Skip to main content

Advertisement

Log in

Dual energy MDCT assessment of renal lesions: an overview

  • Urogenital
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

With the expansion of cross-sectional imaging, the number of renal lesions that are incidentally discovered has increased. Multidetector CT (MDCT) is the investigation of choice for characterising and staging renal lesions. Although a definitive diagnosis can be confidently posed for most of them, a number of renal lesions remain indeterminate following MDCT. Further imaging tests are therefore needed, with subsequent increase of healthcare costs, radiation exposure, and patient anxiety. By addressing most of the issues with conventional MDCT imaging, dual-energy MDCT can improve the diagnosis of renal lesions and, potentially, may represent a paradigm shift from a merely attenuation-based to a material-specific spectral imaging investigation. The purpose of this review is to provide an overview of current clinical applications of dual-energy CT in the evaluation of renal lesions.

Key Points

As MDCT expands, an increasing number of renal lesions are serendipitously discovered.

With conventional MDCT, technical issues affect the diagnosis of renal lesions.

Dual-energy CT addresses some of the drawbacks of conventional MDCT.

Dual-energy CT may represent a paradigm shift for renal lesions imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

HU:

Hounsfield units

kVp:

Kilovolt peak

MDCT:

Multidetector computed tomography

RCC:

Renal cell carcinoma

ROI:

Region of interest

References

  1. Kang SK, Chandarana H (2012) Contemporary imaging of the renal mass. Urol Clin N Am 39:161–170

    Article  Google Scholar 

  2. Israel GM, Silverman SG (2011) The incidental renal mass. Radiol Clin N Am 49:369–383

    Article  PubMed  Google Scholar 

  3. Israel GM, Silverman SG (2008) Management of the incidental renal mass. Radiology 249:16–31

    Article  PubMed  Google Scholar 

  4. Israel GM, Bosniak MA (2008) Pitfalls in renal mass evaluation and how to avoid them. Radiographics 28:1325–1338

    Article  PubMed  Google Scholar 

  5. Israel GM, Bosniak MA (2005) How I do it: evaluating renal masses. Radiology 236:441–450

    Article  PubMed  Google Scholar 

  6. Birnbaum BA, Jacobs JE, Ramchandani P (1996) Multiphasic renal CT: comparison of renal mass enhancement during the corticomedullary and nephrographic phases. Radiology 200:753–758

    CAS  PubMed  Google Scholar 

  7. Decastro GJ, McKiernan JM (2008) Epidemiology, clinical staging, and presentation of renal cell carcinoma. Urol Clin N Am 35:581–592

    Article  Google Scholar 

  8. Neville AM, Gupta RJ, Miller CM, Merkle EM, Paulson EK, Boll DT (2011) Detection of renal lesion enhancement with dual-energy multidetector CT. Radiology 259:173–183

    Article  PubMed  Google Scholar 

  9. Suh M, Coakley FV, Qayyum A, Yeh BM, Breiman SB, Lu Y (2003) Distinction of renal cell carcinomas from high-attenuation renal cysts at portal venous phase contrast-enhanced CT. Radiology 228:330–334

    Article  PubMed  Google Scholar 

  10. Goyal A, Sharma R, Bhalla AS, Gamanagatti S, Seth A (2013) Diffusion-weighted MRI in inflammatory renal lesions: all that glitters is not RCC! Eur Radiol 23:272–279

    Article  PubMed  Google Scholar 

  11. Karlo CA, Donati OF, Burger IA et al (2013) MR imaging of renal cortical tumours: qualitative and quantitative chemical shift imaging parameters. Eur Radiol 23:1738–1744

    Article  PubMed  Google Scholar 

  12. Birnbaum BA, Hindman N, Lee J et al (2007) Multidetector row CT attenuation measurements: assessment of intra- and interscanner variability with an anthropomorphic body CT phantom. Radiology 242:109–119

    Article  PubMed  Google Scholar 

  13. Birnbaum BA, Hindman N, Lee J et al (2007) Renal cyst pseudoenhancement: influence of multidetector CT reconstruction algorithm and scanner type in phantom model. Radiology 244:767–775

    Article  PubMed  Google Scholar 

  14. Chandarana H, Megibow AJ, Cohen BA et al (2011) Iodine quantification with dual energy CT: phantom study and preliminary experience with renal masses. AJR Am J Roentgenol 196:W693–W700

    Article  PubMed  Google Scholar 

  15. Jinzaki M, McTavish JD, Zou KH, Judy PF, Silverman SG (2004) Evaluation of small (≤ 3 cm) renal masses with MDCT: benefits of thin overlapping reconstructions. AJR Am J Roentgenol 183:1223–1228

    Article  Google Scholar 

  16. Graser A, Johnson TR, Hecht EM et al (2009) Dual energy CT in patients suspected of having renal masses: can virtual nonenhanced images replace true nonenhanced images? Radiology 252:433–440

    Article  PubMed  Google Scholar 

  17. Graser A, Johnson TR, Chandarana H, Macari M (2009) Dual energy CT: preliminary observations and potential clinical applications in the abdomen. Eur Radiol 19:13–23

    Article  PubMed  Google Scholar 

  18. Johnson TR, Krauss B, Sedlmair M et al (2007) Material differentiation by dual energy CT: initial experience. Eur Radiol 17:1510–1517

    Article  PubMed  Google Scholar 

  19. Ascenti G, Mazziotti S, Mileto A et al (2012) Dual-source dual energy CT evaluation of complex cystic renal masses. AJR Am J Roentgenol 199:1026–1034

    Article  PubMed  Google Scholar 

  20. Brown CL, Hartman RP, Dzyubak OP et al (2009) Dual energy CT iodine overlay technique for characterisation of renal masses as cyst or solid: a phantom feasibility study. Eur Radiol 19:1289–1295

    Article  CAS  PubMed  Google Scholar 

  21. Fletcher JG, Takahashi N, Hartman R et al (2009) Dual-energy and dual-source CT: is there a role in the abdomen and pelvis? Radiol Clin N Am 47:41–57

    Article  PubMed  Google Scholar 

  22. Graser A, Becker CR, Staehler M et al (2010) Single-phase dual energy CT allows for characterisation of renal masses as benign or malignant. Investig Radiol 45:399–405

    Google Scholar 

  23. Kaza R, Caoili EM, Cohan RH, Platt JF (2011) Distinguishing enhancing from nonenhancing renal lesions with fast kilovoltage-switching dual energy CT. AJR Am J Roentgenol 197:1375–1381

    Article  PubMed  Google Scholar 

  24. Ascenti G, Krauss B, Mazziotti S et al (2012) Dual-energy computed tomography (DECT) in renal masses: nonlinear versus linear blending. Acad Radiol 19:1186–1193

    Article  PubMed  Google Scholar 

  25. Ascenti G, Mileto A, Gaeta M, Blandino A, Mazziotti S, Scribano E (2013) Single-phase dual energy CT urography in the evaluation of haematuria. Clin Radiol 68:87–94

    Article  Google Scholar 

  26. Ascenti G, Mileto A, Krauss B et al (2013) Distinguishing enhancing from nonenhancing renal masses with dual-source dual energy CT: iodine quantification versus standard enhancement measurements. Eur Radiol 23:2288–2295

    Article  PubMed  Google Scholar 

  27. Song KD, Kim CK, Park BK, Kim B (2011) Utility of iodine overlay technique and virtual unenhanced images for the characterisation of renal masses by dual energy CT. AJR Am J Roentgenol 197:1076–1082

    Article  Google Scholar 

  28. Arndt N, Staehler M, Siegert S, Reiser MF, Graser A (2012) Dual energy CT in patients with polycystic kidney disease. Eur Radiol 22:2125–2129

    Article  PubMed  Google Scholar 

  29. Miller CM, Gupta RT, Paulson EK et al (2011) Effect of organ enhancement and habitus on estimation of unenhanced attenuation at contrast-enhanced dual-energy MDCT: concepts for individualized and organ-specific spectral iodine subtraction strategies. AJR Am J Roentgenol 196:W558–W564

    Article  PubMed  Google Scholar 

  30. Karlo C, Lauber A, Götti RP et al (2011) Dual energy CT with tin filter technology for the discrimination of renal lesion proxies containing blood, protein, and contrast-agent. An experimental phantom study. Eur Radiol 21:385–392

    Article  PubMed  Google Scholar 

  31. Mileto A, Mazziotti S, Gaeta M et al (2012) Pancreatic dual-source dual energy CT: is it time to discard unenhanced imaging? Clin Radiol 67:334–339

    Article  PubMed  Google Scholar 

  32. Ascenti G, Mazziotti S, Lamberto S et al (2011) Dual energy CT for detection of endoleaks after endovascular abdominal aneurysm repair: usefulness of coloured iodine overlay. AJR Am J Roentgenol 196:1408–1414

    Article  PubMed  Google Scholar 

  33. Petersilka M, Bruder H, Krauss B, Stierstorfer K, Flohr TG (2008) Technical principles of dual source CT. Eur J Radiol 68:362–368

    Article  PubMed  Google Scholar 

  34. Boll DT, Patil NA, Paulson EK et al (2009) Renal stone assessment with dual-energy multi-detector CT and advanced postprocessing techniques: improved characterisation of renal stone composition—pilot study. Radiology 250:813–820

    Article  PubMed  Google Scholar 

  35. Feuerlein S, Heye TJ, Bashir MR, Boll DT (2012) Iodine quantification using dual-energy multidetector computed tomography imaging: phantom study assessing the impact of iterative reconstruction schemes and patient habitus on accuracy. Investig Radiol 47:656–661

    Article  Google Scholar 

  36. Boll DT, Merkle EM, Paulson EK, Mirza RA, Fleiter TR (2008) Calcified vascular plaque specimens: assessment with cardiac dual-energy multidetector CT in anthropomorphically moving heart phantom. Radiology 249:119–126

    Article  PubMed  Google Scholar 

  37. Coursey CA, Nelson RC, Boll DT et al (2010) Dual-energy multidetector CT: how does it work, what can it tell us, and when can we use it in abdominopelvic imaging? Radiographics 30:1037–1055

    Article  PubMed  Google Scholar 

  38. Heye T, Nelson RC, Ho LM, Marin D, Boll DT (2012) Dual energy CT applications in the abdomen. AJR Am J Roentgenol 199:S64–S70

    Article  PubMed  Google Scholar 

  39. Boll DT, Patil NA, Paulson EK et al (2010) Focal cystic high-attenuation lesions: characterisation in renal phantom by using photon-counting spectral CT-improved differentiation of lesion composition. Radiology 254:270–276

    Article  PubMed  Google Scholar 

  40. Yu L, Leng S, McCollough CH (2012) Dual energy CT–based monochromatic imaging. AJR Am J Roentgenol 199:S9–S15

    Article  PubMed  Google Scholar 

  41. Silva AC, Morse BG, Hara AK, Paden RG, Hongo N, Pavlicek W (2011) Dual-energy (spectral) CT: applications in abdominal imaging. Radiographics 31:1031–1046

    Article  PubMed  Google Scholar 

  42. Fornaro J, Leschka S, Hibbeln D et al (2012) Dual- and multi-energy CT: approach to functional imaging. Insights Imaging 2:149–159

    Article  Google Scholar 

  43. Hartman R, Kawashima A, Takahashi N et al (2012) Applications of dual energy CT in urologic imaging: an update. Radiol Clin N Am 50:191–205

    Article  PubMed  Google Scholar 

  44. Qu M, Jaramillo-Alvarez G, Ramirez-Giraldo JC et al (2012) Urinary stone differentiation in patients with large body size using dual-energy dual-source computed tomography. Eur Radiol 23:1408–1414

    Article  PubMed  Google Scholar 

  45. Apel A, Fletcher JG, Fidler JL et al (2011) Pilot multi-reader study demonstrating potential for dose reduction in dual energy hepatic CT using non-linear blending of mixed kV image datasets. Eur Radiol 21:644–652

    Article  PubMed  Google Scholar 

  46. Kaza RK, Platt JF, Megibow AJ (2013) Dual energy CT of the urinary tract. Abdom Imaging 38:167–179

    Article  PubMed  Google Scholar 

  47. Kaza RK, Platt JF, Cohan RH, Caoili EM, Al-Hawary MM, Wasnik A (2012) Dual energy CT with single- and dual-source scanners: current applications in evaluating the genitourinary tract. Radiographics 32:353–369

    Article  PubMed  Google Scholar 

  48. Macari M, Bosniak MA (1999) Delayed CT to evaluate renal masses incidentally discovered at contrast-enhanced CT: demonstration of vascularity with deenhancement. Radiology 213:674–680

    Article  CAS  PubMed  Google Scholar 

  49. Leschka S, Stolzmann P, Baumüller S et al (2010) Performance of dual-energy CT with tin filter technology for the discrimination of renal cysts and enhancing masses. Acad Radiol 17:526–534

    Article  PubMed  Google Scholar 

  50. Ljungberg B, Cowan C, Hanbury DC, European Association of Urology Guideline Group et al (2010) EAU guidelines on renal cell carcinoma: the 2010 update. Eur Urol 58:398–406

    Article  PubMed  Google Scholar 

  51. Rosenkrantz AB, Sekhar A, Genega EM et al (2013) Prognostic implications of the magnetic resonance imaging appearance in papillary renal cell carcinoma. Eur Radiol 23:579–587

    Article  PubMed  Google Scholar 

  52. Solomon SB, Silverman SG (2010) Imaging in interventional oncology. Radiology 257:624–640

    Article  PubMed  Google Scholar 

  53. Kawamoto S, Permpongkosol S, Bluemke DA, Fishman EK, Solomon SB (2007) Sequential changes after radiofrequency ablation and cryoablation of renal neoplasms: role of CT and MR imaging. Radiographics 27:343–355

    Article  PubMed  Google Scholar 

  54. Schoepf UJ, Colletti PM (2012) New dimensions in imaging: the awakening of dual energy CT. AJR Am J Roentgenol 199:S1–S2

    Article  PubMed  Google Scholar 

  55. Henzler T, Fink C, Schoenberg SO, Schoepf UJ (2012) Dual-energy CT: radiation dose aspects. AJR Am J Roentgenol 199:S16–S25

    Article  PubMed  Google Scholar 

  56. Park J, Chandarana H, Macari M, Megibow AJ (2012) Dual-energy computed tomography applications in uroradiology. Curr Urol Rep 13:55–62

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel T. Boll.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mileto, A., Marin, D., Nelson, R.C. et al. Dual energy MDCT assessment of renal lesions: an overview. Eur Radiol 24, 353–362 (2014). https://doi.org/10.1007/s00330-013-3030-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-013-3030-8

Keywords

Navigation