Skip to main content
Log in

Efficacy of photobiomodulation therapy on healing of ionizing irradiated bone: a systematic review of in vivo animal studies

  • Review Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

This systematic review aimed to answer the research focused question: What are the effects of photobiomodulation (PBM) therapy on bone healing after ionizing irradiation in animal models? The EMBASE, LILACS, LIVIVO, PubMed, Scopus, and Web of Science databases, including gray literature, were searched using the following keywords: "Head and Neck Neoplasms"; "Ionizing Radiation"; "Low-Level Light Therapy"; and "Bone regeneration", focusing on the primary studies that assessed the effects of PBM therapy on animal models of irradiated bone. Six studies have met the eligibility criteria and presented an overall regular quality according to the risk of bias assessment tools. All the studies utilized rat animal model and near-infrared laser PBM at low power output setting. Most of the studies showed increased new bone formation, osteocytes, osteoblasts, and vascularization networking, as a result of PBM therapy. However, only one out of the six studies has not shown any differences in bone healing in both lased and non-lased animal groups. Nevertheless, PBM therapy is a potential tool to improve bone healing induced by ionizing radiation. However, due to the scarce number of studies and the great variability of laser parameters and treatment protocols, a clear conclusion cannot be drawn. Hence, extensive preclinical in vivo studies are warranted to ensure these beneficial effects have been addressed prior to translational clinical trials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Nabil S, Samman N (2011) Incidence and prevention of osteoradionecrosis after dental extraction in irradiated patients: a systematic review. Int J Oral Maxillofac Surg 40:229–243. https://doi.org/10.1016/j.ijom.2010.10.005

    Article  CAS  PubMed  Google Scholar 

  2. Jawad H, Hodson NA, Nixon PJ (2015) A review of dental treatment of head and neck cancer patients, before, during and after radiotherapy: Part 1. Br Dent J 218:65–68. https://doi.org/10.1038/sj.bdj.2015.28

    Article  CAS  PubMed  Google Scholar 

  3. Beech NM, Porceddu S, Batstone M (2017) Radiotherapy-associated dental extractions and osteoradionecrosis. Head Neck 39:128–132. https://doi.org/10.1002/hed.24553

    Article  PubMed  Google Scholar 

  4. Koga DH, Salvajoli JV, Alves FA (2008) Dental extractions and radiotherapy in head and neck oncology: review of the literature. Oral Dis 14:40–44. https://doi.org/10.1016/j.tripleo.2008.01.007

    Article  CAS  PubMed  Google Scholar 

  5. Wahl MJ (2006) Osteoradionecrosis prevention myths. Int J Radiat Oncol Biol Phys 64:661–669. https://doi.org/10.1016/j.ijrobp.2005.10.021

    Article  PubMed  Google Scholar 

  6. Desmons S, Heger M, Delfosse C, Falgayrac G, Sarrazin T, Delattre C, Catros S, Mordon S, Penel G (2009) A preliminary investigation into the effects of X-ray radiation on superficial cranial vascularization. Calcif Tissue Int 84:379–387. https://doi.org/10.1007/s00223-009-9217-y

    Article  CAS  PubMed  Google Scholar 

  7. Oliveira SV, Vellei RS, Heguedusch D, Domaneschi C, Costa C, Gallo CB (2021) Radiographic analysis of the management of tooth extractions in head and neck-irradiated patients: a case series. Imaging Sci Dent 51:323–328. https://doi.org/10.5624/isd.20200333

    Article  PubMed  PubMed Central  Google Scholar 

  8. Bayat M, Virdi A, Jalalifirouzkouhi R, Rezaei F (2018) Comparison of effects of LLLT and LIPUS on fracture healing in animal models and patients: a systematic review. Prog Biophys Mol Biol 132:3–22. https://doi.org/10.1016/j.pbiomolbio.2017.07.004

    Article  PubMed  Google Scholar 

  9. Agas D, Hanna R, Benedicenti S, De Angelis N, Sabbieti MG, Amaroli A (2021) Photobiomodulation by near-infrared 980-nm wavelengths regulates pre-osteoblast proliferation and viability through the PI3K/Akt/Bcl-2 pathway. Int J Mol Sci 22(14):7586. https://doi.org/10.3390/ijms22147586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kulkarni S, Meer M, George R (2019) Efficacy of photobiomodulation on accelerating bone healing after tooth extraction: a systematic review. Lasers Med Sci 34:685–692. https://doi.org/10.1007/s10103-018-2641-3

    Article  PubMed  Google Scholar 

  11. Rosero KAV, Sampaio RMF, Deboni MCZ, Corrêa L, Marques MM, Ferraz EP et al (2020) Photobiomodulation as an adjunctive therapy for alveolar socket preservation: a preliminary study in humans. Lasers Med Sci 35:1711–1720. https://doi.org/10.1007/s10103-020-02962-y

    Article  PubMed  Google Scholar 

  12. Romão MMA, Marques MM, Cortes ARG, Horliana ACRT, Moreira MS, Lascala CA (2015) Micro-computed tomography and histomorphometric analysis of human alveolar bone repair induced by laser phototherapy: a pilot study. Int J Oral Maxillofac Surg 44:1521–1528. https://doi.org/10.1016/j.ijom.2015.08.989

    Article  PubMed  Google Scholar 

  13. Alves FAM, Marques MM, Cavalcanti SCSXB, Pedroni ACF, Ferraz EP, Miniello TG, Moreira MS, Jerônimo T, Deboni MCZ, Lascala CA (2020) Photobiomodulation as adjunctive therapy for guided bone regeneration. A microCT study in osteoporotic rat model. J Photochem Photobiol B 213:112053. https://doi.org/10.1016/j.jphotobiol.2020

    Article  CAS  PubMed  Google Scholar 

  14. Hanna R, Dalvi S, Amaroli A, De Angelis N, Benedicenti S (2021) Effects of photobiomodulation on bone defects grafted with bone substitutes: a systematic review of in vivo animal studies. J Biophotonics 14:e202000267. https://doi.org/10.1002/jbio.202000267

    Article  PubMed  Google Scholar 

  15. Noba C, Mello-Moura ACV, Gimenez T, Tedesco TK, Moura-Netto C (2018) Laser for bone healing after oral surgery: systematic review. Lasers Med Sci 33:667–674. https://doi.org/10.1007/s10103-017-2400-x

    Article  PubMed  Google Scholar 

  16. Davoudi A, Amrolahi M, Khaki H (2018) Effects of laser therapy on patients who underwent rapid maxillary expansion; a systematic review. Lasers Med Sci 33:1387–1395. https://doi.org/10.1007/s10103-018-2545-2

    Article  PubMed  Google Scholar 

  17. Skondra FG, Koletsi D, Eliades T, Farmakis ETR (2018) The effect of low-level laser therapy on bone healing after rapid maxillary expansion: a systematic review. Photomed Laser Surg 36:61–71. https://doi.org/10.1089/pho.2017.4278

    Article  PubMed  Google Scholar 

  18. Fujihara NA, Hiraki KR, Marques MM (2006) Irradiation at 780 nm increases proliferation rate of osteoblasts independently of dexamethasone presence. Lasers Surg Med 38:332–336. https://doi.org/10.1002/lsm.20298

    Article  PubMed  Google Scholar 

  19. Pinheiro ALB, Gerbi MEMM (2006) Photoengineering of bone repair processes. Photomed Laser Surg 24:169–178. https://doi.org/10.1089/pho.2006.24.169

    Article  CAS  PubMed  Google Scholar 

  20. Hanna R, Agas D, Benedicenti S, Ferrando S, Laus F, Cuteri V, Lacava G, Sabbieti MG, Amaroli A (2019) A comparative study between the effectiveness of 980 nm photobiomodulation delivered by hand-piece with Gaussian vs. flat-top profiles on osteoblasts maturation. Front Endocrinol (Lausanne) 10:92. https://doi.org/10.3389/fendo.2019.00092

    Article  PubMed  Google Scholar 

  21. Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD et al (2021) The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ 372:n71. https://doi.org/10.1136/bmj.n71

    Article  PubMed  PubMed Central  Google Scholar 

  22. Hooijmans CR, Rovers MM, de Vries RB, Leenaars M, Ritskes-Hoitinga M, Langendam MW (2014) SYRCLE’s risk of bias tool for animal studies. BMC Med Res Methodol 14:43. https://doi.org/10.1186/1471-2288-14-43

    Article  PubMed  PubMed Central  Google Scholar 

  23. Macleod MR, O’Collins T, Howells DW, Donnan GA (2004) Pooling of animal experimental data reveals influence of study design and publication bias. Stroke 35:1203–8. https://doi.org/10.1161/01.STR.0000125719.25853.20

    Article  PubMed  Google Scholar 

  24. Abramoff MMF, Pereira MD, De Seixas Alves MT, Segreto RA, Guilherme A, Ferreira LM (2014) Low-level laser therapy on bone repair of rat tibiae exposed to ionizing radiation. Photomed Laser Surg 32:618–626. https://doi.org/10.1089/pho.2013.3692

    Article  Google Scholar 

  25. Batista JD, Zanetta-Barbosa D, Cardoso SV, Dechichi P, Rocha FS, Pagnoncelli RM (2014) Effect of low-level laser therapy on repair of the bone compromised by radiotherapy. Lasers Med Sci 29:1913–1918. https://doi.org/10.1007/s10103-014-1602-8

    Article  PubMed  Google Scholar 

  26. Da Cunha SS, Sarmento V, Ramalho LMP, De Almeida D, Veeck EB, Da Costa NP et al (2007) Effect of laser therapy on bone tissue submitted to radiotherapy: experimental study in rats. Photomed Laser Surg 25:197–204. https://doi.org/10.1089/pho.2007.2002

    Article  PubMed  Google Scholar 

  27. El-Maghraby EMF, El-Rouby DH, Saafan AM (2013) Assessment of the effect of low-energy diode laser irradiation on gamma irradiated rats’ mandibles. Arch Oral Biol 58:796–805. https://doi.org/10.1016/j.archoralbio.2012.10.003

    Article  PubMed  Google Scholar 

  28. Freire MRS, Almeida D, Santos JN, Sarmento VA (2011) Evaluation of bone repair after radiotherapy by photobiomodulation–an animal experimental study. Laser Phys 21:958–964. https://doi.org/10.1134/S1054660X11070085

    Article  CAS  Google Scholar 

  29. Korany NS, Mehanni SS, Hakam HM, El-Maghraby EMF (2012) Evaluation of socket healing in irradiated rats after diode laser exposure (histological and morphometric studies). Arch Oral Biol 57:884–891. https://doi.org/10.1016/j.archoralbio.2012.01.009

    Article  PubMed  Google Scholar 

  30. Horváthy DB, Szántó P, Marschall B, Bagó M, Csery M, Hornyák I, Doros A, Lacza Z (2020) Ketamine decreases cell viability of bone explants and impairs bone healing in rats. J Orthop Surg Res 15:46. https://doi.org/10.1186/s13018-020-1579-x

    Article  PubMed  PubMed Central  Google Scholar 

  31. Bagi CM, Berryman E, Moalli MR (2011) Comparative bone anatomy of commonly used laboratory animals: implications for drug discovery. Comp Med 61(1):76–85

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Kim JH, Kim HW (2013) Rat defect models for bone grafts and tissue engineered bone constructs. Tissue Eng Regen Med 10:310–16. https://doi.org/10.1007/s13770-013-1093-x

    Article  CAS  Google Scholar 

  33. Aitasalo K (1986) Effect of irradiation on early enzymatic changes in healing mandibular periosteum and bone. A histochemical study on rats. Acta Radiol Oncol 25:207–12. https://doi.org/10.3109/02841868609136407

    Article  CAS  PubMed  Google Scholar 

  34. Lerouxel E, Moreau A, Bouler JM, Giumelli B, Daculsi G, Weiss P, Malard O (2009) Effects of high doses of ionising radiation on bone in rats: a new model for evaluation of bone engineering. Br J Oral Maxillofac Surg 47:602–607. https://doi.org/10.1016/j.bjoms.2008.12.011

    Article  CAS  PubMed  Google Scholar 

  35. Limirio PHJO, Soares PBF, Emi ETP, Lopes CCA, Rocha FS, Batista JD, Rabelo GD, Dechichi P (2019) Ionizing radiation and bone quality: time-dependent effects. Radiat Oncol 14:15. https://doi.org/10.1186/s13014-019-1219-y

    Article  PubMed  PubMed Central  Google Scholar 

  36. Wang X, Wang X, Xiang Z, Zeng Y, Liu F, Shao B, He T, Ma J, Yu S, Liu L (2021) The clinical application of 3D-printed boluses in superficial tumor radiotherapy. Front Oncol 11:698773. https://doi.org/10.3389/fonc.2021.698773

    Article  PubMed  PubMed Central  Google Scholar 

  37. Huang YY, Chen AC, Carroll JD, Hamblin MR (2009) Biphasic dose response in low level light therapy. Dose Response 7:358–383. https://doi.org/10.2203/dose-response.09-027.Hamblin

    Article  PubMed  PubMed Central  Google Scholar 

  38. Zein R, Selting W, Hamblin MR (2018) Review of light parameters and photobiomodulation efficacy: dive into complexity. J Biomed Opt 23:1–17. https://doi.org/10.1117/1.JBO.23.12.120901

    Article  PubMed  Google Scholar 

  39. Jenkins PA, Carroll JD (2011) How to report low-level laser therapy (LLLT)/photomedicine dose and beam parameters in clinical and laboratory studies. Photomed Laser Surg 29(12):785–787. https://doi.org/10.1089/pho.2011.9895

    Article  PubMed  Google Scholar 

  40. Percie du Sert N, Ahluwalia A, Alam S, Avey MT, Baker M, Browne WJ, Clark A et al (2020) Reporting animal research: explanation and elaboration for the ARRIVE guidelines 2.0. PLoS Biol 18:e3000411. https://doi.org/10.1371/journal.pbio.3000411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the funding agency Coordenação de Aperfeiçoamento de Pessoal de Nível Superior — Brasil (CAPES) — Finance Code 001 for the scholarships of SVO and TdR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Camila Barros Gallo.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Oliveira, S.V., dos Reis, T., Amorim, J. et al. Efficacy of photobiomodulation therapy on healing of ionizing irradiated bone: a systematic review of in vivo animal studies. Lasers Med Sci 37, 3379–3392 (2022). https://doi.org/10.1007/s10103-022-03649-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-022-03649-2

Keywords

Navigation