Skip to main content

Advertisement

Log in

Improvements of diagnostic accuracy and visualization of vertebral metastasis using multi-level virtual non-calcium reconstructions from dual-layer spectral detector computed tomography

  • Computed Tomography
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Objective

To evaluate feasibility and diagnostic performance of multi-level calcium suppression in spectral detector computed tomography (SDCT) for assessment of bone metastasis.

Materials and methods

Retrospective IRB-approved study on 21 patients who underwent SDCT (120 kV, reference mAs 116) and MRI. Thoracic and lumbar vertebrae (n = 357) were included and categorized as normal (n = 133) or metastatic (n = 203) based on MRI (STIR, T1w, ±contrast). The multi-level virtual non-calcium (VNCa) algorithm computes dynamic soft tissue/calcium pairs allowing for computation of different suppression index levels to address inter-individual variance of prevalent calcium composition weights. We computed images with low, medium, and high calcium suppression indices and compared them with conventional images (VNCa_low/med/high and conventional images (CI)). For quantitative image analysis, regions of interest were placed in normal and metastatic bone. Two readers reviewed the datasets independently in multiple sessions. They determined the presence of vertebral metastases on a per vertebra basis using a binary scale. Statistic assessment was performed using ANOVA with Tukey HSD, Student’s T test, and ROC analysis.

Results

Attenuation of both normal and metastatic bone was lower in VNCa images than that in conventional images (e.g., CI/VNCa_low, − 46.3 to 238.8 HU/343.3–60.2 HU; p ≤ 0.05). VNCa_low+med improved separation of normal and metastatic bone in ROC analysis (AUC, CI/VNCa_low/VNCa_med = 0.74/0.95/0.98; p ≤ 0.05). In subjective analysis, both sensitivity and specificity were clearly improved in VNCa_low as compared with CI (0.85/0.84 versus 0.78/0.82). Readers showed a good inter-rater reliability (kappa = 0.65).

Conclusions

Multi-level VNCa reconstructed from SDCT improve quantitative separation of normal and metastatic bone and subjective determination of bone metastases when using low to intermediate calcium suppression indices.

Key Points

Spectral detector CT allows for multi-level calcium suppression in CT images and low and medium calcium suppression indices improved separation of normal and metastatic bone.

Thus, multi-level calcium suppression allows to optimize image contrast in regard to dedicated pathologies.

Low-level virtual non-calcium images (index 25–50) improved diagnostic performance regarding detection of metastasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

CI:

Conventional images

CNR:

Contrast-to-noise ratio

DECT:

Dual-energy computed tomography

DSCT:

Dual-source computed tomography

MRI:

Magnetic resonance imaging

PACS:

Picture archiving and communication system

ROC:

Receiver operating characteristic

SBI:

Spectral base image

SDCT:

Spectral detector computed tomography

VNCa:

Virtual non-calcium images

References

  1. Hopper KD, Singapuri K, Finkel A (2000) Body CT and oncologic imaging. Radiology 215:27–40. https://doi.org/10.1148/radiology.215.1.r00ap1727

    Article  CAS  PubMed  Google Scholar 

  2. Heindel W, Gübitz R, Vieth V, Weckesser M, Schober O, Schäfers M (2014) The diagnostic imaging of bone metastases. Dtsch Arztebl Int 111:741–747. https://doi.org/10.3238/arztebl.2014.0741

  3. Borggrefe J, Neuhaus V, Le Blanc M et al (2018) Accuracy of iodine density thresholds for the separation of vertebral bone metastases from healthy-appearing trabecular bone in spectral detector computed tomography. Eur Radiol. https://doi.org/10.1007/s00330-018-5843-y

  4. Neuhaus V, Lennartz S, Abdullayev N et al (2018) Bone marrow edema in traumatic vertebral compression fractures: diagnostic accuracy of dual-layer detector CT using calcium suppressed images. Eur J Radiol 105:216–220. https://doi.org/10.1016/j.ejrad.2018.06.009

    Article  PubMed  Google Scholar 

  5. Kosmala A, Weng AM, Heidemeier A et al (2017) Multiple myeloma and dual-energy CT: diagnostic accuracy of virtual noncalcium technique for detection of bone marrow infiltration of the spine and pelvis. Radiology 0:170281. https://doi.org/10.1148/radiol.2017170281

    Article  Google Scholar 

  6. Petritsch B, Kosmala A, Weng AM et al (2017) Vertebral compression fractures: third-generation dual-energy CT for detection of bone marrow edema at visual and quantitative analyses. Radiology 284:161–168. https://doi.org/10.1148/radiol.2017162165

    Article  PubMed  Google Scholar 

  7. Zhang LJ, Wang ZJ, Lu L, Chen B, Lu GM (2011) Feasibility of gadolinium-enhanced dual energy CT pulmonary angiography: a pilot study in rabbits. Int J Cardiovasc Imaging 27:1069–1080. https://doi.org/10.1007/s10554-010-9755-4

  8. van Hamersvelt RW, Willemink MJ, de Jong PA et al (2017) Feasibility and accuracy of dual-layer spectral detector computed tomography for quantification of gadolinium: a phantom study. Eur Radiol 27:3677–3686. https://doi.org/10.1007/s00330-017-4737-8

    Article  PubMed  PubMed Central  Google Scholar 

  9. Mei K, Schwaiger BJ, Kopp FK et al (2017) Bone mineral density measurements in vertebral specimens and phantoms using dual-layer spectral computed tomography. Sci Rep 7:17519. https://doi.org/10.1038/s41598-017-17855-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Dareez NM, Dahlslett KH, Engesland E, Lindland ES (2017) Scaphoid fracture: bone marrow edema detected with dual-energy CT virtual non-calcium images and confirmed with MRI. Skeletal Radiol. https://doi.org/10.1007/s00256-017-2730-6

  11. Zbijewski W, Sisniega A, Stayman JW et al (2015) Dual-energy imaging of bone marrow edema on a dedicated multi-source cone-beam CT system for the extremities. Proc SPIE Int Soc Opt Eng. https://doi.org/10.1117/12.2082304

  12. Wang CK, Tsai JM, Chuang MT, Wang MT, Huang KY, Lin RM (2013) Bone marrow edema in vertebral compression fractures: detection with dual-energy CT. Radiology 269:525–533. https://doi.org/10.1148/radiol.13122577

  13. Reddy T, McLaughlin PD, Mallinson PI et al (2015) Detection of occult, undisplaced hip fractures with a dual-energy CT algorithm targeted to detection of bone marrow edema. Emerg Radiol 22:25–29. https://doi.org/10.1007/s10140-014-1249-6

    Article  CAS  PubMed  Google Scholar 

  14. Hua CH, Shapira N, Merchant TE, Klahr P, Yagil Y (2018) Accuracy of electron density, effective atomic number, and iodine concentration determination with a dual-layer dual-energy computed tomography system. Med Phys. https://doi.org/10.1002/mp.12903

  15. Sudarski S, Apfaltrer P, Nance JW Jr et al (2014) Objective and subjective image quality of liver parenchyma and hepatic metastases with virtual monoenergetic dual-source dual-energy CT reconstructions. An analysis in patients with gastrointestinal stromal tumor. Acad Radiol 21:514–522. https://doi.org/10.1016/j.acra.2014.01.001

  16. Große Hokamp N, Höink AJ, Doerner J et al (2017) Assessment of arterially hyper-enhancing liver lesions using virtual monoenergetic images from spectral detector CT: phantom and patient experience. Abdom Radiol (NY) 43:2066–2074. https://doi.org/10.1007/s00261-017-1411-1

    Article  Google Scholar 

  17. Hanley AJ, McNeil JB (1982) The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 143:29–36. https://doi.org/10.1148/radiology.143.1.7063747

    Article  CAS  PubMed  Google Scholar 

  18. Fleiss JL, Cohen J (1973) The equivalence of weighted kappa and the intraclass correlation coefficient as measures of reliability. Educ Psychol Meas 33:613–619. https://doi.org/10.1177/001316447303300309

    Article  Google Scholar 

  19. Cohen J (1960) A coefficient of agreement for nominal scales. Educ Psychol Meas 20:37–46. https://doi.org/10.1177/001316446002000104

    Article  Google Scholar 

  20. Kottner J, Audige L, Brorson S et al (2011) Guidelines for reporting reliability and agreement studies (GRRAS) were proposed. Int J Nurs Stud 48:661–671. https://doi.org/10.1016/j.ijnurstu.2011.01.016

    Article  PubMed  Google Scholar 

  21. McCollough CH, Leng S, Yu L, Fletcher JG (2015) Dual- and multi-energy CT: principles, technical approaches, and clinical applications. Radiology 276:637–653. https://doi.org/10.1148/radiol.2015142631

    Article  PubMed  Google Scholar 

  22. Flohr TG, McCollough CH, Bruder H et al (2006) First performance evaluation of a dual-source CT (DSCT) system. Eur Radiol 16:256–268. https://doi.org/10.1007/s00330-005-2919-2

    Article  PubMed  Google Scholar 

  23. Shefer E, Altman A, Behling R et al (2013) State of the art of CT detectors and sources: a literature review. Curr Radiol Rep 1:76–91. https://doi.org/10.1007/s40134-012-0006-4

    Article  Google Scholar 

  24. Carmi R, Naveh G, Altman A, Carmi R, Naveh G, Altman A (2005) Material separation with dual-layer CT. IEEE Nucl Sci Symp Conf Rec 4:1876–1878. https://doi.org/10.1109/NSSMIC.2005.1596697

    Article  Google Scholar 

  25. Sellerer T, Noël PB, Patino M et al (2018) Dual-energy CT: a phantom comparison of different platforms for abdominal imaging. Eur Radiol. https://doi.org/10.1007/s00330-017-5238-5

  26. Kelcz F, Joseph PM, Hilal SK (1979) Noise considerations in dual energy CT scanning. Med Phys 6:418–425. https://doi.org/10.1118/1.594520

    Article  CAS  PubMed  Google Scholar 

  27. Kalisz K, Rassouli N, Dhanantwari A, Jordan D, Rajiah P (2018) Noise characteristics of virtual monoenergetic images from a novel detector-based spectral CT scanner. Eur J Radiol 98:118–125. https://doi.org/10.1016/j.ejrad.2017.11.005

  28. Neuhaus V, Große Hokamp N, Abdullayev N et al (2017) Metal artifact reduction by dual-layer computed tomography using virtual monoenergetic images. Eur J Radiol 93:143–148. https://doi.org/10.1016/j.ejrad.2017.05.013

    Article  PubMed  Google Scholar 

  29. Große Hokamp N, Hellerbach A, Gierich A et al (2018) Reduction of artifacts caused by deep brain stimulating electrodes in cranial computed tomography imaging by means of virtual monoenergetic images, metal artifact reduction algorithms, and their combination. Invest Radiol 53:424–431. https://doi.org/10.1097/RLI.0000000000000460

    Article  PubMed  Google Scholar 

  30. Große Hokamp N, Salem J, Hesse A et al (2018) Low-dose characterization of kidney stones using spectral detector computed tomography: an ex vivo study. Invest Radiol 53:457–462. https://doi.org/10.1097/RLI.0000000000000468

    Article  CAS  PubMed  Google Scholar 

  31. Pelgrim GJ, van Hamersvelt RW, Willemink MJ et al (2017) Accuracy of iodine quantification using dual energy CT in latest generation dual source and dual layer CT. Eur Radiol 27:3904–3912. https://doi.org/10.1007/s00330-017-4752-9

    Article  PubMed  PubMed Central  Google Scholar 

  32. Yang HL, Liu T, Wang XM, Xu Y, Deng SM (2011) Diagnosis of bone metastases: a meta-analysis comparing18FDG PET, CT, MRI and bone scintigraphy. Eur Radiol 21:2604–2617. https://doi.org/10.1007/s00330-011-2221-4

  33. Ueno M, Aoki T, Murakami S et al (2018) CT temporal subtraction method for detection of sclerotic bone metastasis in the thoracolumbar spine. Eur J Radiol. https://doi.org/10.1016/j.ejrad.2018.07.017

  34. Akasaka T, Yakami M, Nishio M et al (2019) Detection of suspected brain infarctions on CT can be significantly improved with temporal subtraction images. Eur Radiol 29:759–769. https://doi.org/10.1007/s00330-018-5655-0

    Article  PubMed  Google Scholar 

  35. Kaup M, Wichmann JL, Scholtz JE et al (2016) Dual-energy CT–based display of bone marrow edema in osteoporotic vertebral compression fractures: impact on diagnostic accuracy of radiologists with varying levels of experience in correlation to MR imaging. Radiology 280:510–519. https://doi.org/10.1148/radiol.2016150472

    Article  PubMed  Google Scholar 

Download references

Funding

Part of this study have been funded under a research agreement between (i) University Hospitals Cleveland Medical Center/Case Western Reserve University and Philips Healthcare and (ii) University Hospital Cologne and Philips Healthcare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Große Hokamp.

Ethics declarations

Guarantor

The scientific guarantor of this publication is PD Dr. med. Jan Borggrefe.

Conflict of interest

The authors of this manuscript declare relationships with the following companies: NGH, DM, JB are on the speakers bureau of Philips Healthcare. ZR, GP are employees of Philips Healthcare.

Statistics and biometry

One of the authors has significant statistical expertise.

Informed consent

Written informed consent was waived by the Institutional Review Board.

Ethical approval

Institutional Review Board approval was obtained.

Methodology

• retrospective

• experimental

• performed at one institution

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 50 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdullayev, N., Große Hokamp, N., Lennartz, S. et al. Improvements of diagnostic accuracy and visualization of vertebral metastasis using multi-level virtual non-calcium reconstructions from dual-layer spectral detector computed tomography. Eur Radiol 29, 5941–5949 (2019). https://doi.org/10.1007/s00330-019-06233-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-019-06233-5

Keywords

Navigation