Skip to main content
Log in

Zinc adipate/tertiary amine catalytic system: efficient synthesis of high molecular weight poly(propylene carbonate)

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

The copolymerization of carbon dioxide and propylene oxide to generate poly (propylene carbonate) (PPC) were efficiently catalyzed by zinc adipate (ZnAA) in the presence of various tertiary amines as cocatalyst. The influences of temperature, pressure as well as cocatalyst concentration on the copolymerization were studied. The ZnAA/4,4′-methylenebis (N,N-dimethylaniline) composite catalyst shows reasonable high polymer productivity (>280 g polymer/g zinc), high selectivity (>95 %, PPC/cyclic carbonate), especially considerable high molecular weight (Mn > 250 k). Because of the high molecular weight, the as-prepared PPC exhibits apparently improved thermal properties as contrast to the one reported elsewhere previously. Furthermore, the effects of the steric and electronic properties of various tertiary amine derivatives on cocatalytic performance have also been discussed. The experimental results suggest that the tertiary amine cocatalysts with the rigid and bulky aromatic structure are more favorable for the copolymerization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 2
Scheme 3

Similar content being viewed by others

References

  1. Beckman EJ (1999) Perspectives: polymer synthesis, making polymers from carbon dioxide. Science (Washington, D C) 283(5404):946–947

    Article  CAS  Google Scholar 

  2. Inoue S, Koinuma H, Tsuruta T (1969) Copolymerization of carbon dioxide and epoxide. J Polym Sci Polym Lett Ed 7(4):287–292

    Article  CAS  Google Scholar 

  3. Inoue S, Koinuma H, Tsuruta T (1969) Copolymerization of carbon dioxide and epoxide with organometallic compounds. Makromol Chem 130:210–220

    Article  CAS  Google Scholar 

  4. Darensbourg DJ, Wildeson JR, Yarbrough JC, Reibenspies JH (2000) Bis 2,6-difluorophenoxide dimeric complexes of zinc and cadmium and their phosphine adducts: lessons learned relative to carbon dioxide/cyclohexene oxide alternating copolymerization processes catalyzed by zinc phenoxides. J Am Chem Soc 122(50):12487–12496

    Article  CAS  Google Scholar 

  5. Allen SD, Moore DR, Lobkovsky EB, Coates GW (2002) High-activity, single-site catalysts for the alternating copolymerization of CO2 and propylene oxide. J Am Chem Soc 124(48):14284–14285

    Article  CAS  Google Scholar 

  6. Qin Z, Thomas CM, Lee S, Coates GW (2003) Cobalt-based complexes for the copolymerization of propylene oxide and CO2: active and for polycarbonate synthesis. Angew Chem Int Ed 42(44):5484–5487

    Article  CAS  Google Scholar 

  7. Cohen CT, Chu T, Coates GW (2005) Cobalt catalysts for the alternating copolymerization of propylene oxide and carbon dioxide: combining high activity and selectivity. J Am Chem Soc 127(31):10869–10878

    Article  CAS  Google Scholar 

  8. Darensbourg DJ, Yarbrough JC (2002) Mechanistic aspects of the copolymerization reaction of carbon dioxide and epoxides, using a chiral salen chromium chloride catalyst. J Am Chem Soc 124(22):6335–6342

    Article  CAS  Google Scholar 

  9. Darensbourg DJ, Phelps AL (2005) Effective, selective coupling of propylene oxide and carbon dioxide to poly(propylene carbonate) using (salen)CrN3 catalysts. Inorg Chem 44(13):4622–4629

    Article  CAS  Google Scholar 

  10. Cohen CT, Coates GW (2006) Alternating copolymerization of propylene oxide and carbon dioxide with highly efficient and selective (salen)Co(III) catalysts: effect of ligand and cocatalyst variation. J Polymer Sci, Part A: Polymer Chem 44(17):5182–5191

    Article  CAS  Google Scholar 

  11. Wu G-P, Wei S-H, Ren W-M, Lu X-B, Xu T-Q, Darensbourg DJ (2011) Perfectly alternating copolymerization of CO2 and epichlorohydrin using cobalt(III)-based catalyst systems. J Am Chem Soc 133(38):15191–15199

    Article  CAS  Google Scholar 

  12. Darensbourg DJ, Poland RR, Strickland AL (2012) (Salan)CrCl, an effective catalyst for the copolymerization and terpolymerization of epoxides and carbon dioxide. J Polymer Sci, Part A: Polymer Chem 50(1):127–133

    Article  CAS  Google Scholar 

  13. Kember MR, Knight PD, Reung PTR, Williams CK (2009) Highly active dizinc catalyst for the copolymerization of carbon dioxide and cyclohexene oxide at one atmosphere pressure. Angew Chem Int Ed 48(5):931–933

    Article  CAS  Google Scholar 

  14. Jutz F, Buchard A, Kember MR, Fredriksen SB, Williams CK (2011) Mechanistic investigation and reaction kinetics of the low-pressure copolymerization of cyclohexene oxide and carbon dioxide catalyzed by a dizinc complex. J Am Chem Soc 133(43):17395–17405

    Article  CAS  Google Scholar 

  15. Ree M, Hwang Y, Kim J-S, Kim H, Kim G, Kim H (2006) New findings in the catalytic activity of zinc glutarate and its application in the chemical fixation of CO2 into polycarbonates and their derivatives. Catal Today 115(1–4):134–145

    Article  CAS  Google Scholar 

  16. Zhu Q, Meng YZ, Tjong SC, Zhao XS, Chen YL (2002) Thermally stable and high molecular weight poly(propylene carbonate)s from carbon dioxide and propylene oxide. Polym Int 51(10):1079–1085

    Article  CAS  Google Scholar 

  17. Meng YZ, Du LC, Tiong SC, Zhu Q, Hay AS (2002) Effects of the structure and morphology of zinc glutarate on the fixation of carbon dioxide into polymer. J Polymer Sci, Part A: Polymer Chem 40(21):3579–3591

    Article  CAS  Google Scholar 

  18. Kim I, Yi MJ, Byun SH, Park DW, Kim BU, Ha CS (2005) Biodegradable polycarbonate synthesis by copolymerization of carbon dioxide with epoxides using a heterogeneous zinc complex. Macromol Symp 224:181–191, Bio-Based Polymers

    Article  CAS  Google Scholar 

  19. Sun X-K, Zhang X-H, Liu F, Chen S, Du B-Y, Wang Q, Fan Z-Q, Qi G-R (2008) Alternating copolymerization of carbon dioxide and cyclohexene oxide catalyzed by silicon dioxide/Zn-CoIII double metal cyanide complex hybrid catalysts with a nanolamellar structure. J Polymer Sci, Part A: Polymer Chem 46(9):3128–3139

    Article  CAS  Google Scholar 

  20. Liu B, Zhao X, Wang X, Wang F (2001) Copolymerization of carbon dioxide and propylene oxide with Ln(CCl3COO)3-based catalyst: the role of rare-earth compound in the catalytic system. J Polymer Sci, Part A: Polymer Chem 39(16):2751–2754

    Article  Google Scholar 

  21. Quan Z, Wang X, Zhao X, Wang F (2003) Copolymerization of CO2 and propylene oxide under rare earth ternary catalyst: design of ligand in yttrium complex. Polymer 44(19):5605–5610

    Article  CAS  Google Scholar 

  22. Dong Y, Wang X, Zhao X, Wang F (2012) Facile synthesis of poly(ether carbonate)s via copolymerization of CO2 and propylene oxide under combinatorial catalyst of rare earth ternary complex and double metal cyanide complex. J Polymer Sci, Part A: Polymer Chem 50(2):362–370

    Article  CAS  Google Scholar 

  23. Kim J-S, Kim H, Yoon J, Heo K, Ree M (2005) Synthesis of zinc glutarates with various morphologies using an amphiphilic template and their catalytic activities in the copolymerization of carbon dioxide and propylene oxide. J Polymer Sci, Part A: Polymer Chem 43(18):4079–4088

    Article  CAS  Google Scholar 

  24. Wang JT, Shu D, Xiao M, Meng YZ (2006) Copolymerization of carbon dioxide and propylene oxide using zinc adipate as catalyst. J Appl Polym Sci 99(1):200–206

    Article  CAS  Google Scholar 

  25. Ree M, Bae JY, Jung JH, Shin TJ (1999) A new copolymerization process leading to poly(propylene carbonate) with a highly enhanced yield from carbon dioxide and propylene oxide. J Polymer Sci, Part A: Polymer Chem 37(12):1863–1876

    Article  CAS  Google Scholar 

  26. Darensbourg DJ, Mackiewicz RM (2005) Role of the cocatalyst in the copolymerization of CO2 and cyclohexene oxide utilizing chromium salen complexes. J Am Chem Soc 127(40):14026–14038

    Article  CAS  Google Scholar 

  27. Motika SA, Pickering TL, Rokicki A, Stein BK (1991) Catalyst for the copolymerization of epoxides with CO2. US Patent, Application number: 19900513325 19900420

  28. Kim JS, Ree M, Lee SW, Oh W, Baek S, Lee B, Shin TJ, Kim KJ, Kim B, Lüning J (2003) NEXAFS spectroscopy study of the surface properties of zinc glutarate and its reactivity with carbon dioxide and propylene oxide. J Catal 218(2):386–395

    Article  CAS  Google Scholar 

  29. Darensbourg DJ, Yarbrough JC, Ortiz C, Fang CC (2003) Comparative kinetic studies of the copolymerization of cyclohexene oxide and propylene oxide with carbon dioxide in the presence of chromium salen derivatives. In situ FTIR measurements of copolymer vs cyclic carbonate production. J Am Chem Soc 125(25):7586–7591

    Article  CAS  Google Scholar 

  30. Luinstra GA, Haas GR, Molnar F, Bernhart V, Eberhardt R, Rieger B (2005) On the formation of aliphatic polycarbonates from epoxides with chromium(III) and aluminum(III) metal–salen complexes. Chem Eur J 11(21):6298–6314. doi:10.1002/chem.200500356

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the China High Tech Development 863 Program (2009AA034900,2009AA03Z340),Guangdong Province Universities and Colleges Pearl River Scholar Funded Scheme (2010), Guangdong Province Sci & Tech Bureau (Key Strategic Project Grant No. 2008A080800024, 10151027501000096),and the Fundamental Research Funds for the Central Universities for financial support of this work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Min Xiao or Yuezhong Meng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tang, L., Xiao, M., Xu, Y. et al. Zinc adipate/tertiary amine catalytic system: efficient synthesis of high molecular weight poly(propylene carbonate). J Polym Res 20, 190 (2013). https://doi.org/10.1007/s10965-013-0190-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-013-0190-9

Keywords

Navigation