detection of bone marrow edema at visual and quantitative analyses. Radiology 284(1):161–168. https://doi.org/10.1148/radiol.2017162165

    Article  PubMed  Google Scholar 

  54. Neuhaus V, Lennartz S, Abdullayev N, Grosse Hokamp N, Shapira N, Kafri G, Holz JA, Krug B, Hellmich M, Maintz D, Borggrefe J (2018) Bone marrow edema in traumatic vertebral compression fractures: diagnostic accuracy of dual-layer detector CT using calcium suppressed images. Eur J Radiol 105:216–220. https://doi.org/10.1016/j.ejrad.2018.06.009

    Article  PubMed  Google Scholar 

  55. Akisato K, Nishihara R, Okazaki H, Masuda T, Hironobe A, Ishizaki H, Shota K, Yamaguchi H, Funama Y (2020) Dual-energy CT of material decomposition analysis for detection with bone marrow edema in patients with vertebral compression fractures. Acad Radiol 27(2):227–232. https://doi.org/10.1016/j.acra.2019.02.015

    Article  PubMed  Google Scholar 

  56. Abdullayev N, Grosse Hokamp N, Lennartz S, Holz JA, Romman Z, Pahn G, Neuhaus V, Maintz D, Krug B, Borggrefe J (2019) Improvements of diagnostic accuracy and visualization of vertebral metastasis using multi-level virtual non-calcium reconstructions from dual-layer spectral detector computed tomography. Eur Radiol 29(11):5941–5949. https://doi.org/10.1007/s00330-019-06233-5

    Article  CAS  PubMed  Google Scholar 

  57. Javor D, Wressnegger A, Unterhumer S, Kollndorfer K, Nolz R, Beitzke D, Loewe C (2017) Endoleak detection using single-acquisition split-bolus dual-energy computer tomography (DECT). Eur Radiol 27(4):1622–1630. https://doi.org/10.1007/s00330-016-4480-6

    Article  CAS  PubMed  Google Scholar 

  58. Buffa V, Solazzo A, D’Auria V, Del Prete A, Vallone A, Luzietti M, Madau M, Grassi R, Miele V (2014) Dual-source dual-energy CT: dose reduction after endovascular abdominal aortic aneurysm repair. Radiol Med 119(12):934–941. https://doi.org/10.1007/s11547-014-0420-1

    Article  PubMed  Google Scholar 

  59. Yu Z, Mao T, Xu Y, Li T, Wang Y, Gao F, Sun W (2018) Diagnostic accuracy of dual-energy CT in gout: a systematic review and meta-analysis. Skelet Radiol 47(12):1587–1593. https://doi.org/10.1007/s00256-018-2948-y

    Article  Google Scholar 

  60. Hu HJ, Liao MY, Xu LY (2015) Clinical utility of dual-energy CT for gout diagnosis. Clin Imaging 39(5):880–885. https://doi.org/10.1016/j.clinimag.2014.12.015

  61. Morhard D, Fink C, Graser A, Reiser MF, Becker C, Johnson TR (2009) Cervical and cranial computed tomographic angiography with automated bone removal: dual energy computed tomography versus standard computed tomography. Investig Radiol 44(5):293–297. https://doi.org/10.1097/RLI.0b013e31819b6fba

    Article  Google Scholar 

  62. Watanabe Y, Uotani K, Nakazawa T, Higashi M, Yamada N, Hori Y, Kanzaki S, Fukuda T, Itoh T, Naito H (2009) Dual-energy direct bone removal CT angiography for evaluation of intracranial aneurysm or stenosis: comparison with conventional digital subtraction angiography. Eur Radiol 19(4):1019–1024. https://doi.org/10.1007/s00330-008-1213-5

    Article  PubMed  Google Scholar 

  63. Dunet V, Bernasconi M, Hajdu SD, Meuli RA, Daniel RT, Zerlauth JB (2017) Impact of metal artifact reduction software on image quality of gemstone spectral imaging dual-energy cerebral CT angiography after intracranial aneurysm clipping. Neuroradiology 59(9):845–852. https://doi.org/10.1007/s00234-017-1871-6

    Article  PubMed  Google Scholar 

  64. Mileto A, Marin D, Nelson RC, Ascenti G, Boll DT (2014) Dual energy MDCT assessment of renal lesions: an overview. Eur Radiol 24(2):353–362. https://doi.org/10.1007/s00330-013-3030-8

    Article  PubMed  Google Scholar 

  65. Kaza RK, Platt JF, Cohan RH, Caoili EM, Al-Hawary MM, Wasnik A (2012) Dual-energy CT with single- and dual-source scanners: current applications in evaluating the genitourinary tract. Radiographics 32(2):353–369. https://doi.org/10.1148/rg.322115065

    Article  PubMed  Google Scholar 

  66. Jilg CA, Drendel V, Bacher J, Pisarski P, Neeff H, Drognitz O, Schwardt M, Glasker S, Malinoc A, Erlic Z, Nunez M, Weber A, Azurmendi P, Schultze-Seemann W, Werner M, Neumann HP (2013) Autosomal dominant polycystic kidney disease: prevalence of renal neoplasias in surgical kidney specimens. Nephron Clin Pract 123(1-2):13–21. https://doi.org/10.1159/000351049

    Article  PubMed  Google Scholar 

  67. Glomski SA, Wortman JR, Uyeda JW, Sodickson AD (2018) Dual energy CT for evaluation of polycystic kidneys: a multi reader study of interpretation time and diagnostic confidence. Abdom Radiol (NY) 43(12):3418–3424. https://doi.org/10.1007/s00261-018-1674-1

    Article  Google Scholar 

  68. Bodanapally UK, Shanmuganathan K, Ramaswamy M, Tsymbalyuk S, Aarabi B, Parikh GY, Schwartzbauer G, Dreizin D, Simard JM, Ptak T, Li G, Liang Y, Fleiter TR (2019) Iodine-based dual-energy CT of traumatic hemorrhagic contusions: relationship to in-hospital mortality and short-term outcome. Radiology 292(3):730–738. https://doi.org/10.1148/radiol.2019190078

    Article  PubMed  Google Scholar 

  69. Tan CO, Lam S, Kuppens D, Bergmans RHJ, Parameswaran BK, Forghani R, Hu R, Daftari Besheli L, Goldstein JN, Thrall J, Lev M, Romero JM, Gupta R (2019) Spot and diffuse signs: quantitative markers of intracranial hematoma expansion at dual-energy CT. Radiology 290(1):179–186. https://doi.org/10.1148/radiol.2018180322

    Article  PubMed  Google Scholar 

  70. Fu F, Sun S, Liu L, Li J, Su Y, Li Y (2018) Iodine concentration: a new, important characteristic of the spot sign that predicts haematoma expansion. Eur Radiol 28(10):4343–4349. https://doi.org/10.1007/s00330-018-5415-1

    Article  PubMed  Google Scholar 

  71. Thieme SF, Johnson TR, Lee C, McWilliams J, Becker CR, Reiser MF, Nikolaou K (2009) Dual-energy CT for the assessment of contrast material distribution in the pulmonary parenchyma. AJR Am J Roentgenol 193(1):144–149. https://doi.org/10.2214/AJR.08.1653

    Article  PubMed  Google Scholar 

  72. Lu GM, Wu SY, Yeh BM, Zhang LJ (2010) Dual-energy computed tomography in pulmonary embolism. Br J Radiol 83(992):707–718. https://doi.org/10.1259/bjr/16337436

    Article  PubMed  PubMed Central  Google Scholar 

  73. Pontana F, Faivre JB, Remy-Jardin M, Flohr T, Schmidt B, Tacelli N, Pansini V, Remy J (2008) Lung perfusion with dual-energy multidetector-row CT (MDCT): feasibility for the evaluation of acute pulmonary embolism in 117 consecutive patients. Acad Radiol 15(12):1494–1504. https://doi.org/10.1016/j.acra.2008.05.018

    Article  PubMed  Google Scholar 

  74. Singh R, Nie RZ, Homayounieh F, Schmidt B, Flohr T, Kalra MK (2020) Quantitative lobar pulmonary perfusion assessment on dual-energy CT pulmonary angiography: applications in pulmonary embolism. Eur Radiol 30:2535–2542. https://doi.org/10.1007/s00330-019-06607-9

    Article  PubMed  Google Scholar 

  75. Thieme SF, Ashoori N, Bamberg F, Sommer WH, Johnson TR, Leuchte H, Becker A, Maxien D, Helck AD, Behr J, Reiser MF, Nikolaou K (2012) Severity assessment of pulmonary embolism using dual energy CT - correlation of a pulmonary perfusion defect score with clinical and morphological parameters of blood oxygenation and right ventricular failure. Eur Radiol 22(2):269–278. https://doi.org/10.1007/s00330-011-2267-3

    Article  PubMed  Google Scholar 

  76. Koike H, Sueyoshi E, Sakamoto I, Uetani M, Nakata T, Maemura K (2018) Comparative clinical and predictive value of lung perfusion blood volume CT, lung perfusion SPECT and catheter pulmonary angiography images in patients with chronic thromboembolic pulmonary hypertension before and after balloon pulmonary angioplasty. Eur Radiol 28(12):5091–5099. https://doi.org/10.1007/s00330-018-5501-4

    Article  PubMed  Google Scholar 

  77. Fulwadhva UP, Wortman JR, Sodickson AD (2016) Use of dual-energy ct and iodine maps in evaluation of bowel disease. Radiographics 36(2):393–406. https://doi.org/10.1148/rg.2016150151

    Article  PubMed  Google Scholar 

  78. George E, Wortman JR, Fulwadhva UP, Uyeda JW, Sodickson AD (2017) Dual energy CT applications in pancreatic pathologies. Br J Radiol 90(1080):20170411. https://doi.org/10.1259/bjr.20170411

    Article  PubMed  PubMed Central  Google Scholar 

  79. Yuan Y, Huang ZX, Li ZL, Song B, Deng LP (2012) The value of dual-source dual-energy CT with iodine overlay in the diagnosis of acute necrotizing pancreatitis. Sichuan Da Xue Xue Bao Yi Xue Ban 43(4):597–600

    PubMed  Google Scholar 

  80. Booz C, Noske J, Albrecht MH, Lenga L, Martin SS, Wichmann JL, Huizinga NA, Eichler K, Nour-Eldin NA, Vogl TJ, Yel I (2019) Traumatic bone marrow edema of the calcaneus: evaluation of color-coded virtual non-calcium dual-energy CT in a multi-reader diagnostic accuracy study. Eur J Radiol 118:207–214. https://doi.org/10.1016/j.ejrad.2019.07.023

    Article  PubMed  Google Scholar 

  81. Berland LL (2011) The American College of Radiology strategy for managing incidental findings on abdominal computed tomography. Radiol Clin N Am 49(2):237–243. https://doi.org/10.1016/j.rcl.2010.10.003

    Article  PubMed  Google Scholar 

  82. Wortman JR, Shyu JY, Fulwadhva UP, Sodickson AD (2019) Impact analysis of the routine use of dual-energy computed tomography for characterization of incidental renal lesions. J Comput Assist Tomogr 43(2):176–182. https://doi.org/10.1097/RCT.0000000000000828

    Article  PubMed  Google Scholar 

  83. Wortman JR, Bunch PM, Fulwadhva UP, Bonci GA, Sodickson AD (2016) Dual-energy CT of incidental findings in the abdomen: can we reduce the need for follow-up imaging? AJR Am J Roentgenol 207(4):W58–W68. https://doi.org/10.2214/AJR.16.16087

    Article  PubMed  Google Scholar 

  84. De Cecco CN, Muscogiuri G, Schoepf UJ, Caruso D, Wichmann JL, Cannao PM, Canstein C, Fuller SR, Snider L, Varga-Szemes A, Hardie AD (2016) Virtual unenhanced imaging of the liver with third-generation dual-source dual-energy CT and advanced modeled iterative reconstruction. Eur J Radiol 85(7):1257–1264. https://doi.org/10.1016/j.ejrad.2016.04.012

    Article  PubMed  Google Scholar 

  85. Soto JA, Park SH, Fletcher JG, Fidler JL (2015) Gastrointestinal hemorrhage: evaluation with MDCT. Abdom Imaging 40(5):993–1009. https://doi.org/10.1007/s00261-015-0365-4

    Article  PubMed  Google Scholar 

  86. Sun H, Hou XY, Xue HD, Li XG, Jin ZY, Qian JM, Yu JC, Zhu HD (2015) Dual-source dual-energy CT angiography with virtual non-enhanced images and iodine map for active gastrointestinal bleeding: image quality, radiation dose and diagnostic performance. Eur J Radiol 84(5):884–891. https://doi.org/10.1016/j.ejrad.2015.01.013

    Article  PubMed  Google Scholar 

  87. Sodickson, A.D., Driving CT developments the last mile: case examples of successful and somewhat less successful translations into clinical practice. In: Flohr TG, Lo JY, Gilat Schmidt T, editors. 2017. p. 101320S 2017.

Download references

Funding

Institutional research grant from Siemens on Dual Energy CT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aaron D. Sodickson.

Ethics declarations

Conflict of interest

Aaron Sodickson: PI of institutional research grant from Siemens on Dual Energy CT. Travel expenses from Siemens to speak at a Siemens users conference.

Andrew Primak: Research collaborations scientists employed by Siemens

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sodickson, A.D., Keraliya, A., Czakowski, B. et al. Dual energy CT in clinical routine: how it works and how it adds value. Emerg Radiol 28, 103–117 (2021). https://doi.org/10.1007/s10140-020-01785-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10140-020-01785-2

Keywords

Navigation