Skip to main content

Advertisement

Log in

Biosynthesis of Metals and Metal Oxide Nanoparticles Through Microalgal Nanobiotechnology: Quality Control Aspects

  • Published:
BioNanoScience Aims and scope Submit manuscript

Abstract

Nanotechnology is a novel technology for production and application of nanoscale materials. Although many physical and chemical techniques for the synthesis of nanoparticles have been developed, these methods are not sustainable. Microalgae are interesting microorganisms for simple and eco-friendly synthesis of nanoparticles. Up to now, various metal nanoparticles have been synthesized by different microalgae and many applications have been explored for them. Various parameters such as concentration of metal salt, microalgae species, pH, reaction time, reaction temperature, and the culture condition of microalgae can affect the rate of nanoparticle production, as well as nanoparticle quantity and quality. For using green synthesized nanoparticles for medical applications, especially in pharmaceutical industries, they should conform to the US food and drug administration (FDA) criteria. In this review, we explain the biosynthesis of metal and metal oxide nanoparticles by using microalgae and the involved mechanisms. Effective parameters to control physical characteristics of nanoparticles such as size, shape, dispersity, and stability of particles are summarized with a focus on quality control and standards for medical purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

All generated or analyzed data, the exploited software, servers, and materials were included in this published article. The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Wijffels, R. H., Kruse, O., & Hellingwerf, K. J. (2013). Potential of industrial biotechnology with cyanobacteria and eukaryotic microalgae. Current Opinion in Biotechnology, 24(3), 405–413. https://doi.org/10.1016/j.copbio.2013.04.004.

    Article  Google Scholar 

  2. da Silva, T. L., Moniz, P., Silva, C., & Reis, A. (2019). The dark side of microalgae biotechnology: A heterotrophic biorefinery platform directed to ω-3 rich lipid production. Microorganisms, 7(12). https://doi.org/10.3390/microorganisms7120670.

  3. Olaizola, M. (2003). Commercial development of microalgal biotechnology: From the test tube to the marketplace. Biomolecular Engineering, 20(4-6), 459–466. https://doi.org/10.1016/S1389-0344(03)00076-5.

    Article  Google Scholar 

  4. Ghasemi, Y., Rasoul-Amini, S., & Morowvat, M. H. (2011). Algae for the production of SCP. In Bioprocess Sciences and Technology (pp. 163–184). New York: Nova Science Publishers, Inc..

    Google Scholar 

  5. Leandro, A., Pereira, L., & Gonçalves, A. M. M. (2020). Diverse applications of marine macroalgae. Marine Drugs, 18(1). https://doi.org/10.3390/md18010017.

  6. Deviram, G., Mathimani, T., Anto, S., Ahamed, T. S., Ananth, D. A., & Pugazhendhi, A. (2020). Applications of microalgal and cyanobacterial biomass on a way to safe, cleaner and a sustainable environment. Journal of Cleaner Production, 253. https://doi.org/10.1016/j.jclepro.2019.119770.

  7. de Carvalho, J. C., Magalhães Jr., A. I., de Melo Pereira, G. V., Medeiros, A. B. P., Sydney, E. B., Rodrigues, C., Aulestia, D. T. M., de Souza Vandenberghe, L. P., Soccol, V. T., & Soccol, C. R. (2020). Microalgal biomass pretreatment for integrated processing into biofuels, food, and feed. Bioresource Technology, 300. https://doi.org/10.1016/j.biortech.2019.122719.

  8. Dineshbabu, G., Goswami, G., Kumar, R., Sinha, A., & Das, D. (2019). Microalgae–nutritious, sustainable aqua- and animal feed source. J Funct Foods, 62. https://doi.org/10.1016/j.jff.2019.103545.

  9. Yin, Z., Zhu, L., Li, S., Hu, T., Chu, R., Mo, F., Hu, D., Liu, C., & Li, B. (2020). A comprehensive review on cultivation and harvesting of microalgae for biodiesel production: Environmental pollution control and future directions. Bioresource Technology, 301. https://doi.org/10.1016/j.biortech.2020.122804.

  10. Bhattacharjee, M. (2016). Pharmaceutically valuable bioactive compounds of algae. Asian Journal of Pharmaceutical and Clinical Research, 9(6), 43–47. https://doi.org/10.22159/ajpcr.2016.v9i6.14507.

  11. Katiyar, R., & Arora, A. (2020). Health promoting functional lipids from microalgae pool: A review. Algal Research, 46. https://doi.org/10.1016/j.algal.2020.101800.

  12. Saha, S. K., & Murray, P. (2018). Exploitation of microalgae species for nutraceutical purposes: Cultivation aspects. Fermentation, 4(2). https://doi.org/10.3390/fermentation4020046.

  13. Cheng, Y.-S., Zheng, Y., Labavitch, J. M., & VanderGheynst, J. S. (2011). The impact of cell wall carbohydrate composition on the chitosan flocculation of Chlorella. Process Biochemistry, 46(10), 1927–1933. https://doi.org/10.1016/j.procbio.2011.06.021.

    Article  Google Scholar 

  14. Markou, G., Angelidaki, I., & Georgakakis, D. (2012). Microalgal carbohydrates: An overview of the factors influencing carbohydrates production, and of main bioconversion technologies for production of biofuels. Applied Microbiology and Biotechnology, 96(3), 631–645. https://doi.org/10.1007/s00253-012-4398-0.

    Article  Google Scholar 

  15. Khanra, S., Mondal, M., Halder, G., Tiwari, O. N., Gayen, K., & Bhowmick, T. K. (2018). Downstream processing of microalgae for pigments, protein and carbohydrate in industrial application: A review. Food and Bioproducts Processing, 110, 60–84. https://doi.org/10.1016/j.fbp.2018.02.002.

    Article  Google Scholar 

  16. Borowitzka, M. A. (2013). High-value products from microalgae-their development and commercialisation. Journal of Applied Phycology, 25(3), 743–756. https://doi.org/10.1007/s10811-013-9983-9.

    Article  Google Scholar 

  17. Villarruel-López, A., Ascencio, F., & Nunõ, K. (2017). Microalgae, a potential natural functional food source- A review. Polish Journal of Food and Nutrition Sciences, 67(4), 251–263. https://doi.org/10.1515/pjfns-2017-0017.

  18. Riccio, G., & Lauritano, C. (2020). Microalgae with immunomodulatory activities. Marine Drugs, 18(1), 2. https://doi.org/10.3390/md18010002.

    Article  Google Scholar 

  19. Niccolai, A., Shannon, E., Abu-Ghannam, N., Biondi, N., Rodolfi, L., & Tredici, M. R. (2019). Lactic acid fermentation of Arthrospira platensis (spirulina) biomass for probiotic-based products. Journal of Applied Phycology, 31(2), 1077–1083. https://doi.org/10.1007/s10811-018-1602-3.

    Article  Google Scholar 

  20. Gonçalves, A. L., Pires, J. C. M., & Simões, M. (2017). A review on the use of microalgal consortia for wastewater treatment. Algal Research, 24, 403–415. https://doi.org/10.1016/j.algal.2016.11.008.

    Article  Google Scholar 

  21. Shaker, S., Nemati, A., Montazeri-Najafabady, N., Mobasher, M. A., Morowvat, M. H., & Ghasemi, Y. (2015). Treating urban wastewater: nutrient removal by using immobilized green algae in batch cultures. International Journal of Phytoremediation, 17(12), 1177–1182. https://doi.org/10.1080/15226514.2015.1045130.

    Article  Google Scholar 

  22. Patel, A. K., Choi, Y. Y., & Sim, S. J. (2020). Emerging prospects of mixotrophic microalgae: Way forward to sustainable bioprocess for environmental remediation and cost-effective biofuels. Bioresource Technology, 300. https://doi.org/10.1016/j.biortech.2020.122741.

  23. Leong, Y. K., & Chang, J. S. (2020). Bioremediation of heavy metals using microalgae: Recent advances and mechanisms. Bioresource Technology, 303. https://doi.org/10.1016/j.biortech.2020.122886.

  24. de Farias Silva, C. E., & Bertucco, A. (2016). Bioethanol from microalgae and cyanobacteria: A review and technological outlook. Process Biochemistry, 51(11), 1833–1842. https://doi.org/10.1016/j.procbio.2016.02.016.

    Article  Google Scholar 

  25. Mata, T. M., Martins, A. A., & Caetano, N. S. (2010). Microalgae for biodiesel production and other applications: A review. Renewable and Sustainable Energy Reviews, 14(1), 217–232. https://doi.org/10.1016/j.rser.2009.07.020.

    Article  Google Scholar 

  26. Wijffels, R. H., & Barbosa, M. J. (2010). An outlook on microalgal biofuels. Science, 329(5993), 796–799. https://doi.org/10.1126/science.1189003.

    Article  Google Scholar 

  27. Plaza, M., Herrero, M., Alejandro Cifuentes, A., & Ibáñez, E. (2009). Innovative natural functional ingredients from microalgae. Journal of Agricultural and Food Chemistry, 57(16), 7159–7170. https://doi.org/10.1021/jf901070g.

    Article  Google Scholar 

  28. Singh, S., Kate, B. N., & Banecjee, U. C. (2005). Bioactive compounds from cyanobacteria and microalgae: An overview. Critical Reviews in Biotechnology, 25(3), 73–95. https://doi.org/10.1080/07388550500248498.

    Article  Google Scholar 

  29. Tang, D. Y. Y., Khoo, K. S., Chew, K. W., Tao, Y., Ho, S. H., & Show, P. L. (2020). Potential utilization of bioproducts from microalgae for the quality enhancement of natural products. Bioresource Technology, 304. https://doi.org/10.1016/j.biortech.2020.122997.

  30. Davinelli, S., Nielsen, M. E., & Scapagnini, G. (2018). Astaxanthin in skin health, repair, and disease: A comprehensive review. Nutrients, 10(4). https://doi.org/10.3390/nu10040522.

  31. Mourelle, M. L., Gómez, C. P., & Legido, J. L. (2017). The potential use of marine microalgae and cyanobacteria in cosmetics and thalassotherapy. Cosmetics, 4(4). https://doi.org/10.3390/cosmetics4040046.

  32. Jeevanandam, J., Barhoum, A., Chan, Y. S., Dufresne, A., & Danquah, M. K. (2018). Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations. Beilstein Journal of Nanotechnology, 9, 1050–1074. https://doi.org/10.3762/bjnano.9.98.

    Article  Google Scholar 

  33. Fawcett, D., Verduin, J. J., Shah, M., Sharma, S. B., & Poinern, G. E. J. (2017). A review of current research into the biogenic synthesis of metal and metal oxide nanoparticles via marine algae and seagrasses. Journal of Nanoscience, 2017. https://doi.org/10.1155/2017/8013850.

  34. De Morais, M. G., De Morais, E. G., Da Silva, V. B., Goncalves, C. F., Lisboa, C., & Costa, J. A. V. (2016). Nanoencapsulation of the bioactive compounds of Spirulina with a microalgal biopolymer coating. Journal of Nanoscience and Nanotechnology, 16(1), 81–91. https://doi.org/10.1166/jnn.2016.10899.

    Article  Google Scholar 

  35. Fawcett, D., Verduin, J. J., Shah, M., Sharma, S. B., & Poinern, G. E. J. (2017). A review of current research into the biogenic synthesis of metal and metal oxide nanoparticles via marine algae and seagrasses. Journal of Nanoscience, 2017. https://doi.org/10.1155/2017/8013850.

  36. Tran, Q. H., Nguyen, V. Q., & Le, A. T. (2013). Silver nanoparticles: Synthesis, properties, toxicology, applications and perspectives. Advances in Natural Sciences: Nanoscience and Nanotechnology, 4(3). https://doi.org/10.1088/2043-6262/4/3/033001.

  37. Sharma, V. K., Yngard, R. A., & Lin, Y. (2009). Silver nanoparticles: Green synthesis and their antimicrobial activities. Advances in Colloid and Interface Science, 145(1-2), 83–96. https://doi.org/10.1016/j.cis.2008.09.002.

    Article  Google Scholar 

  38. Daniel, M. C., & Astruc, D. (2004). Gold Nanoparticles: Assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chemical Reviews, 104(1), 293–346. https://doi.org/10.1021/cr030698+.

    Article  Google Scholar 

  39. Nel, A., Xia, T., Mädler, L., & Li, N. (2006). Toxic potential of materials at the nanolevel. Science, 311(5761), 622–627. https://doi.org/10.1126/science.1114397.

    Article  Google Scholar 

  40. Steffens, D., Lersch, M., Rosa, A., Scher, C., Crestani, T., Morais, M. G., Costa, J. A. V., & Pranke, P. (2013). A new biomaterial of nanofibers with the microalga spirulina as scaffolds to cultivate with stem cells for use in tissue engineering. Journal of Biomedical Nanotechnology, 9(4), 710–718. https://doi.org/10.1166/jbn.2013.1571.

    Article  Google Scholar 

  41. Santomauro, G., Srot, V., Bussmann, B., van Aken, P. A., Brümmer, F., Strunk, H., & Bill, J. (2012). Biomineralization of zinc-phosphate-based nano needles by living microalgae. Journal of Biomaterials and Nanobiotechnology, 3, 262–370. https://doi.org/10.4236/jbnb.2012.33034.

    Article  Google Scholar 

  42. Haik, Y. (2011). Process to produce carbon nanotubes from microalgae. US Patents, US8057776B2.

  43. Gonnet, M., Lethuaut, L., & Boury, F. (2010). New trends in encapsulation of liposoluble vitamins. Journal of Controlled Release, 146(3), 276–290. https://doi.org/10.1016/j.jconrel.2010.01.037.

    Article  Google Scholar 

  44. Kothamasu, P., Kanumur, H., Ravur, N., Maddu, C., Parasuramrajam, P., & Thangavel, S. (2012). Nanocapsules: The weapons for novel drug delivery systems. BioImpacts, 2(2), 71–81. https://doi.org/10.5681/bi.2012.011.

    Article  Google Scholar 

  45. SanGiovanni, J. P., & Chew, E. Y. (2005). The role of omega-3 long-chain polyunsaturated fatty acids in health and disease of the retina. Progress in Retinal and Eye Research, 24(1), 87–138. https://doi.org/10.1016/j.preteyeres.2004.06.002.

    Article  Google Scholar 

  46. de Morais, M. G., Stillings, C., Dersch, R., Rudisile, M., Pranke, P., Costa, J. A. V., & Wendorff, J. (2010). Preparation of nanofibers containing the microalga Spirulina (Arthrospira). Bioresource Technology, 101(8), 2872–2876. https://doi.org/10.1016/j.biortech.2009.11.059.

    Article  Google Scholar 

  47. Venkateswar Reddy, M., & Venkata Mohan, S. (2012). Effect of substrate load and nutrients concentration on the polyhydroxyalkanoates (PHA) production using mixed consortia through wastewater treatment. Bioresource Technology, 114, 573–582. https://doi.org/10.1016/j.biortech.2012.02.127.

    Article  Google Scholar 

  48. Castilho, L. R., Mitchell, D. A., & Freire, D. M. G. (2009). Production of polyhydroxyalkanoates (PHAs) from waste materials and by-products by submerged and solid-state fermentation. Bioresource Technology, 100(23), 5996–6009. https://doi.org/10.1016/j.biortech.2009.03.088.

    Article  Google Scholar 

  49. Shrivastav, A., Mishra, S. K., & Mishra, S. (2010). Polyhydroxyalkanoate (PHA) synthesis by Spirulina subsalsa from Gujarat coast of India. International Journal of Biological Macromolecules, 46(2), 255–260. https://doi.org/10.1016/j.ijbiomac.2010.01.001.

    Article  Google Scholar 

  50. Masood, F., Chen, P., Yasin, T., Fatima, N., Hasan, F., & Hameed, A. (2013). Encapsulation of Ellipticine in poly-(3-hydroxybutyrate-co-3- hydroxyvalerate) based nanoparticles and its in vitro application. Materials Science and Engineering: C, 33(3), 1054–1060. https://doi.org/10.1016/j.msec.2012.11.025.

    Article  Google Scholar 

  51. De Stefano, M., & De Stefano, L. (2005). Nanostructures in diatom frustules: Functional morphology of valvocopulae in cocconeidacean monoraphid taxa. Journal of Nanoscience and Nanotechnology, 5(1), 15–34. https://doi.org/10.1166/jnn.2005.001.

    Article  Google Scholar 

  52. Mann, D. G. (1999). The species concept in diatoms. Phycologia, 38(6), 437–495. https://doi.org/10.2216/i0031-8884-38-6-437.1.

    Article  Google Scholar 

  53. Wang, Y., Cai, J., Jiang, Y., Jiang, X., & Zhang, D. (2013). Preparation of biosilica structures from frustules of diatoms and their applications: Current state and perspectives. Applied Microbiology and Biotechnology, 97(2), 453–460. https://doi.org/10.1007/s00253-012-4568-0.

    Article  Google Scholar 

  54. Vilmi, A., Karjalainen, S. M., Landeiro, V. L., & Heino, J. (2015). Freshwater diatoms as environmental indicators: evaluating the effects of eutrophication using species morphology and biological indices. Environmental Monitoring and Assessment, 187(5). https://doi.org/10.1007/s10661-015-4485-7.

  55. Drum, R. W., & Gordon, R. (2003). Star Trek replicators and diatom nanotechnology. Trends in Biotechnology, 21(8), 325–328. https://doi.org/10.1016/S0167-7799(03)00169-0.

    Article  Google Scholar 

  56. Gordon, R., Losic, D., Tiffany, M. A., Nagy, S. S., & Sterrenburg, F. A. S. (2009). The Glass Menagerie: diatoms for novel applications in nanotechnology. Trends in Biotechnology, 27(2), 116–127. https://doi.org/10.1016/j.tibtech.2008.11.003.

    Article  Google Scholar 

  57. Saade, A., & Bowler, C. (2009). Molecular tools for discovering the secrets of diatoms. BioScience, 59(9), 757–765. https://doi.org/10.1525/bio.2009.59.9.7.

    Article  Google Scholar 

  58. Williams, D. M., & Kociolek, J. P. (2007). Pursuit of a natural classification of diatoms: History, monophyly and the rejection of paraphyletic taxa. European Journal of Phycology, 42(3), 313–319. https://doi.org/10.1080/09670260701419921.

    Article  Google Scholar 

  59. Kröger, N., Deutzmann, R., & Sumper, M. (1999). Polycationic peptides from diatom biosilica that direct silica nanosphere formation. Science, 286(5442), 1129–1132. https://doi.org/10.1126/science.286.5442.1129.

    Article  Google Scholar 

  60. Dolatabadi, J. E. N., & de la Guardia, M. (2011). Applications of diatoms and silica nanotechnology in biosensing, drug and gene delivery, and formation of complex metal nanostructures. TrAC Trends in Analytical Chemistry, 30(9), 1538–1548. https://doi.org/10.1016/j.trac.2011.04.015.

    Article  Google Scholar 

  61. Losic, D., Mitchell, J. G., & Voelcker, N. H. (2009). Diatomaceous lessons in nanotechnology and advanced materials. Advanced Materials, 21(29), 2947–2958. https://doi.org/10.1002/adma.200803778.

    Article  Google Scholar 

  62. Fuhrmann, T., Landwehr, S., El Rharbl-Kucki, M., & Sumper, M. (2004). Diatoms as living photonic crystals. Applied Physics B: Lasers and Optics, 78(3-4), 257–260. https://doi.org/10.1007/s00340-004-1419-4.

    Article  Google Scholar 

  63. De Stefano, L., Maddalena, P., Moretti, L., Rea, I., Rendina, I., De Tommasi, E., Mocella, V., & De Stefano, M. (2009). Nano-biosilica from marine diatoms: A brand new material for photonic applications. Superlattices and Microstructures, 46(1-2), 84–89. https://doi.org/10.1016/j.spmi.2008.10.031.

    Article  Google Scholar 

  64. Jeffryes, C., Solanki, R., Rangineni, Y., Wang, W., Chang, C. H., & Rorrer, G. L. (2008). Electroluminescence and photoluminescence from nanostructured diatom frustules containing metabolically inserted germanium. Advanced Materials, 20(13), 2633–2637. https://doi.org/10.1002/adma.200800292.

    Article  Google Scholar 

  65. Jeffryes, C., Gutu, T., Jiao, J., & Rorrer, G. L. (2008). Two-stage photobioreactor process for the metabolic insertion of nanostructured germanium into the silica microstructure of the diatom Pinnularia sp. Materials Science and Engineering: C, 28(1), 107–118. https://doi.org/10.1016/j.msec.2007.01.002.

    Article  Google Scholar 

  66. Bayramoglu, G., Akbulut, A., & Yakup Arica, M. (2013). Immobilization of tyrosinase on modified diatom biosilica: Enzymatic removal of phenolic compounds from aqueous solution. Journal of Hazardous Materials, 244-245, 528–536. https://doi.org/10.1016/j.jhazmat.2012.10.041.

    Article  Google Scholar 

  67. Kabiri, S., Tran, D. N. H., Azari, S., & Losic, D. (2015). Graphene-Diatom Silica Aerogels for Efficient Removal of Mercury Ions from Water. ACS Applied Materials & Interfaces, 7(22), 11815–11823. https://doi.org/10.1021/acsami.5b01159.

    Article  Google Scholar 

  68. Kucki, M., & Fuhrmann-Lieker, T. (2012). Staining diatoms with rhodamine dyes: Control of emission colour in photonic biocomposites. Journal of the Royal Society Interface, 9(69), 727–733. https://doi.org/10.1098/rsif.2011.0424.

  69. Coradin, T., & Livage, J. (2005). Synthesis, characterization and diffusion properties of biomimetic silica-coated gelatine beads. Materials Science and Engineering: C, 25(2), 201–205. https://doi.org/10.1016/j.msec.2005.01.010.

    Article  Google Scholar 

  70. Leonardo, S., Prieto-Simón, B., & Campàs, M. (2016). Past, present and future of diatoms in biosensing. TrAC Trends in Analytical Chemistry, 79, 276–285. https://doi.org/10.1016/j.trac.2015.11.022.

    Article  Google Scholar 

  71. Liu, J., Qiao, S. Z., Hu, Q. H., & Lu, G. Q. (2011). Magnetic nanocomposites with mesoporous structures: Synthesis and applications. Small, 7(4), 425–443. https://doi.org/10.1002/smll.201001402.

    Article  Google Scholar 

  72. Gawande, M. B., Goswami, A., Felpin, F. X., Asefa, T., Huang, X., Silva, R., Zou, X., Zboril, R., & Varma, R. S. (2016). Cu and Cu-Based Nanoparticles: Synthesis and Applications in Catalysis. Chemical Reviews, 116(6), 3722–3811. https://doi.org/10.1021/acs.chemrev.5b00482.

    Article  Google Scholar 

  73. Mohanpuria, P., Rana, N. K., & Yadav, S. K. (2008). Biosynthesis of nanoparticles: Technological concepts and future applications. Journal of Nanoparticle Research, 10(3), 507–517. https://doi.org/10.1007/s11051-007-9275-x.

    Article  Google Scholar 

  74. Entezar-Almahdi, E., & Morowvat, M. H. (2019). Pharmacokinetic aspects of carbon nanotubes: Improving outcomes of functionalization. Current Nanoscience, 15(5), 454–459. https://doi.org/10.2174/1573413715666181204113525.

    Article  Google Scholar 

  75. Nielson, R., Kaehr, B., & Shear, J. B. (2009). Microreplication and design of biological architectures using dynamic-mask multiphoton lithography. Small, 5(1), 120–125. https://doi.org/10.1002/smll.200801084.

    Article  Google Scholar 

  76. Birnbaum, A. J., & Piqú, A. (2011). Laser induced extraplanar propulsion for three-dimensional microfabrication. Applied Physics Letters, 98(13). https://doi.org/10.1063/1.3567763.

  77. Li, X., Xu, H., Chen, Z. S., & Chen, G. (2011). Biosynthesis of nanoparticles by microorganisms and their applications. Journal of Nanomaterials, 2011https://doi.org/10.1155/2011/270974.

  78. Asmathunisha, N., & Kathiresan, K. (2013). A review on biosynthesis of nanoparticles by marine organisms. Colloids and Surfaces. B, Biointerfaces, 103, 283–287. https://doi.org/10.1016/j.colsurfb.2012.10.030.

    Article  Google Scholar 

  79. Rahman, A., Ismail, A., Jumbianti, D., Magdalena, S., & Sudrajat, H. (2009). Synthesis of copper oxide nano particles by using Phormidium cyanobacterium. Indonesian Journal of Chemistry, 9(3), 355–360.

    Article  Google Scholar 

  80. Shinde, A., Kashikar, A., Thomas, S., & Majumder, D. (2016). Screening of Multifaceted Thermophilic Actinomycete AASD15 for Bioactive Molecules and Metal Nanoparticles. International Journal of Advanced Research in Biological Sciences, 3(6), 28–39.

    Google Scholar 

  81. Shanthi, S., David Jayaseelan, B., Velusamy, P., Vijayakumar, S., Chih, C. T., & Vaseeharan, B. (2016). Biosynthesis of silver nanoparticles using a probiotic Bacillus licheniformis Dahb1 and their antibiofilm activity and toxicity effects in Ceriodaphnia cornuta. Microbial Pathogenesis, 93, 70–77. https://doi.org/10.1016/j.micpath.2016.01.014.

    Article  Google Scholar 

  82. Amerasan, D., Nataraj, T., Murugan, K., Panneerselvam, C., Madhiyazhagan, P., Nicoletti, M., & Benelli, G. (2016). Myco-synthesis of silver nanoparticles using Metarhizium anisopliae against the rural malaria vector Anopheles culicifacies Giles (Diptera: Culicidae). Journal of Pest Science, 89(1), 249–256. https://doi.org/10.1007/s10340-015-0675-x.

    Article  Google Scholar 

  83. Abboud, Y., Saffaj, T., Chagraoui, A., El Bouari, A., Brouzi, K., Tanane, O., & Ihssane, B. (2014). Biosynthesis, characterization and antimicrobial activity of copper oxide nanoparticles (CONPs) produced using brown alga extract (Bifurcaria bifurcata). Appl Applied Nanoscience (Switzerland), 4(5), 571–576. https://doi.org/10.1007/s13204-013-0233-x.

  84. Mubarak Ali, D., Sasikala, M., Gunasekaran, M., & Thajuddin, N. (2011). Biosynthesis and characterization of silver nanoparticles using marine cyanobacterium, oscillatoria willei ntdm01. Digest Journal of Nanomaterials and Biostructures, 6(2), 385–390.

    Google Scholar 

  85. Singh, P., Kim, Y. J., Zhang, D., & Yang, D. C. (2016). Biological Synthesis of Nanoparticles from Plants and Microorganisms. Trends in Biotechnology, 34(7), 588–599. https://doi.org/10.1016/j.tibtech.2016.02.006.

    Article  Google Scholar 

  86. Dhand, V., Soumya, L., Bharadwaj, S., Chakra, S., Bhatt, D., & Sreedhar, B. (2016). Green synthesis of silver nanoparticles using Coffea arabica seed extract and its antibacterial activity. Materials Science and Engineering: C, 58, 36–43. https://doi.org/10.1016/j.msec.2015.08.018.

    Article  Google Scholar 

  87. Lee, S. W., Mao, C., Flynn, C. E., & Belcher, A. M. (2002). Ordering of quantum dots, using genetically engineered viruses. Science, 296(5569), 892–895. https://doi.org/10.1126/science.1068054.

    Article  Google Scholar 

  88. Kowshik, M., Ashtaputre, S., Kharrazi, S., Vogel, W., Urban, J., Kulkarni, S. K., & Paknikar, K. M. (2003). Extracellular synthesis of silver nanoparticles by a silver-tolerant yeast strain MKY3. Nanotechnology, 14(1), 95–100. https://doi.org/10.1088/0957-4484/14/1/321.

    Article  Google Scholar 

  89. Szot-Karpińska, K., Golec, P., Leśniewski, A., Pałys, B., Marken, F., Niedziółka-Jönsson, J., Wȩgrzyn, G., & Łoś, M. (2016). Modified Filamentous Bacteriophage as a Scaffold for Carbon Nanofiber. Bioconjugate Chemistry, 27(12), 2900–2910. https://doi.org/10.1021/acs.bioconjchem.6b00555.

    Article  Google Scholar 

  90. Park, T. J., Lee, K. G., & Lee, S. Y. (2016). Advances in microbial biosynthesis of metal nanoparticles. Applied Microbiology and Biotechnology, 100(2), 521–534. https://doi.org/10.1007/s00253-015-6904-7.

    Article  Google Scholar 

  91. Schröfel, A., Kratošová, G., Šafařík, I., Šafaříková, M., Raška, I., & Shor, L. M. (2014). Applications of biosynthesized metallic nanoparticles - A review. Acta Biomaterialia, 10(10), 4023–4042. https://doi.org/10.1016/j.actbio.2014.05.022.

    Article  Google Scholar 

  92. Ebrahiminezhad, A., Bagheri, M., Taghizadeh, S. M., Berenjian, A., & Ghasemi, Y. (2016). Biomimetic synthesis of silver nanoparticles using microalgal secretory carbohydrates as a novel anticancer and antimicrobial. Advances in Natural Sciences: Nanoscience and Nanotechnology, 7(1). https://doi.org/10.1088/2043-6262/7/1/015018.

  93. Hulkoti, N. I., & Taranath, T. C. (2014). Biosynthesis of nanoparticles using microbes-A review. Colloids and Surfaces. B, Biointerfaces, 121, 474–483. https://doi.org/10.1016/j.colsurfb.2014.05.027.

    Article  Google Scholar 

  94. Dahoumane, S. A., Yéprémian, C., Djédiat, C., Couté, A., Fiévet, F., Coradin, T., & Brayner, R. (2016). Improvement of kinetics, yield, and colloidal stability of biogenic gold nanoparticles using living cells of Euglena gracilis microalga. Journal of Nanoparticle Research, 18(3). https://doi.org/10.1007/s11051-016-3378-1.

  95. Dahoumane, S. A., Djediat, C., Yéprémian, C., Couté, A., Fiévet, F., Coradin, T., & Brayner, R. (2012). Recycling and adaptation of Klebsormidium flaccidum microalgae for the sustained production of gold nanoparticles. Biotechnology and Bioengineering, 109(1), 284–288. https://doi.org/10.1002/bit.23276.

    Article  Google Scholar 

  96. Dahoumane, S. A., Yéprémian, C., Djédiat, C., Couté, A., Fiévet, F., Coradin, T., & Brayner, R. (2014). A global approach of the mechanism involved in the biosynthesis of gold colloids using micro-algae. Journal of Nanoparticle Research, 16(10), 1–12. https://doi.org/10.1007/s11051-014-2607-8.

    Article  Google Scholar 

  97. Luangpipat, T., Beattie, I. R., Chisti, Y., & Haverkamp, R. G. (2011). Gold nanoparticles produced in a microalga. Journal of Nanoparticle Research, 13(12), 6439–6445. https://doi.org/10.1007/s11051-011-0397-9.

    Article  Google Scholar 

  98. Brayner, R., Barberousse, H., Hemadi, M., Djedjat, C., Yéprémian, C., Coradin, T., Livage, J., Fiévet, F., & Couté, A. (2007). Cyanobacteria as bioreactors for the synthesis of Au, Ag, Pd, and Pt nanoparticles via an enzyme-mediated route. Journal of Nanoscience and Nanotechnology, 7(8), 2696–2708. https://doi.org/10.1166/jnn.2007.600.

    Article  Google Scholar 

  99. MubarakAli, D., Arunkumar, J., Nag, K. H., SheikSyedIshack, K. A., Baldev, E., Pandiaraj, D., & Thajuddin, N. (2013). Gold nanoparticles from Pro and eukaryotic photosynthetic microorganisms-Comparative studies on synthesis and its application on biolabelling. Colloids and Surfaces. B, Biointerfaces, 103, 166–173. https://doi.org/10.1016/j.colsurfb.2012.10.014.

    Article  Google Scholar 

  100. Chakraborty, N., Banerjee, A., Lahiri, S., Panda, A., Ghosh, A. N., & Pal, R. (2009). Biorecovery of gold using cyanobacteria and an eukaryotic alga with special reference to nanogold formation - A novel phenomenon. Journal of Applied Phycology, 21(1), 145–152. https://doi.org/10.1007/s10811-008-9343-3.

    Article  Google Scholar 

  101. Xie, J., Lee, J. Y., Wang, D. I. C., & Ting, Y. P. (2007). Identification of active biomolecules in the high-yield synthesis of single-crystalline gold nanoplates in algal solutions. Small, 3(4), 672–682. https://doi.org/10.1002/smll.200600612.

    Article  Google Scholar 

  102. Parial, D., Patra, H. K., Dasgupta, A. K. R., & Pal, R. (2012). Screening of different algae for green synthesis of gold nanoparticles. European Journal of Phycology, 47(1), 22–29. https://doi.org/10.1080/09670262.2011.653406.

    Article  Google Scholar 

  103. Mubarakali, D., Gopinath, V., Rameshbabu, N., & Thajuddin, N. (2012). Synthesis and characterization of CdS nanoparticles using C-phycoerythrin from the marine cyanobacteria. Materials Letters, 74, 8–11. https://doi.org/10.1016/j.matlet.2012.01.026.

    Article  Google Scholar 

  104. Sharma, A., Sharma, S., Sharma, K., Chetri, S. P. K., Vashishtha, A., Singh, P., Kumar, R., Rathi, B., & Agrawal, V. (2016). Algae as crucial organisms in advancing nanotechnology: a systematic review. Journal of Applied Phycology, 28(3), 1759–1774. https://doi.org/10.1007/s10811-015-0715-1.

    Article  Google Scholar 

  105. Shankar, P. D., Shobana, S., Karuppusamy, I., Pugazhendhi, A., Ramkumar, V. S., Arvindnarayan, S., & Kumar, G. (2016). A review on the biosynthesis of metallic nanoparticles (gold and silver) using bio-components of microalgae: Formation mechanism and applications. Enzyme and Microbial Technology, 95, 28–44. https://doi.org/10.1016/j.enzmictec.2016.10.015.

    Article  Google Scholar 

  106. Lengke, M. F., Ravel, B., Fleet, M. E., Wanger, G., Gordon, R. A., & Southam, G. (2006). Mechanisms of gold bioaccumulation by filamentous cyanobacteria from gold(III)-chloride complex. Environmental Science & Technology, 40(20), 6304–6309. https://doi.org/10.1021/es061040r.

    Article  Google Scholar 

  107. Quester, K., Avalos-Borja, M., & Castro-Longoria, E. (2013). Biosynthesis and microscopic study of metallic nanoparticles. Micron, 54-55, 1–27. https://doi.org/10.1016/j.micron.2013.07.003.

    Article  Google Scholar 

  108. Sadrieh, N. (2005). FDA considerations for regulation of nanomaterial containing products. In Conference presentation: Nanotechnology: Impact on Health and Regulation. UK: Organized by the Medicines and Health Products Regulatory Agency.

    Google Scholar 

  109. Sun, C., Lee, J. S. H., & Zhang, M. (2008). Magnetic nanoparticles in MR imaging and drug delivery. Advanced Drug Delivery Reviews, 60(11), 1252–1265. https://doi.org/10.1016/j.addr.2008.03.018.

    Article  Google Scholar 

  110. Rai, M., Yadav, A., & Gade, A. (2009). Silver nanoparticles as a new generation of antimicrobials. Biotechnology Advances, 27(1), 76–83. https://doi.org/10.1016/j.biotechadv.2008.09.002.

    Article  Google Scholar 

  111. Mornet, S., Vasseur, S., Grasset, F., & Duguet, E. (2004). Magnetic nanoparticle design for medical diagnosis and therapy. Journal of Materials Chemistry, 14(14), 2161–2175. https://doi.org/10.1039/b402025a.

    Article  Google Scholar 

  112. Michalet, X., Pinaud, F. F., Bentolila, L. A., Tsay, J. M., Doose, S., Li, J. J., Sundaresan, G., Wu, A. M., Gambhir, S. S., & Weiss, S. (2005). Quantum dots for live cells, in vivo imaging, and diagnostics. Science, 307(5709), 538–544. https://doi.org/10.1126/science.1104274.

    Article  Google Scholar 

  113. Gupta, A. K., & Gupta, M. (2005). Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials, 26(18), 3995–4021. https://doi.org/10.1016/j.biomaterials.2004.10.012.

    Article  Google Scholar 

  114. Dreaden, E. C., Alkilany, A. M., Huang, X., Murphy, C. J., & El-Sayed, M. A. (2012). The golden age: Gold nanoparticles for biomedicine. Chemical Society Reviews, 41(7), 2740–2779. https://doi.org/10.1039/c1cs15237h.

    Article  Google Scholar 

  115. Parial, D., Patra, H. K., Roychoudhury, P., Dasgupta, A. K., & Pal, R. (2012). Gold nanorod production by cyanobacteria-a green chemistry approach. Journal of Applied Phycology, 24(1), 55–60. https://doi.org/10.1007/s10811-010-9645-0.

    Article  Google Scholar 

  116. Jena, J., Pradhan, N., Aishvarya, V., Nayak, R. R., Dash, B. P., Sukla, L. B., Panda, P. K., & Mishra, B. K. (2015). Biological sequestration and retention of cadmium as CdS nanoparticles by the microalga Scenedesmus-24. Journal of Applied Phycology, 27(6), 2251–2260. https://doi.org/10.1007/s10811-014-0499-8.

    Article  Google Scholar 

  117. Govindaraju, K., Basha, S. K., Kumar, V. G., & Singaravelu, G. (2008). Silver, gold and bimetallic nanoparticles production using single-cell protein (Spirulina platensis) Geitler. Journal of Materials Science, 43(15), 5115–5122. https://doi.org/10.1007/s10853-008-2745-4.

    Article  Google Scholar 

  118. Lengke, M. F., Fleet, M. E., & Southam, G. (2006). Morphology of gold nanoparticles synthesized by filamentous cyanobacteria from gold(I)-Thiosulfate and gold(III)-chloride complexes. Langmuir, 22(6), 2780–2787. https://doi.org/10.1021/la052652c.

    Article  Google Scholar 

  119. Lengke, M. F., Fleet, M. E., & Southam, G. (2007). Synthesis of palladium nanoparticles by reaction of filamentous cyanobacterial Biomass with a palladium(II) chloride complex. Langmuir, 23(17), 8982–8987. https://doi.org/10.1021/la7012446.

    Article  Google Scholar 

  120. Feurtet-Mazel, A., Mornet, S., Charron, L., Mesmer-Dudons, N., Maury-Brachet, R., & Baudrimont, M. (2016). Biosynthesis of gold nanoparticles by the living freshwater diatom Eolimna minima, a species developed in river biofilms. Environmental Science and Pollution Research, 23(5), 4334–4339. https://doi.org/10.1007/s11356-015-4139-x.

    Article  Google Scholar 

  121. Castro, L., Blázquez, M. L., Muñoz, J. A., González, F., & Ballester, A. (2013). Biological synthesis of metallic nanoparticles using algae. IET Nanobiotechnology, 7(3), 109–116. https://doi.org/10.1049/iet-nbt.2012.0041.

    Article  Google Scholar 

  122. Senapati, S., Syed, A., Moeez, S., Kumar, A., & Ahmad, A. (2012). Intracellular synthesis of gold nanoparticles using alga Tetraselmis kochinensis. Materials Letters, 79, 116–118. https://doi.org/10.1016/j.matlet.2012.04.009.

    Article  Google Scholar 

  123. Schröfel, A., Kratošová, G., Bohunická, M., Dobročka, E., & Vávra, I. (2011). Biosynthesis of gold nanoparticles using diatoms-silica-gold and EPS-gold bionanocomposite formation. Journal of Nanoparticle Research, 13(8), 3207–3216. https://doi.org/10.1007/s11051-011-0221-6.

    Article  Google Scholar 

  124. Shakibaie, M., Forootanfar, H., Mollazadeh-Moghaddam, K., Bagherzadeh, Z., Nafissi-Varcheh, N., Shahverdi, A. R., & Faramarzi, M. A. (2010). Green synthesis of gold nanoparticles by the marine microalga Tetraselmis suecica. Biotechnology and Applied Biochemistry, 57(2), 71–75. https://doi.org/10.1042/BA20100196.

    Article  Google Scholar 

  125. Konishi, Y., Tsukiyama, T., Ohno, K., Saitoh, N., Nomura, T., & Nagamine, S. (2006). Intracellular recovery of gold by microbial reduction of AuCl 4- ions using the anaerobic bacterium Shewanella algae. Hydrometallurgy, 81(1), 24–29. https://doi.org/10.1016/j.hydromet.2005.09.006.

    Article  Google Scholar 

  126. Nayak, D., Nag, M., Banerjee, S., Pal, R., Laskar, S., & Lahiri, S. (2006). Preconcentration of 198Au in a green alga, Rhizoclonium. Journal of Radioanalytical and Nuclear Chemistry, 268(2), 337–340. https://doi.org/10.1007/s10967-006-0170-1.

    Article  Google Scholar 

  127. Rösken, L. M., Körsten, S., Fischer, C. B., Schönleber, A., Van Smaalen, S., Geimer, S., & Wehner, S. (2014). Time-dependent growth of crystalline Au0-nanoparticles in cyanobacteria as self-reproducing bioreactors: 1. Anabaena sp. Journal of Nanoparticle Research, 16(4), 1–14. https://doi.org/10.1007/s11051-014-2370-x.

  128. Lahr, R. H., & Vikesland, P. J. (2014). Surface-enhanced raman spectroscopy (SERS) cellular imaging of intracellulary biosynthesized gold nanoparticles. ACS Sustainable Chemistry & Engineering, 2(7), 1599–1608. https://doi.org/10.1021/sc500105n.

    Article  Google Scholar 

  129. Dahoumane, S. A., Djediat, C., Yéprémian, C., Couté, A., Fiévet, F., Coradin, T., & Brayner, R. (2012). Species selection for the design of gold nanobioreactor by photosynthetic organisms. Journal of Nanoparticle Research, 14(6). https://doi.org/10.1007/s11051-012-0883-8.

  130. Sicard, C., Brayner, R., Margueritat, J., Hémadi, M., Couté, A., Yéprémian, C., Djediat, C., Aubard, J., Fiévet, F., Livage, J., & Coradin, T. (2010). Nano-gold biosynthesis by silica-encapsulated micro-algae: A "living" bio-hybrid material. Journal of Materials Chemistry, 20(42), 9342–9347. https://doi.org/10.1039/c0jm01735c.

    Article  Google Scholar 

  131. Singh, A. K., Tiwari, R., Kumar, V., Singh, P., Riyazat Khadim, S. K., Tiwari, A., Srivastava, V., Hasan, S. H., & Asthana, R. K. (2017). Photo-induced biosynthesis of silver nanoparticles from aqueous extract of Dunaliella salina and their anticancer potential. Journal of Photochemistry and Photobiology B: Biology, 166, 202–211. https://doi.org/10.1016/j.jphotobiol.2016.11.020.

    Article  Google Scholar 

  132. Mahdieh, M., Zolanvari, A., Azimee, A. S., & Mahdieh, M. (2012). Green biosynthesis of silver nanoparticles by Spirulina platensis. Scientia Iranica, 19(3), 926–929. https://doi.org/10.1016/j.scient.2012.01.010.

    Article  Google Scholar 

  133. Jena, J., Pradhan, N., Dash, B. P., Panda, P. K., & Mishra, B. K. (2015). Pigment mediated biogenic synthesis of silver nanoparticles using diatom Amphora sp. and its antimicrobial activity. Journal of Saudi Chemical Society, 19(6), 661–666. https://doi.org/10.1016/j.jscs.2014.06.005.

    Article  Google Scholar 

  134. Chokshi, K., Pancha, I., Ghosh, T., Paliwal, C., Maurya, R., Ghosh, A., & Mishra, S. (2016). Green synthesis, characterization and antioxidant potential of silver nanoparticles biosynthesized from de-oiled biomass of thermotolerant oleaginous microalgae: Acutodesmus dimorphus. RSC Advances, 6(76), 72269–72274. https://doi.org/10.1039/c6ra15322d.

    Article  Google Scholar 

  135. Tsibakhashvili, N. Y., Kirkesali, E. I., Pataraya, D. T., Gurielidze, M. A., Kalabegishvili, T. L., Gvarjaladze, D. N., Tsertsvadze, G. I., Frontasyeva, M. V., Zinicovscaia, I. I., Wakstein, M. S., Khakhanov, S. N., Shvindina, N. V., & Shklover, V. Y. (2011). Microbial synthesis of silver nanoparticles by Streptomyces glaucus and Spirulina platensis. Advanced Science Letters, 4(11-12), 3408–3417. https://doi.org/10.1166/asl.2011.1915.

    Article  Google Scholar 

  136. Jena, J., Pradhan, N., Dash, B. P., Sukla, L. B., & Panda, P. K. (2013). Biosynthesis and characterization of silver nanoparticles using microalga Chlorococcum humicola and its antibacterial activity. Int J Nanomater Biostruct, 3(1), 1–8.

    Google Scholar 

  137. Cepoi, L., Rudi, L., Chiriac, T., Valuţă, A., Zinicovscaia, I., Mitina, T., Duca, G., Kirkesali, E., Frontaseva, M., & Pavlov, S. (2013). Microalgae as possible silver “nanofactories”. In Nanotechnologies and Biomedical Engineering (pp. 433–434).

    Google Scholar 

  138. Barwal, I., Ranjan, P., Kateriya, S., & Yadav, S. C. (2011). Cellular oxido-reductive proteins of Chlamydomonas reinhardtii control the biosynthesis of silver nanoparticles. J Nanobiotechnology, 9. https://doi.org/10.1186/1477-3155-9-56.

  139. Merin, D. D., Prakash, S., & Bhimba, B. V. (2010). Antibacterial screening of silver nanoparticles synthesized by marine micro algae. Asian Pacific Journal of Tropical Medicine, 3(10), 797–799. https://doi.org/10.1016/S1995-7645(10)60191-5.

    Article  Google Scholar 

  140. Aziz, N., Faraz, M., Pandey, R., Shakir, M., Fatma, T., Varma, A., Barman, I., & Prasad, R. (2015). Facile Algae-Derived Route to Biogenic Silver Nanoparticles: Synthesis, Antibacterial, and Photocatalytic Properties. Langmuir, 31(42), 11605–11612. https://doi.org/10.1021/acs.langmuir.5b03081.

    Article  Google Scholar 

  141. Mohseniazar, M., Barin, M., Zarredar, H., Alizadeh, S., & Shanehbandi, D. (2011). Potential of microalgae and lactobacilli in biosynthesis of silver nanoparticles. BioImpacts, 1(3), 149–152. https://doi.org/10.5681/bi.2011.023.

    Article  Google Scholar 

  142. Li, Y., Tang, X., Song, W., Zhu, L., Liu, X., Yan, X., Jin, C., & Ren, Q. (2015). Biosynthesis of silver nanoparticles using Euglena gracilis, Euglena intermedia and their extract. IET Nanobiotechnology, 9(1), 19–26. https://doi.org/10.1049/iet-nbt.2013.0062.

    Article  Google Scholar 

  143. Xie, J., Lee, J. Y., Wang, D. I. C., & Ting, Y. P. (2007). Silver nanoplates: From biological to biomimetic synthesis. ACS Nano, 1(5), 429–439. https://doi.org/10.1021/nn7000883.

    Article  Google Scholar 

  144. Sudha, S. S., Rajamanickam, K., & Rengaramanujam, J. (2013). Microalgae mediated synthesis of silver nanoparticles and their antibacterial activity against pathogenic bacteria. Indian Journal of Experimental Biology, 51(5), 393–399.

    Google Scholar 

  145. Jena, J., Pradhan, N., Nayak, R. R., Dash, B. P., Sukla, L. B., Panda, P. K., & Mishra, B. K. (2014). Microalga Scenedesmus sp.: A potential low-cost green machine for silver nanoparticle synthesis. Journal of Microbiology and Biotechnology, 24(4), 522–533. https://doi.org/10.4014/jmb.1306.06014.

    Article  Google Scholar 

  146. Lengke, M. F., Fleet, M. E., & Southam, G. (2007). Biosynthesis of silver nanoparticles by filamentous cyanobacteria from a silver(I) nitrate complex. Langmuir, 23(5), 2694–2699. https://doi.org/10.1021/la0613124.

    Article  Google Scholar 

  147. Sinha, S. N., Paul, D., Halder, N., Sengupta, D., & Patra, S. K. (2015). Green synthesis of silver nanoparticles using fresh water green alga Pithophora oedogonia (Mont.) Wittrock and evaluation of their antibacterial activity. Appl Nanosci (Switzerland), 5(6), 703–709. https://doi.org/10.1007/s13204-014-0366-6.

    Article  Google Scholar 

  148. Patel, V., Berthold, D., Puranik, P., & Gantar, M. (2015). Screening of cyanobacteria and microalgae for their ability to synthesize silver nanoparticles with antibacterial activity. Biotechnol Rep, 5(1), 112–119. https://doi.org/10.1016/j.btre.2014.12.001.

    Article  Google Scholar 

  149. Dahoumane, S. A., Wijesekera, K., Filipe, C. D. M., & Brennan, J. D. (2014). Stoichiometrically controlled production of bimetallic Gold-Silver alloy colloids using micro-alga cultures. Journal of Colloid and Interface Science, 416, 67–72. https://doi.org/10.1016/j.jcis.2013.10.048.

    Article  Google Scholar 

  150. Scarano, G., & Morelli, E. (2003). Properties of phytochelatin-coated CdS nanocrystallites formed in a marine phytoplanktonic alga (Phaeodactylum tricornutum, Bohlin) in response to Cd. Plant Science, 165(4), 803–810. https://doi.org/10.1016/S0168-9452(03)00274-7.

    Article  Google Scholar 

  151. Arsiya, F., Sayadi, M. H., & Sobhani, S. (2017). Green synthesis of palladium nanoparticles using Chlorella vulgaris. Materials Letters, 186, 113–115. https://doi.org/10.1016/j.matlet.2016.09.101.

    Article  Google Scholar 

  152. Eroglu, E., Chen, X., Bradshaw, M., Agarwal, V., Zou, J., Stewart, S. G., Duan, X., Lamb, R. N., Smith, S. M., Raston, C. L., & Iyer, K. S. (2013). Biogenic production of palladium nanocrystals using microalgae and their immobilization on chitosan nanofibers for catalytic applications. RSC Advances, 3(4), 1009–1012. https://doi.org/10.1039/c2ra22402j.

    Article  Google Scholar 

  153. Konishi, Y., Ohno, K., Saitoh, N., Nomura, T., Nagamine, S., Hishida, H., Takahashi, Y., & Uruga, T. (2007). Bioreductive deposition of platinum nanoparticles on the bacterium Shewanella algae. Journal of Biotechnology, 128(3), 648–653. https://doi.org/10.1016/j.jbiotec.2006.11.014.

    Article  Google Scholar 

  154. Lengke, M. F., Fleet, M. E., & Southam, G. (2006). Synthesis of platinum nanoparticles by reaction of filamentous cyanobacteria with platinum(IV)-chloride complex. Langmuir, 22(17), 7318–7323. https://doi.org/10.1021/la060873s.

    Article  Google Scholar 

  155. Brayner, R., Coradin, T., Beaunier, P., Grenèche, J. M., Djediat, C., Yéprémian, C., Couté, A., & Fiévet, F. (2012). Intracellular biosynthesis of superparamagnetic 2-lines ferri-hydrite nanoparticles using Euglena gracilis microalgae. Colloids and Surfaces. B, Biointerfaces, 93, 20–23. https://doi.org/10.1016/j.colsurfb.2011.10.014.

    Article  Google Scholar 

  156. Subramaniyam, V., Subashchandrabose, S. R., Ganeshkumar, V., Thavamani, P., Chen, Z., Naidu, R., & Megharaj, M. (2016). Cultivation of Chlorella on brewery wastewater and nano-particle biosynthesis by its biomass. Bioresource Technology, 211, 698–703. https://doi.org/10.1016/j.biortech.2016.03.154.

    Article  Google Scholar 

  157. Subramaniyam, V., Subashchandrabose, S. R., Thavamani, P., Megharaj, M., Chen, Z., & Naidu, R. (2015). Chlorococcum sp. MM11—a novel phyco-nanofactory for the synthesis of iron nanoparticles. Journal of Applied Phycology, 27(5), 1861–1869. https://doi.org/10.1007/s10811-014-0492-2.

    Article  Google Scholar 

  158. Brayner, R., Yéprémian, C., Djediat, C., Coradin, T., Herbst, F., Livage, J., Fiévet, F., & Couté, A. (2009). Photosynthetic microorganism-mediated synthesis of akaganeite (β-FeOOH) nanorods. Langmuir, 25(17), 10062–10067. https://doi.org/10.1021/la9010345.

    Article  Google Scholar 

  159. Dahoumane, S. A., Djediat, C., Yéprémian, C., Couté, A., Fiévet, F., & Brayner, R. (2010). Design of magnetic akaganeite-cyanobacteria hybrid biofilms. Thin Solid Films, 518(19), 5432–5436. https://doi.org/10.1016/j.tsf.2010.04.001.

    Article  Google Scholar 

  160. Singh, G., Babele, P. K., Kumar, A., Srivastava, A., Sinha, R. P., & Tyagi, M. B. (2014). Synthesis of ZnO nanoparticles using the cell extract of the cyanobacterium, Anabaena strain L31 and its conjugation with UV-B absorbing compound shinorine. Journal of Photochemistry and Photobiology B: Biology, 138, 55–62. https://doi.org/10.1016/j.jphotobiol.2014.04.030.

    Article  Google Scholar 

Download references

Funding

This work was supported by Research and Technology Deputy of Shiraz University of Medical Sciences, Shiraz, Iran (Grant no. 99-01-106-22265).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Hossein Morowvat.

Ethics declarations

Conflict of Interest

None.

Ethics Approval and Consent to Participate

Not applicable.

Research Involving Humans and Animals Statement

None.

Informed Consent

Not applicable.

Consent for Publication

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taghizadeh, SM., Morowvat, M.H., Negahdaripour, M. et al. Biosynthesis of Metals and Metal Oxide Nanoparticles Through Microalgal Nanobiotechnology: Quality Control Aspects. BioNanoSci. 11, 209–226 (2021). https://doi.org/10.1007/s12668-020-00805-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12668-020-00805-2

Keywords

Navigation