Skip to main content
Log in

Biogenically synthesized nanoparticles in wastewater treatment; a greener approach: a review

  • Review
  • Published:
Clean Technologies and Environmental Policy Aims and scope Submit manuscript

Abstract

Water resources have been continuously polluted by various wastewaters and cause many risks for humans and living organisms. One of the wastewater treatment solutions is nanotechnology-based approaches that enable wastewater treatment through efficient, flexible, multi-purpose, and cost-effective processes compared to conventional methods. Green synthesis is an environmentally friendly way to produce nanoparticles (NPs), which use biological materials to synthesize. Therefore, using plant extracts, microorganisms, and polysaccharides as stabilizing and reducing agents in the green synthesis of NPs can be an essential component of wastewater treatment in the future. However, there is a gap in the comprehensive review of the biogenic synthesis of NPs in wastewater treatment. In this review, previous research on green synthesis using various plant extracts, microorganisms such as fungi, bacteria, microalgae, and polysaccharides, especially chitosan, were investigated in the treatment of various wastewaters. Factors such as temperature, pH, concentration, and reaction time played a crucial role in the synthesis of NPs, which were investigated separately. Finally, after a complete review of the studies and receiving the strengths and weaknesses of each method, future challenges and opportunities are discussed.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

No datasets were generated or analyzed during the current study.

References

  • Abdel Hafez OM, Mohamed RR, Abou Kana MTH, Mohamed EA, Negm NA (2022) Treatment of industrial wastewater containing copper and lead ions using new carboxymethyl chitosan-activated carbon derivatives. Egypt J Chem 65(2):1–2

    Google Scholar 

  • Abid N, Khan AM, Shujait S, Chaudhary K, Ikram M, Imran M, Haider J, Khan M, Khan Q, Maqbool M (2021) Synthesis of nanomaterials using various top-down and bottom-up approaches, influencing factors, advantages, and disadvantages: a review. Adv Colloid Interface Sci 300:102597

    Article  Google Scholar 

  • Akharame MO, Fatoki OS, Opeolu BO, Olorunfemi DI, Oputu OU (2018) Polymeric nanocomposites (PNCs) for wastewater remediation: an overview. Polym Plast Technol Eng 57(17):1801–1827

    Article  CAS  Google Scholar 

  • Akharame MO, Fagbayigbo BO, Pereao O, Oputu OU, Olorunfemi DI, Fatoki OS, Opeolu BO (2021) Beta-FeOOH nanoparticles: a promising nano-based material for water treatment and remediation. J Nanopart Res. https://doi.org/10.1007/s11051-020-05117-w

    Article  Google Scholar 

  • Alagarsamy A, Chandrasekaran S, Manikandan A (2022) Green synthesis and characterization studies of biogenic zirconium oxide (ZrO2) nanoparticles for adsorptive removal of methylene blue dye. J Mol Struct 1247:131275

    Article  CAS  Google Scholar 

  • Ali T, Warsi MF, Zulfiqar S, Sami A, Sana Ullah A, Rasheed IA, Alsafari PO, Agboola IS, Baig MM (2022) Green nickel/nickel oxide nanoparticles for prospective antibacterial and environmental remediation applications. Ceram Int 48(6):8331–8340. https://doi.org/10.1016/j.ceramint.2021.12.039

    Article  CAS  Google Scholar 

  • Al-Wasidi AS, Abouelreash YG, AlReshaidan S, Naglah AM (2022) Application of novel modified chitosan hydrogel composite for the efficient removal of eriochrome black T and methylene blue dyes from aqueous media. J Inorg Organomet Polym Mater 32:1–17

    Article  Google Scholar 

  • Anastas PT, Warner JC (1998) Green chemistry: theory and practice. Oxford University Press, New York

    Google Scholar 

  • Aslam M, Abdullah AZ, Rafatullah M (2021) Recent development in the green synthesis of titanium dioxide nanoparticles using plant-based biomolecules for environmental and antimicrobial applications. J Ind Eng Chem 98:1–16. https://doi.org/10.1016/j.jiec.2021.04.010

    Article  CAS  Google Scholar 

  • Baig U, Faizan M, Sajid M (2021) Effective removal of hazardous pollutants from water and deactivation of water-borne pathogens using multifunctional synthetic adsorbent materials: a review. J Clean Prod 302:126735. https://doi.org/10.1016/j.jclepro.2021.126735

    Article  Google Scholar 

  • Barman SR, Banerjee P, Mukhopadhayay A et al (2022) Biopolymer linked activated carbon-nano-bentonite composite membrane for efficient elimination of PAH mixture from aqueous solutions. Biomass Conv Bioref. https://doi.org/10.1007/s13399-021-02223-0

    Article  Google Scholar 

  • Betz G, Wehner GK (1983) Sputtering of multicomponent materials. Sputtering Part Bombard II:11–90

    Article  Google Scholar 

  • Bhavyasree PG, Xavier TS (2022) Green synthesised copper and copper oxide based nanomaterials using plant extracts and their application in antimicrobial activity: review. Curr Res Green Sustain Chem 5:100249. https://doi.org/10.1016/j.crgsc.2021.100249

    Article  CAS  Google Scholar 

  • Bilal M, Mehmood S, Rasheed T, Iqbal H (2019) Bio-catalysis and biomedical perspectives of magnetic nanoparticles as versatile carriers. Magnetochemistry 5(3):42

    Article  CAS  Google Scholar 

  • Chandran SP, Chaudhary M, Pasricha R, Ahmad A, Sastry M (2006) Synthesis of gold nanotriangles and silver nanoparticles using aloevera plant extract. Biotechnol Prog 22(2):577–583

    Article  CAS  Google Scholar 

  • Choy KL (2002) Department of materials, imperial college of science, technology and medicine. In: Innovative Processing Of Films And Nanocrystalline Powders, pp 1

  • Das S, Chakraborty J, Chatterjee S, Kumar H (2018) Prospects of biosynthesized nanomaterials for the remediation of organic and inorganic environmental contaminants. Environ Sci Nano 5(12):2784–2808. https://doi.org/10.1039/C8EN00799C

    Article  CAS  Google Scholar 

  • Devi P, Singh S, Sangwan S, Sihag S, Moond M (2021) Effect of PH on phytochemical and antioxidant potential of Satawar tubers (Asparagus racemosus Willd.). J Antioxid Activ 2(2):42–50. https://doi.org/10.14302/ISSN.2471-2140.JAA-21-3996

    Article  Google Scholar 

  • Duan H, Wang D, Li Y (2015) Green chemistry for nanoparticle synthesis. Chem Soc Rev 44(16):5778–5792

    Article  CAS  Google Scholar 

  • Durán N, Marcato PD, Alves OL, De Souza GIH, Esposito E (2005) Mechanistic aspects of biosynthesis of silver nanoparticles by several Fusarium oxysporum strains. J Nanobiotechnol 3(1):1–7. https://doi.org/10.1186/1477-3155-3-8/FIGURES/9

    Article  Google Scholar 

  • Elella A, Mahmoud H, Shalan AE, Sabaa MW, Mohamed RR (2022) One-pot green synthesis of antimicrobial chitosan derivative nanocomposites to control foodborne pathogens. RSC Adv 12(2):1095–1104. https://doi.org/10.1039/d1ra07070c

    Article  CAS  Google Scholar 

  • Fagier MA (2021) Plant-mediated biosynthesis and photocatalysis activities of zinc oxide nanoparticles: a prospect towards dyes mineralization. J Nanotechnol. https://doi.org/10.1155/2021/6629180

    Article  Google Scholar 

  • Fariq A, Khan T, Yasmin A (2017) Microbial synthesis of nanoparticles and their potential applications in biomedicine. J Appl Biomed 15(4):241–248

    Article  Google Scholar 

  • Fouda A, Mohamed A, Elgamal MS, El-Din Hassan S, Salem SS, Shaheen TI (2017) Facile approach towards medical textiles via myco-synthesis of silver nanoparticles. Der Pharma Chemica 9:11–18

    CAS  Google Scholar 

  • Frattini D, Karunakaran G, Cho EB, Kwon Y (2021) Sustainable syntheses and sources of nanomaterials for microbial fuel/electrolysis cell applications: an overview of recent progress. Processes. https://doi.org/10.3390/pr9071221

    Article  Google Scholar 

  • Gahlawat G, Choudhury AR (2019) A review on the biosynthesis of metal and metal salt nanoparticles by microbes. RSC Adv 9(23):12944–12967. https://doi.org/10.1039/c8ra10483b

    Article  CAS  Google Scholar 

  • Gałuszka A, Migaszewski Z, Namieśnik J (2013) The 12 principles of green analytical chemistry and the SIGNIFICANCE mnemonic of green analytical practices. TrAC, Trends Anal Chem 50:78–84

    Article  Google Scholar 

  • Gebre SH, Sendeku MG (2019) New frontiers in the biosynthesis of metal oxide nanoparticles and their environmental applications: an overview. SN Appl Sci. https://doi.org/10.1007/s42452-019-0931-4

    Article  Google Scholar 

  • Ghosh A, Nayak AK, Pal A (2017) Nano-particle-mediated wastewater treatment: a review. Curr Pollut Rep 3(1):17–30

    Article  CAS  Google Scholar 

  • Gomathi S, Firdous J, Bharathi V (2017) Phytochemical screening of silver nanoparticles extract of Eugenia jambolana using Fourier infrared spectroscopy. Int J Res Pharm Sci 8(3):383–387

    CAS  Google Scholar 

  • González-Poggini S, Rosenkranz A, Colet-Lagrille M (2021) Two-dimensional nanomaterials for the removal of pharmaceuticals from wastewater: a critical review. Processes. https://doi.org/10.3390/pr9122160

    Article  Google Scholar 

  • Gupta A, Tandon M, Kaur A (2020) Role of metallic nanoparticles in water remediation with special emphasis on sustainable synthesis: a review. Nanotechnol Environ Eng 5(3):1–13. https://doi.org/10.1007/s41204-020-00092-y

    Article  CAS  Google Scholar 

  • Hammad EN, Salem SS, Zohair MM, Mohamed AA, W El-Dougdoug (2021) Purpureocillium lilacinum mediated biosynthesis copper oxide nanoparticles with promising removal of dyes.

  • Herbin HB, Aravind M, Amalanathan M, Sony Michael Mary M, Maria Lenin M, Parvathiraja C, Siddiqui MR, Wabaidur SM, Islam MA (2022) Synthesis of silver nanoparticles using Syzygium malaccense fruit extract and evaluation of their catalytic activity and antibacterial properties. J Inorg Organomet Polym Mater 32(3):1103–1115. https://doi.org/10.1007/s10904-021-02210-y

    Article  CAS  Google Scholar 

  • Hussain I, Singh NB, Singh A, Singh H, Singh SC (2016) Green synthesis of nanoparticles and its potential application. Biotech Lett 38(4):545–560

    Article  CAS  Google Scholar 

  • Ibrahim Y, Kassab A, Eid K, Abdullah AM, Ozoemena KI, Elzatahry A (2020) Unveiling fabrication and environmental remediation of MXene-based nanoarchitectures in toxic metals removal from wastewater: strategy and mechanism. Nanomaterials 10(5):885

    Article  CAS  Google Scholar 

  • Ijaz I, Gilani E, Nazir A, Bukhari A (2020) Detail review on chemical, physical and green synthesis, classification, characterizations and applications of nanoparticles. Green Chem Lett Rev 13(3):59–81. https://doi.org/10.1080/17518253.2020.1802517

    Article  CAS  Google Scholar 

  • Ito R, Kuroda K, Hashimoto H, Ueda M (2016) Recovery of platinum(0) through the reduction of platinum ions by hydrogenase-displaying yeast. AMB Express 6(1):1–6. https://doi.org/10.1186/S13568-016-0262-4/FIGURES/5

    Article  CAS  Google Scholar 

  • Jadoun S, Arif R, Jangid NK, Meena RK (2021) Green synthesis of nanoparticles using plant extracts: a review. Environ Chem Lett 19(1):355–374. https://doi.org/10.1007/s10311-020-01074-x

    Article  CAS  Google Scholar 

  • Jadoun S, Chauhan NPS, Zarrintaj P, Barani M, Varma RS, Chinnam S, Rahdar A (2022) Synthesis of nanoparticles using microorganisms and their applications: a review. Environ Chem Lett 20(5):3153–3197. https://doi.org/10.1007/S10311-022-01444-7

    Article  CAS  Google Scholar 

  • Jha AK, Prasad K, Kulkarni AR (2009) Synthesis of TiO2 nanoparticles using microorganisms. Colloids Surf B 71(2):226–229. https://doi.org/10.1016/J.COLSURFB.2009.02.007

    Article  CAS  Google Scholar 

  • Joshi DR, Adhikari N (2019) An overview on common organic solvents and their toxicity. J Pharm Res Int 28(3):1–18

    Article  Google Scholar 

  • Joudeh N, Linke D (2022) Nanoparticle classification, physicochemical properties, characterization, and applications: a comprehensive review for biologists. J Nanobiotechnol 20(1):1–29. https://doi.org/10.1186/S12951-022-01477-8

    Article  Google Scholar 

  • Kamran U, Bhatti HN, Iqbal M, Nazir A (2019) Green synthesis of metal nanoparticles and their applications in different fields: a review. Zeitschrift Fur Physikalische Chemie. https://doi.org/10.1515/zpch-2018-1238

    Article  Google Scholar 

  • Kato Y, Suzuki M (2020) Synthesis of metal nanoparticles by microorganisms. Crystals 10(7):589. https://doi.org/10.3390/CRYST10070589

    Article  CAS  Google Scholar 

  • Kharisov BI, Kharissova OV, Ortiz-Mendez U (2016) CRC concise encyclopedia of nanotechnology. CRC Press, Boca Raton

    Book  Google Scholar 

  • Koçer AT, Özçimen D (2022) Eco-friendly synthesis of silver nanoparticles from macroalgae: optimization, characterization and antimicrobial activity. Biomass Conv Bioref. https://doi.org/10.1007/s13399-022-02506-0

    Article  Google Scholar 

  • Kommu A, Singh JK (2020) A review on graphene-based materials for removal of toxic pollutants from wastewater. Soft Mater 18(2–3):297–322

    Article  CAS  Google Scholar 

  • Kudr J, Haddad Y, Richtera L, Heger Z, Cernak M, Adam V, Zitka O (2017) Magnetic nanoparticles: from design and synthesis to real world applications. Nanomaterials 7(9):243

    Article  Google Scholar 

  • Kumar B (2021) Green synthesis of gold, silver, and iron nanoparticles for the degradation of organic pollutants in wastewater. J Compos Sci. https://doi.org/10.3390/jcs5080219

    Article  Google Scholar 

  • Kumar SA, Abyaneh MK, Gosavi SW, Kulkarni SK, Pasricha R, Ahmad A, Khan MI (2007) Nitrate reductase-mediated synthesis of silver nanoparticles from AgNO3. Biotech Lett 29(3):439–445. https://doi.org/10.1007/S10529-006-9256-7/METRICS

    Article  CAS  Google Scholar 

  • Kurhade P, Kodape S, Choudhury R (2021) Overview on green synthesis of metallic nanoparticles. Chem Pap. https://doi.org/10.1007/s11696-021-01693-w

    Article  Google Scholar 

  • Lateef A, Ojo SA, Elegbede JA (2016) The emerging roles of arthropods and their metabolites in the green synthesis of metallic nanoparticles. Nanotechnol Rev 5(6):601–622

    CAS  Google Scholar 

  • Le NT, Dang T-D, Binh KH, Nguyen TM, Xuan TN, La DD, Nadda AK, Woong Chang S, Duc Nguyen D (2022) Green synthesis of highly stable zero-valent iron nanoparticles for organic dye treatment using Cleistocalyx operculatus leaf extract. Sustain Chem Pharm 25:1005

    Google Scholar 

  • Li X, Huizhong Xu, Chen ZS, Chen G (2011) Biosynthesis of nanoparticles by microorganisms and their applications. J Nanomater. https://doi.org/10.1155/2011/270974

    Article  Google Scholar 

  • Li X, Yang Bo, Xiao Ke, Duan H, Wan J, Zhao H (2021) Targeted degradation of refractory organic compounds in wastewaters based on molecular imprinting catalysts. Water Res 203:117541. https://doi.org/10.1016/j.watres.2021.117541

    Article  CAS  Google Scholar 

  • Ling X, Wang G, Zhao Y, Shao J, Fan Z (2014) Laser-induced damage of the optical films prepared by electron beam evaporation and ion beam sputtering in vacuum. Optik 125(21):6474–6477

    Article  CAS  Google Scholar 

  • Liu Y, Mai S, Li N, Yiu CKY, Mao J, Pashley DH, Tay FR (2011) Differences between top-down and bottom-up approaches in mineralizing thick, partially demineralized collagen scaffolds. Acta Biomater 7(4):1742–1751

    Article  CAS  Google Scholar 

  • Malik P, Shankar R, Malik V, Sharma N, Mukherjee TK (2014) Green chemistry based benign routes for nanoparticle synthesis. J Nanopart 2014:14

    Article  Google Scholar 

  • Masri MS, Randall VG(1978) Chitosan and chitosan derivatives for removal of toxic metallic ions from manufacturing plant waste streams. US Agric Res Serv Reprints of Articles by ARS Employees.

  • Meshkatalsadat MH, Zahedifar M, Pouramiri B (2022) Facile green synthesis of CaO NPs using the Crataegus pontica C. Koch extract for photo-degradation of MB dye. Environ Sci Pollut Res 29:1–10

    Article  Google Scholar 

  • Mondal P, Anweshan A, Purkait MK (2020) Green synthesis and environmental application of iron-based nanomaterials and nanocomposite: a review. Chemosphere 259:127509. https://doi.org/10.1016/j.chemosphere.2020.127509

    Article  CAS  Google Scholar 

  • Muga HE, Mihelcic JR (2008) Sustainability of wastewater treatment technologies. J Environ Manag 88(3):437–447. https://doi.org/10.1016/J.JENVMAN.2007.03.008

    Article  CAS  Google Scholar 

  • Naikoo GA, Mustaqeem M, Hassan IU, Awan T, Arshad F, Salim H, Qurashi A (2021) Bioinspired and green synthesis of nanoparticles from plant extracts with antiviral and antimicrobial properties: a critical review. J Saudi Chem Soc 25(9):101304. https://doi.org/10.1016/j.jscs.2021.101304

    Article  CAS  Google Scholar 

  • Narayanan KB, Sakthivel N (2011) Green synthesis of biogenic metal nanoparticles by terrestrial and aquatic phototrophic and heterotrophic eukaryotes and biocompatible agents. Adv Coll Interface Sci 169(2):59–79

    Article  CAS  Google Scholar 

  • Nath D, Banerjee P (2013) Green nanotechnology–a new hope for medical biology. Environ Toxicol Pharmacol 36(3):997–1014

    Article  CAS  Google Scholar 

  • Ojha A, Tiwary D, Oraon R, Singh P (2021) Degradations of endocrine-disrupting chemicals and pharmaceutical compounds in wastewater with carbon-based nanomaterials: a critical review. Environ Sci Pollut Res 28(24):30573–30594. https://doi.org/10.1007/s11356-021-13939-x

    Article  CAS  Google Scholar 

  • Olvera RC, Silva SL, Robles-Belmont E, Lau EZ (2017) Review of nanotechnology value chain for water treatment applications in Mexico. Resour Effic Technol 3(1):1–11

    Google Scholar 

  • Pantidos N, Horsfall LE (2014) Biological synthesis of metallic nanoparticles by bacteria, fungi and plants. J Nanomed Nanotechnol 5(5):1

    Article  Google Scholar 

  • Park TJ, Lee KG, Lee SY (2016) Advances in microbial biosynthesis of metal nanoparticles. Appl Microbiol Biotechnol 100(2):521–534

    Article  CAS  Google Scholar 

  • Patel RV, Yadav A (2022) Photocatalytic MIL101 (Fe)/ZnO chitosan composites for adsorptive removal of tetracycline antibiotics from the aqueous stream. J Mol Struct 1252:132128

    Article  Google Scholar 

  • Peniston QP, Johnson EL (1970) Method for treating an aqueous medium with chitosan and derivatives of chitin to remove an impurity. Google Patents.

  • Preethi M, Viswanathan C, Ponpandian N (2022) A metal-free, dual catalyst for the removal of rhodamine B using novel carbon quantum dots from muskmelon peel under sunlight and ultrasonication: a green way to clean the environment. J Photochem Photobiol A Chem 426:113765

    Article  CAS  Google Scholar 

  • Qiao ZP, Wang MY, Liu JF, Wang QZ (2022) Green synthesis of silver nanoparticles using a novel endophytic fungus Letendraea Sp. WZ07: characterization and evaluation of antioxidant, antibacterial and catalytic activities (3-in-1 system). Inorg Chem Commun 138:109301. https://doi.org/10.1016/j.inoche.2022.109301

    Article  CAS  Google Scholar 

  • Queiroz RN, Prediger P, Vieira MGA (2022) Adsorption of polycyclic aromatic hydrocarbons from wastewater using graphene-based nanomaterials synthesized by conventional chemistry and green synthesis: a critical review. J Hazard Mater. https://doi.org/10.1016/j.jhazmat.2021.126904

    Article  Google Scholar 

  • Rafique M, Tahir R, Gillani SSA, Bilal Tahir M, Shakil M, Iqbal T, Abdellahi MO (2022) Plant-mediated green synthesis of zinc oxide nanoparticles from Syzygium cumini for seed germination and wastewater purification. Int J Environ Anal Chem 102(1):23–38

    Article  CAS  Google Scholar 

  • Ramanathan R, O’Mullane AP, Parikh RY, Smooker PM, Bhargava SK, Bansal V (2011) Bacterial kinetics-controlled shape-directed biosynthesis of silver nanoplates using morganella psychrotolerans. Langmuir 27(2):714–719. https://doi.org/10.1021/LA1036162/SUPPL_FILE/LA1036162_SI_001.PDF

    Article  CAS  Google Scholar 

  • Ranjbari S, Ayati A, Tanhaei B, Al-Othman A, Karimi F (2022) The surfactant-ionic liquid Bi-functionalization of chitosan beads for their adsorption performance improvement toward tartrazine. Environ Res 204:111961

    Article  CAS  Google Scholar 

  • Rashtbari Y, Afshin S, Hamzezadeh A, Gholizadeh A, Ansari FJ, Poureshgh Y, Fazlzadeh M (2022a) Green synthesis of zinc oxide nanoparticles loaded on activated carbon prepared from walnut peel extract for the removal of eosin Y and erythrosine B dyes from aqueous solution: experimental approaches, kinetics models, and thermodynamic studies. Environ Sci Pollut Res 29(4):5194–5206

    Article  CAS  Google Scholar 

  • Rashtbari Yousef F, Sher SA, Bahrami AH, Ahmadi S, Azhar O, Rastegar A, Ghosh S, Poureshgh Y (2022b) Green synthesis of zero-valent iron nanoparticles and loading effect on activated carbon for furfural adsorption. Chemosphere 287(P1):132114. https://doi.org/10.1016/j.chemosphere.2021.132114

    Article  CAS  Google Scholar 

  • Razavi M, Salahinejad E, Fahmy M, Yazdimamaghani M, Vashaee D, Tayebi L (2015) Green chemical and biological synthesis of nanoparticles and their biomedical applications. In: Basiuk V, Basiuk E (eds) Green processes for nanotechnology. Springer, Cham, pp 207–235. https://doi.org/10.1007/978-3-319-15461-9_7

  • Renault F, Sancey B, Badot PM, Crini G (2009) Chitosan for coagulation/flocculation processes–an eco-friendly approach. Eur Polym J 45(5):1337–1348

    Article  CAS  Google Scholar 

  • Ri K, Han C, Liang D, Zhu S, Gao Y, Sun T (2022) Nanocrystalline Erdite from iron-rich sludge: green synthesis, characterization and utilization as an efficient adsorbent of hexavalent chromium. J Colloid Interface Sci 608:1141–1150. https://doi.org/10.1016/j.jcis.2021.10.110

    Article  CAS  Google Scholar 

  • Roy N, Gaur A, Jain A, Bhattacharya S, Rani V (2013) Green synthesis of silver nanoparticles: an approach to overcome toxicity. Environ Toxicol Pharmacol 36(3):807–812

    Article  CAS  Google Scholar 

  • Rusman E, Heryanto H, Fahri AN, Rahmat R, Mutmainna I, Tahir D (2022) Green synthesis ZnO/TiO2 for high recyclability rapid sunlight photodegradation wastewater. MRS Adv. https://doi.org/10.1557/s43580-021-00201-2

    Article  Google Scholar 

  • Sabouri Z, Akbari A, Hosseini HA, Khatami M, Darroudi M (2020a) Tragacanth-mediate synthesis of NiO nanosheets for cytotoxicity and photocatalytic degradation of organic dyes. Bioprocess Biosyst Eng 43(7):1209–1218. https://doi.org/10.1007/S00449-020-02315-7/METRICS

    Article  CAS  Google Scholar 

  • Sabouri Z, Sabouri M, Amiri MS, Khatami M, Darroudi M (2020b) Plant-based synthesis of cerium oxide nanoparticles using rheum turkestanicum extract and evaluation of their cytotoxicity and photocatalytic properties. Mater Technol 37(8):555–568. https://doi.org/10.1080/10667857.2020.1863573

    Article  CAS  Google Scholar 

  • Sabouri Z, Sabouri S, Moghaddas SSTH, Mostafapour A, Gheibihayat SM, Darroudi M (2022a) Plant-based synthesis of Ag-doped ZnO/MgO nanocomposites using Caccinia macranthera extract and evaluation of their photocatalytic activity, cytotoxicity, and potential application as a novel sensor for detection of Pb2+ Ions. Biomass Convers Biorefinery. https://doi.org/10.1007/S13399-022-02907-1/METRICS

    Article  Google Scholar 

  • Sabouri Z, Moghaddas SSTH, Mostafapour A, Darroudi M (2022b) Biopolymer-template synthesized CaSO4 nanoparticles and evaluation of their photocatalytic activity and cytotoxicity effects. Ceram Int 48(11):16306–16311. https://doi.org/10.1016/J.CERAMINT.2022.02.180

    Article  CAS  Google Scholar 

  • Sachs J, Lafortune G, Kroll C, Fuller G, Woelm F (2022) From crisis to sustainable development: the SDGs as roadmap to 2030 and beyond. In: Sustainable development report 2022. https://dashboards.sdgindex.org/

  • Safaepour M, Shahverdi AR, Shahverdi HR, Khorramizadeh MR, Gohari AR (2009) Green synthesis of small silver nanoparticles using geraniol and its cytotoxicity against Fibrosarcoma-Wehi 164. Avicenna J Med Biotechnol 1(2):111

    CAS  Google Scholar 

  • Salem SS, Fouda A (2021) Green synthesis of metallic nanoparticles and their prospective biotechnological applications: an overview. Biol Trace Elem Res 199(1):344–370. https://doi.org/10.1007/S12011-020-02138-3/METRICS

    Article  CAS  Google Scholar 

  • Sasson, Yoel, Ganit Levy-Ruso, Ofer Toledano, and Isaac Ishaaya. 2007. “Nanosuspensions: Emerging Novel Agrochemical Formulations.” In Insecticides Design Using Advanced Technologies, 1–39. Springer.

  • Selim SE, Meligi GA, Abdelhamid AE, Mabrouk MA, Hussain AI (2022) Novel composite films based on acrylic fibers waste/nano-chitosan for congo red adsorption. J Polym Environ 30:1–16

    Article  Google Scholar 

  • Shedbalkar U, Singh R, Wadhwani S, Gaidhani S, Chopade BA (2014) Microbial synthesis of gold nanoparticles: current status and future prospects. Adv Coll Interface Sci 209:40–48

    Article  CAS  Google Scholar 

  • Shrikhande SS, Jain DS, Athawale RB, Bajaj AN, Goel P, Kamran Z, Nikam Y, Gude R (2015) Evaluation of anti-metastatic potential of cisplatin polymeric nanocarriers on B16F10 melanoma cells. Saudi Pharm J 23(4):341–351

    Article  Google Scholar 

  • Singh A, Singh NB, Hussain I, Singh H, Singh SC (2015a) Plant-nanoparticle interaction: an approach to improve agricultural practices and plant productivity. Int J Pharm Sci Invent 4(8):25–40

    CAS  Google Scholar 

  • Singh P, Kim YJ, Wang C, Mathiyalagan R, Farh M-A, Yang DC (2015b) Biogenic silver and gold nanoparticles synthesized using red ginseng root extract, and their applications. Artif Cells Nanomed Biotechnol 44(3):1–6. https://doi.org/10.3109/21691401.2015.1008514

    Article  CAS  Google Scholar 

  • Singh P, Kim YJ, Zhang D, Yang DC (2016) Biological synthesis of nanoparticles from plants and microorganisms. Trends Biotechnol 34(7):588–599. https://doi.org/10.1016/J.TIBTECH.2016.02.006

    Article  CAS  Google Scholar 

  • Singh J, Dutta T, Kim KH, Rawat M, Samddar P, Kumar P (2018) ‘Green’ synthesis of metals and their oxide nanoparticles: applications for environmental remediation. J Nanobiotechnol 16(1):1–24. https://doi.org/10.1186/s12951-018-0408-4

    Article  CAS  Google Scholar 

  • Sirés I, Brillas E, Oturan MA, Rodrigo MA, Panizza M (2014) Electrochemical advanced oxidation processes: today and tomorrow. A review. Environ Sci Pollut Res 21(14):8336–8367

    Article  Google Scholar 

  • Soltys L, Olkhovyy O, Tatarchuk T, Naushad Mu (2021) Green synthesis of metal and metal oxide nanoparticles: principles of green chemistry and raw materials. Magnetochemistry. https://doi.org/10.3390/magnetochemistry7110145

    Article  Google Scholar 

  • Spreafico C, Russo D, Degl’Innocenti D (2021) Laser pyrolysis in papers and patents. J Intell Manuf 33:1–33

    Google Scholar 

  • Swain J, Kulkarni P, Manuel S (2022) Decolorization of azo dyes by chemically and biosynthesized ZnO nanoparticles. Appl Biochem Biotechnol 194:1–12

    Article  Google Scholar 

  • Taghizadeh SM, Morowvat MH, Negahdaripour M, Ebrahiminezhad A, Ghasemi Y (2021) Biosynthesis of metals and metal oxide nanoparticles through microalgal nanobiotechnology: quality control aspects. BioNanoScience 11(1):209–226. https://doi.org/10.1007/s12668-020-00805-2

    Article  Google Scholar 

  • Thakkar KN, Mhatre SS, Parikh RY (2010) Biological synthesis of metallic nanoparticles. Nanomed Nanotechnol Biol Med 6(2):257–262

    Article  CAS  Google Scholar 

  • Tian C, Zhao Y-X (2021) Dosage and PH dependence of coagulation with polytitanium salts for the treatment of Microcystis aeruginosa-laden and Microcystis wesenbergii-laden surface water: the influence of basicity. J Water Process Eng 39:101726

    Article  Google Scholar 

  • Tobiszewski M, Namieśnik J, Pena-Pereira F (2017) Environmental risk-based ranking of solvents using the combination of a multimedia model and multi-criteria decision analysis. Green Chem 19(4):1034–1042

    Article  CAS  Google Scholar 

  • Wang C, Kim YJ, Singh P, Mathiyalagan R, Jin Y, Yang DC (2015) Green synthesis of silver nanoparticles by Bacillus methylotrophicus, and their antimicrobial activity. Artif Cells Nanomed Biotech 44(4):1127–1132. https://doi.org/10.3109/21691401.2015.1011805

    Article  CAS  Google Scholar 

  • Wang S, Liu Y, Yang A, Zhu Qi, Sun H, Sun Po, Yao B, Zang Y, Xihua Du, Dong L (2022) Xanthate-modified magnetic Fe3O4@ SiO2-based polyvinyl alcohol/chitosan composite material for efficient removal of heavy metal ions from water. Polymers 14(6):1107

    Article  CAS  Google Scholar 

  • Willmott PR (2004) Deposition of complex multielemental thin films. Prog Surf Sci 76(6–8):163–217

    Article  CAS  Google Scholar 

  • Yang M, Yang Y, Liu Y, Shen G, Ruqin Yu (2006) Platinum nanoparticles-doped Sol–Gel/carbon nanotubes composite electrochemical sensors and biosensors. Biosens Bioelectron 21(7):1125–1131

    Article  CAS  Google Scholar 

  • Zahoor M, Nazir N, Iftikhar M, Naz S, Zekker I, Burlakovs J, Uddin F et al (2021) A review on silver nanoparticles: classification, various methods of synthesis, and their potential roles in biomedical applications and water treatment. Water (switzerland) 13(16):1–28. https://doi.org/10.3390/w13162216

    Article  CAS  Google Scholar 

  • Zhang S (2003) Fabrication of novel biomaterials through molecular self-assembly. Nat Biotechnol 21(10):1171–1178

    Article  CAS  Google Scholar 

  • Zhang M, Liu Y-Q, Ye B-C (2012) Colorimetric assay for parallel detection of Cd2+, Ni2+ and Co2+ using peptide-modified gold nanoparticles. Analyst 137(3):601–607

    Article  CAS  Google Scholar 

  • Zhang Y, Zhao Q, Chen B (2022) Reduction and removal of Cr (VI) in water using biosynthesized palladium nanoparticles loaded Shewanella oneidensis MR-1. Sci Total Environ 805:150336

    Article  CAS  Google Scholar 

  • Zhou Yu, Li X (2022) Green synthesis of modified polyethylene packing supported tea polyphenols-NZVI for nitrate removal from wastewater: characterization and mechanisms. Sci Total Environ 806:150596

    Article  CAS  Google Scholar 

  • Zubair M, Arshad M, Ullah A (2020) Chitosan-based materials for water and wastewater treatment. In: Gopi S, Thomas S, Pius A (eds) Handbook of chitin and chitosan. Elsevier, Amsterdam, pp 773–809

    Chapter  Google Scholar 

  • Zunita M (2021) Graphene oxide-based nanofiltration for Hg removal from wastewater: a mini review. Membranes 11(4):269

    Article  CAS  Google Scholar 

Download references

Acknowledgements

In the end, we must declare that this research had no financial affiliation to any organization and did not receive funding. We also express our gratitude to the Sharif University of Technology and Azad University for their good cooperation.

Funding

No funding was received for conducting this study.

Author information

Authors and Affiliations

Authors

Contributions

It should be noted that in this article, all members have actively participated, and all authors reviewed the manuscript.

Corresponding author

Correspondence to Seyed Mostafa Banihashem.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Banihashem, S.M., Moradi, A., Evazzadeh, B. et al. Biogenically synthesized nanoparticles in wastewater treatment; a greener approach: a review. Clean Techn Environ Policy 26, 1731–1754 (2024). https://doi.org/10.1007/s10098-023-02720-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10098-023-02720-y

Keywords

Navigation