Skip to main content

Advertisement

Log in

Architecting Branch Structure in Terpolymer of CO2, Propylene Oxide and Phthalic Anhydride: An Enhancement in Thermal and Mechanical Performances

  • Research Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Poly(propylene carbonate phthalate) (PPC-P) is a chemically modified poly(propylene carbonate) (PPC) biodegradable thermoplastic by introducing phthalic anhydride (PA) as the third monomer into the copolymerization of propylene oxide (PO) and CO2. To enhance the thermal and mechanical properties of PPC-P, a branching agent pyromellitic anhydride (PMDA) was introduced into the terpolymerization of PO, PA and CO2. The resulting copolymers with branched structure, named branched PPC-P, can be obtained using metal-free Lewis pair consisting of triethyl borane (TEB) and bis(triphenylphosphine)iminium chloride (PPNCl) as catalyst. The products obtained were analyzed by NMR spectroscopy and their thermal, mechanical properties and melt processability were evaluated by DSC, TGA, tensile test and melt flow index (MFI) measurement. The obtained branched PPC-P has a high molecular weight up to 156.0 kg·mol−1. It shows an increased glass transition temperature (Tg) higher than 50 °C and an enhanced tensile strength as high as 38.9 MPa. Noteworthily, the MFI value decreases obviously, indicative of an improved melt strength arising from the branched structure and high molecular weight. What is more, the branched PPC-P exhibits reasonable biodegradability, which demonstrates the great potential as a new green thermoplastic for the family of biodegradable plastics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Xu, Y.; Lin, L.; Xiao, M.; Wang, S.; Smith, A. T.; Sun, L.; Meng, Y. Synthesis and properties of CO2-based plastics: environmentally-friendly, energy-saving and biomedical polymeric materials. Prog. Polym. Sci. 2018, 80, 163–182.

    Article  CAS  Google Scholar 

  2. Lin, L. M.; Liang, J. X.; Xu, Y. H.; Wang, S. J.; Xiao, M.; Sun, L. Y.; Meng, Y. Z. Fully alternating sustainable polyesters from epoxides and cyclic anhydrides: economical and metal-free dual catalysis. Green Chem. 2019, 21, 2469–2477.

    Article  CAS  Google Scholar 

  3. Chisholm, M. H.; Navarro-Llobet, D.; Zhou, Z. P. Poly(propylene carbonate). 1. More about poly(propylene carbonate) formed from the copolymerization of propylene oxide and carbon dioxide employing a zinc glutarate catalyst. Macromolecules 2002, 35, 6494–6504.

    Article  CAS  Google Scholar 

  4. Yao, M. J.; Mai, F.; Deng, H.; Ning, N. Y.; Wang, K.; Fu, Q. A. Improved thermal stability and mechanical properties of poly(propylene carbonate) by reactive blending with maleic anhydride. J. Appl. Polym. Sci. 2011, 120, 3565–3573.

    Article  CAS  Google Scholar 

  5. Beckman, E. J. Polymer synthesis—making polymers from carbon dioxide. Science 1999, 283, 946–947.

    Article  CAS  Google Scholar 

  6. Luinstra, G. A. Poly(propylene carbonate), old copolymers of propylene oxide and carbon dioxide with new interests: catalysis and material properties. Polym. Rev. 2008, 48, 192–219.

    Article  CAS  Google Scholar 

  7. Meng, Q. Y.; Cheng, R. H.; Li, J. J.; Wang, T. T.; Liu, B. P. Copolymerization of CO2 and propylene oxide using ZnGA/DMC composite catalyst for high molecular weight poly(propylene carbonate). J. CO2Util. 2016, 16, 86–96.

    Article  CAS  Google Scholar 

  8. Inoue, S.; Koinuma, H.; Tsuruta, T. Copolymerization of carbon dioxide and epoxide. J. Polym. Sci., Part B: Polym. Lett. 1969, 7, 287–292.

    Article  CAS  Google Scholar 

  9. Ravanchi, M. T.; Sahebdelfar, S. Catalytic conversions of CO2 to help mitigate climate change: Recent process developments. Process Saf. Environ. Protect. 2021, 145, 172–194.

    Article  CAS  Google Scholar 

  10. Lu, X. B.; Ren, W. M.; Wu, G. P. CO2 copolymers from epoxides: catalyst activity, product selectivity, and stereochemistry control. Acc. Chem. Ree. 2012, 45, 1721–1735.

    Article  CAS  Google Scholar 

  11. Ree, M.; Bae, J. Y.; Jung, J. H.; Shin, T. J. A new copolymerization process leading to poly(propylene carbonate) with a highly enhanced yield from carbon dioxide and propylene oxide. J. Polym. Sci., Part A: Polym. Chem. 1999, 37, 1863–1876.

    Article  CAS  Google Scholar 

  12. Kim, G.; Ree, M.; Kim, H.; Kim, I. J.; Kim, J. R.; Lee, J. I. Biological affinity and biodegradability of poly(propylene carbonate) prepared from copolymerization of carbon dioxide with propylene oxide. Macromol. Res. 2008, 16, 473–480.

    Article  CAS  Google Scholar 

  13. Ang, R. R.; Sin, L. T.; Bee, S. T.; Tee, T. T.; Kadhum, A. A. H.; Rahmat, A. R.; Wasmi, B. A. A review of copolymerization of green house gas carbon dioxide and oxiranes to produce polycarbonate. J. Clean Prod. 2015, 102, 1–17.

    Article  CAS  Google Scholar 

  14. Tang, L.; Xiao, M.; Xu, Y.; Wang, S. J.; Meng, Y. Z. Zinc adipate/tertiary amine catalytic system: efficient synthesis of high molecular weight poly(propylene carbonate). J. Polym. Res. 2013, 20, 190.

    Article  CAS  Google Scholar 

  15. Gao, L. J.; Huang, M. Y.; Wu, Q. F.; Wan, X. D.; Chen, X. D.; Wei, X. X.; Yang, W. J.; Deng, R. L.; Wang, L. Y.; Feng, J. Y. Enhanced poly(propylene carbonate) with thermoplastic networks: a cross-linking role of maleic anhydride oligomer in CO2/PO copolymerization. Polymere 2019, 11, 1467.

    Article  CAS  Google Scholar 

  16. Cui, S. Y.; Li, L.; Wang, Q. Improved molecular chain constraint of poly(propylene carbonate) composites by the synergistic effect of poly(vinyl alcohol) and carbon nanotubes. Compos. Part B-Eng. 2020, 194, 108074.

    Article  CAS  Google Scholar 

  17. Hao, Y.; Ge, H.; Han, L.; Liang, H.; Zhang, H.; Dong, L. Thermal, mechanical, and rheological properties of poly(propylene carbonate) cross-linked with polyaryl polymethylene isocyanate. Polym. Bull. 2013, 70, 1991–2003.

    Article  CAS  Google Scholar 

  18. Qin, Y. S.; Ma, Q. W.; Wang, X. H.; Sun, J. Z.; Zhao, X. J.; Wang, F. S. Electron-beam irradiation on poly(propylene carbonate) in the presence of polyfunctional monomers. Polym. Degrad. Stabil. 2007, 92, 1942–1947.

    Article  CAS  Google Scholar 

  19. Cyriac, A.; Lee, S. H.; Lee, B. Y. Connection of polymer chains using diepoxide in CO2/propylene oxide copolymerizations. Polym. Chem. 2011, 2, 950–956.

    Article  CAS  Google Scholar 

  20. Feng, J. Y.; Gao, L. J.; Chen, B.; Wu, X. J.; Luo, Q. L.; Wu, C. Y.; Zheng, C. X.; Lin, L. Z.; Deng, S. L.; Huang, X. M. A one-step strategy for reinforced poly(propylene carbonate) with partial crosslinking via terpolymerization of CO2 and propylene oxide using triglycidyl isocyanurate. Chem. Lett. 2013, 42, 714–716.

    Article  CAS  Google Scholar 

  21. Paul, S.; Zhu, Y. Q.; Romain, C.; Brooks, R.; Saini, P. K.; Williams, C. K. Ring-opening copolymerization (ROCOP): synthesis and properties of polyesters and polycarbonates. Chem. Commun. 2015, 51, 6459–6479.

    Article  CAS  Google Scholar 

  22. Padmanaban, S.; Dharmalingam, S.; Yoon, S. A Zn-MOF-catalyzed terpolymerization of propylene oxide, CO2, and β-butyrolactone. Catalysts 2018, 8, 9.

    Article  CAS  Google Scholar 

  23. Tao, Y.; Wang, X.; Zhao, X.; Li, J.; Wang, F. Double propagation based on diepoxide, a facile route to high molecular weight poly(propylene carbonate). Polymer 2006, 47, 7368–7373.

    Article  CAS  Google Scholar 

  24. Song, P. F.; Wang, S. J.; Xiao, M.; Du, F. G.; Gan, L. Q.; Liu, G. Q.; Meng, Y. Z. Cross-linkable and thermally stable aliphatic polycarbonates derived from CO2, propylene oxide and maleic anhydride. J. Polym. Res. 2009, 16, 91–97.

    Article  CAS  Google Scholar 

  25. Liu, S.; Wang, J.; Huang, K.; Liu, Y.; Wu, W. Synthesis of poly(propylene-co-lactide carbonate) and hydrolysis of the terpolymer. Polym. Bull. 2011, 66, 327–340.

    Article  CAS  Google Scholar 

  26. Darensbourg, D. J.; Tsai, F. T. Ppstpolymerizotion functionalization of copolymers produced from carbon dioxide and 2-vinyloxirane: amphiphilic/water-soluble CO2-based polycarbonates. Macromolecules 2014, 47, 3806–3813.

    Article  CAS  Google Scholar 

  27. Darensbourg, D. J.; Wang, Y. Terpolymerization of propylene oxide and vinyl oxides with CO2: copolymer cross-linking and surface modification via thiol-ene click chemistry. Polym. Chem. 2015, 6, 1768–1776.

    Article  CAS  Google Scholar 

  28. Shi, L.; Lu, X. B.; Zhang, R.; Peng, X. J.; Zhang, C. Q.; Li, J. F.; Peng, X. M. Asymmetric alternating copolymerization and terpolymerization of epoxides with carbon dioxide at mild conditions. Macromolecules 2006, 39, 5679–5685.

    Article  CAS  Google Scholar 

  29. Li, B.; Zhang, R.; Lu, X. B. Stereochemistry control of the alternating copolymerization of CO2 and propylene oxide catalyzed by SalenCrX complexes. Macromolecules 2007, 40, 2303–2307.

    Article  CAS  Google Scholar 

  30. Ren, W. M.; Zhang, X.; Liu, Y.; Li, J. F.; Wang, H.; Lu, X. B. Highly active, bifunctional Co(III)-Salen catalyst for alternating copolymerization of CO2 with cyclohexene oxide and terpolymerization with aliphatic epoxides. Macromolecules 2010, 43, 1396–1402.

    Article  CAS  Google Scholar 

  31. Liu, Y.; Xiao, M.; Wang, S.; Xia, L.; Hang, D.; Cui, G.; Meng, Y. Mechanism studies of terpolymerization of phthalic anhydride, propylene epoxide, and carbon dioxide catalyzed by ZnGA. RSC Adv. 2014, 4, 9503–9508.

    Article  CAS  Google Scholar 

  32. Jeon, J. Y.; Eo, S. C.; Varghese, J. K.; Lee, B. Y. Copolymerization and terpolymerization of carbon dioxide/propylene oxide/phthalic anhydride using a (salen)Co(III) complex tethering four quaternary ammonium salts. Beilstein J. Org. Chem. 2014, 10, 1787–1795.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Song, P. F.; Xiao, M.; Du, F. G.; Wang, S. J.; Gan, L. Q.; Liu, G. Q.; Meng, Y. Z. Synthesis and properties of aliphatic polycarbonates derived from carbon dioxide, propylene oxide and maleic anhydride. J. Appl. Polym. Sci. 2008, 109, 4121–4129.

    Article  CAS  Google Scholar 

  34. Liang, J.; Ye, S.; Wang, W.; Fan, C.; Wang, S.; Han, D.; Liu, W.; Cui, Y.; Hao, L.; Xiao, M.; Meng, Y. Performance tailorable terpolymers synthesized from carbon dioxide, phthalic anhydride and propylene oxide using Lewis acid-base dual catalysts. J. CO2Util. 2021, 49, 101558.

    Article  CAS  Google Scholar 

  35. Gao, L.; Feng, J. A one-step strategy for thermally and mechanically reinforced pseudo-interpenetrating poly(propylene carbonate) networks by terpolymerization of CO2, propylene oxide and pyromellitic dianhydride. J. Mater. Chem. A 2013, 1, 3556–3560.

    Article  CAS  Google Scholar 

  36. Chen, X. G.; Wang, L. Y.; Feng, J. Y.; Huang, X. L.; Guo, X. Z.; Chen, J.; Xiao, Z. Y.; Liang, X. J.; Gao, L. J. Enhanced poly(propylene carbonate) with thermoplastic networks: a one-pot synthesis from carbon dioxide, propylene oxide, and a carboxylic dianhydride. Polymers 2018, 10, 552.

    Article  PubMed Central  CAS  Google Scholar 

  37. Gao, L. J.; Chen, X. G.; Liang, X. J.; Guo, X. Z.; Huang, X. L.; Chen, C. F.; Wan, X. D.; Deng, R. Y.; Wu, Q. F.; Wang, L. Y.; Feng, J. Y. A novel one-pot synthesis of poly(propylene carbonate) containing cross-linked networks by copolymerization of carbon dioxide, propylene oxide, maleic anhydride, and furfuryl glycidyl ether. Polymers 2019, 11, 881.

    Article  CAS  PubMed Central  Google Scholar 

  38. Ye, S. X.; Wang, W. J.; Liang, J. X.; Wang, S. J.; Xiao, M.; Meng, Y. Z. Metal-free approach for a one-pot construction of biodegradable block copolymers from epoxides, phthalic anhydride, and CO2. ACS Sustain. Chem. Eng. 2020, 8, 17860–17867.

    Article  CAS  Google Scholar 

  39. Zhang, D.; Boopathi, S. K.; Hadjichristidis, N.; Gnanou, Y.; Feng, X. Metal-free alternating copolymerization of CO2 with epoxides: fulfilling “green” synthesis and activity. J. Am. Chem. Soc. 2016, 138, 11117–11120.

    Article  CAS  PubMed  Google Scholar 

  40. Zhang, D. D.; Feng, X.; Gnanou, Y.; Huang, K. W. Theoretical mechanistic investigation into metal-free alternating copolymerization of CO2 and epoxides: the key role of triethylborane. Macromolecules 2018, 51, 5600–5607.

    Article  CAS  Google Scholar 

  41. Varghese, J. K.; Hadjichristidis, N.; Gnanou, Y.; Feng, X. Degradable poly(ethylene oxide) through metal-free copolymerization of ethylene oxide with L-lactide. Polym. Chem. 2019, 10, 3764–3771.

    Article  CAS  Google Scholar 

  42. Chen, Z.; Yang, J. L.; Lu, X. Y.; Hu, L. F.; Cao, X. H.; Wu, G. P.; Zhang, X. H. Triethyl borane-regulated selective production of polycarbonates and cyclic carbonates for the coupling reaction of CO2 with epoxides. Polym. Chem. 2019, 10, 3621–3628.

    Article  CAS  Google Scholar 

  43. Li, Y.; Zhang, Y. Y.; Hu, L. F.; Zhang, X. H.; Du, B. Y.; Xu, J. T. Carbon dioxide-based copolymers with various architectures. Prog. Polym. Sci. 2018, 82, 120–157.

    Article  CAS  Google Scholar 

  44. Zhang, J.; Wang, L.; Liu, S.; Kang, X.; Li, Z. A lewis pair as organocatalyst for one-pot synthesis of block copolymers from a mixture of epoxide, anhydride, and CO2. Macromolecules 2021, 54, 763–772.

    Article  CAS  Google Scholar 

  45. Chidara, V. K.; Boopathi, S. K.; Hadjichristidis, N.; Gnanou, Y.; Feng, X. S. Triethylborane-assisted synthesis of random and block poly(estercarbonate)s through one-pot terpolymerization of epoxides, CO2, and cyclic anhydrides. Macromolecules 2021, 54, 2711–2719.

    Article  CAS  Google Scholar 

  46. Duan, J. T.; Wang, J. J.; Feng, L. F.; Wang, L.; Gu, X. P. Pressure dependence of the CO2/propylene oxide copolymerization catalyzed by zinc glutarate. J. Appl. Polym. Sci. 2010, 118, 366–371.

    Article  CAS  Google Scholar 

  47. Darensbourg, D. J.; Mackiewicz, R. M.; Billodeaux, D. R. Pressure dependence of the carbon dioxide/cyclohexene oxide coupling reaction catalyzed by chromium salen complexes. optimization of the comonomer-alternating enchainment pathway. Organometallics 2005, 24, 144–148.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (No. 51673131) and the Fundamental Research Funds for the Central Universities (No. 171gjc37).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Min Xiao or Yue-Zhong Meng.

Additional information

Notes

The authors declare no competing financial interest.

Electronic Supplementary Information

10118_2022_2686_MOESM1_ESM.pdf

Architecting Branch Structure in Terpolymer of CO2, Propylene Oxide and Phthalic Anhydride: An Enhancement in Thermal and Mechanical Performances

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, WJ., Ye, SX., Liang, JX. et al. Architecting Branch Structure in Terpolymer of CO2, Propylene Oxide and Phthalic Anhydride: An Enhancement in Thermal and Mechanical Performances. Chin J Polym Sci 40, 462–468 (2022). https://doi.org/10.1007/s10118-022-2686-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-022-2686-4

Keywords

Navigation