Skip to main content
Log in

Recent advances of nanomaterials for non-steroidal anti-inflammatory drugs removal from wastewater: a critical review

  • Review
  • Published:
Clean Technologies and Environmental Policy Aims and scope Submit manuscript

Abstract

Non-steroidal anti-inflammatory drugs (NSAIDs) are one of the most widely consumed drugs. These drugs often end up in our water systems because human bodies cannot fully metabolize them, and the residual amounts are excreted through urine or feces. Their ubiquitous presence in wastewater poses various degrees of risk to non-targeted species. Cognizant of the situation, this review encompasses and probes into the occurrence, sources, removal strategies, and legislations pertaining to NSAIDs in aqueous environments. A comprehensive and state-of-the-art overview of the utilization of multifunctional nanomaterials such as nanoadsorbent, metal–organic frameworks, semiconductor-based nanocatalysts, and biologically modified nanoparticles for the efficient removal of NSAIDs in water has been discussed. Furthermore, the review is an output of a conscientious effort to bring attention to the current global guidelines, policies, and directives. The review also entails recommendations for future studies toward managing pharmaceutical contaminants in the environment. We believe that the present study is useful for environmentalists, legislators and policymakers, scientists, industrialists, and organizations working toward sustainable development goals.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Enquiries about data availability should be directed to the authors.

References

  • Abe O O, Qiu Z, Jinschek J R, Gouma P, Abe OO, Qiu Z et al (2021) Effect of (100) and (001) hexagonal WO3 faceting on isoprene and acetone gas selectivity. Sensors 21(5):1690

    Article  Google Scholar 

  • Adityosulindro S, Barthe L, González-Labrada K, Jáuregui Haza UJ, Delmas H, Julcour C (2017) Sonolysis and sono-Fenton oxidation for removal of ibuprofen in (waste)water. Ultrason Sonochem 39:889–896

    Article  CAS  Google Scholar 

  • Aguinaco A, Beltrán F, García-Araya J, Oropesa A-L (2012) Photocatalytic ozonation to remove the pharmaceutical diclofenac from water: Influence of variables. Chem Eng J 189–190:275–282

    Article  CAS  Google Scholar 

  • Ali PI, Alothman Z, Alwarthan A (2016) Synthesis of composite iron nano adsorbent and removal of ibuprofen drug residue from water. J Mol Liq 219:858–864

    Article  CAS  Google Scholar 

  • Almeida B, Oehmen A, Marques R, Brito D, Carvalho G, Barreto Crespo MT (2013) Modelling the biodegradation of non-steroidal anti-inflammatory drugs (NSAIDs) by activated sludge and a pure culture. Bioresour Technol 133:31–37

    Article  CAS  Google Scholar 

  • Al-Tarawneh I, El-Dosoky M, Alawi DM, Batarseh M, Widyasari A, Kreuzig R et al (2014) Studies on human pharmaceuticals in Jordanian wastewater samples. CLEAN–Soil Air Water 43(4):504–511

    Article  Google Scholar 

  • An HJ, Bhadra BN, Khan NA, Jhung SH (2018) Adsorptive removal of wide range of pharmaceutical and personal care products from water by using metal azolate framework-6-derived porous carbon. Chem Eng J [internet] 343:447–454. https://doi.org/10.1016/j.cej.2018.03.025

    Article  CAS  Google Scholar 

  • Aracagök Y, Goker H, Cihangir N (2016) Biodegradation of micropollutant naproxen with a selected fungal strain and identification of metabolites. Zeitschrift Für Naturforsch c 72(5–6):173–179

    Article  Google Scholar 

  • Aristizabal-Ciro C, Botero-Coy AM, López FJ, Peñuela GA (2017) Monitoring pharmaceuticals and personal care products in reservoir water used for drinking water supply. Environ Sci Pollut Res 24:7335–7347

    Article  CAS  Google Scholar 

  • Ashfaq M, Nawaz Khan K, Saif Ur Rehman M, Mustafa G, Faizan Nazar M, Sun Q et al (2017) Ecological risk assessment of pharmaceuticals in the receiving environment of pharmaceutical wastewater in Pakistan. Ecotoxicol Environ Saf 136:31–39

    Article  CAS  Google Scholar 

  • Asmatulu R, Nguyen P, Asmatulu E (2013) Chapter 5 - Nanotechnology Safety in the Automotive Industry. In: Asmatulu RBT-NS, editor. Amsterdam: Elsevier; pp 57–72. Available from: https://www.sciencedirect.com/science/article/pii/B9780444594389000059

  • Baalousha M, Cornelis G, Kuhlbusch TAJ, Lynch I, Nickel C, Peijnenburg W et al (2016) Modeling nanomaterial fate and uptake in the environment: current knowledge and future trends. Environ Sci Nano [internet] 3:323–345. https://doi.org/10.1039/C5EN00207A

    Article  CAS  Google Scholar 

  • Barnett-Itzhaki Z, Berman T, Grotto I, Schwartzberg E (2016) Household medical waste disposal policy in Israel. Isr J Health Policy Res [internet] 5:48. https://doi.org/10.1186/s13584-016-0108-1

    Article  Google Scholar 

  • Bashaar M, Thawani V, Hassali MA, Saleem F (2017) Disposal practices of unused and expired pharmaceuticals among general public in Kabul. BMC Public Health 17:1–8

    Google Scholar 

  • Bayen S, Estrada ES, Juhel G, Kit LW, Kelly BC (2016) Pharmaceutically active compounds and endocrine disrupting chemicals in water, sediments and mollusks in mangrove ecosystems from Singapore. Mar Pollut Bull 109:716–722

    Article  CAS  Google Scholar 

  • Behera A (2022) Nanomaterials BT - advanced materials: an Introduction to Modern Materials Science. Springer, Cham, pp 77–125. https://doi.org/10.1007/978-3-030-80359-9_3

    Book  Google Scholar 

  • Ben T, Qiu S (2013) Porous aromatic frameworks: synthesis, structure and functions. CrystEngComm 15:17–26

    Article  CAS  Google Scholar 

  • Benitez F, Acero J, Real F, Roldán G, Rodriguez E (2011) Ultrafiltration and nanofiltration membranes applied to the removal of the pharmaceuticals amoxicillin, naproxen, metoprolol and phenacetin from water. J Chem Technol Biotechnol 86:858–866

    Article  Google Scholar 

  • Bhadra BN, Cho KH, Khan NA, Hong DY, Jhung SH (2015) Liquid-phase adsorption of aromatics over a metal-organic framework and activated carbon: effects of hydrophobicity/hydrophilicity of adsorbents and solvent polarity. J Phys Chem C 119:26620–26627

    Article  CAS  Google Scholar 

  • Bhalla GS, Bandyopadhyay K, Sahai K (2019) Keeping in pace with the new Biomedical Waste Management Rules: What we need to know! Med J Armed Forces India [Internet]. 75:240–245. Available from: https://www.sciencedirect.com/science/article/pii/S0377123718301631

  • Bhardwaj B, Singh P, Kumar A, Kumar S, Budhwar V (2020) Eco-Friendly Greener Synthesis of Nanoparticles. Adv Pharm Bull [Internet]. 10:566–576. Available from: https://apb.tbzmed.ac.ir/Article/apb-27824

  • Bhatia V, Dhir A, Kansal SK (2016) Solar light induced photocatalytic degradation of aspirin using doped TiO2 nanoparticles. J Nanosci Nanotechnol 16:7444–7450. https://doi.org/10.1166/jnn.2016.11129

  • Bhattacharya P, Mukherjee D, Deb N, Swarnakar S, Banerjee S (2020) Application of green synthesized ZnO nanoparticle coated ceramic ultrafiltration membrane for remediation of pharmaceutical components from synthetic water: reusability assay of treated water on seed germination. J Environ Chem Eng 8:103803

    Article  CAS  Google Scholar 

  • Bilal M, Adeel M, Rasheed T, Iqbal HMN (2019) Multifunctional metal-organic frameworks-based biocatalytic platforms: recent developments and future prospects. J Mater Res Technol [internet] 8:2359–2371. https://doi.org/10.1016/j.jmrt.2018.12.001

    Article  CAS  Google Scholar 

  • Calderón JM, Tarapués M (2021) Medicamentos sobrantes y caducados en el hogar ¿su almacenaje y desecho representan un problema de salud pública? Salud Colect 17:E3599

    Article  Google Scholar 

  • Chander V, Sharma B, Negi V, Aswal RS, Singh P, Singh R et al (2016) Pharmaceutical compounds in drinking water. J Xenobiotics 6:5774

    Article  Google Scholar 

  • Chauhan A, Sillu D, Agnihotri S (2018) Removal of pharmaceutical contaminants in wastewater using nanomaterials: a comprehensive review. Curr Drug Metab 20:483–505

    Article  Google Scholar 

  • Chiffre A, Degiorgi F, Buleté A, Spinner L, Badot P-M (2016) Occurrence of pharmaceuticals in WWTP effluents and their impact in a karstic rural catchment of Eastern France. Environ Sci Pollut Res 23:25427–25441

    Article  CAS  Google Scholar 

  • Chu Y-C, Lee G-J, Chen C-Y, Ma S-H, Wu JJ, Horng T-L et al (2013) Preparation of bismuth oxide photocatalyst and its application in white-light LEDs. J Nanomater [internet] 2013:596324. https://doi.org/10.1155/2013/596324

    Article  CAS  Google Scholar 

  • Cornejo J, González-Pérez DM, Pérez JI, Gómez MA (2020) Ibuprofen removal by a microfiltration membrane bioreactor during the startup phase. J Environ Sci Heal Part A 55:374–384

    Article  CAS  Google Scholar 

  • Das C, Paul SS, Saha A, Singh T, Saha A, Im J et al (2020) Silver-based nanomaterials as therapeutic agents against coronaviruses: a review. Int J Nanomedicine 15:9301–9315

    Article  Google Scholar 

  • Das C, Ghosh NN, Pulhani V, Biswas G, Singhal P (2023) Bio-functionalized magnetic nanoparticles for cost-effective adsorption of U(vi): experimental and theoretical investigation. RSC Adv [internet] 13:15015–15023. https://doi.org/10.1039/D3RA00799E

    Article  CAS  Google Scholar 

  • Das C, Sillanpää M, Zaidi SA, Khan MA, Biswas G (2023) Current trends in carbon-based quantum dots development from solid wastes and their applications. Environ Sci Pollut Res [internet] 30:45528–45554. https://doi.org/10.1007/s11356-023-25822-y

    Article  Google Scholar 

  • Das C, Singh S, Bhakta S, Mishra P, Biswas G (2022) Bio-modified magnetic nanoparticles with Terminalia arjuna bark extract for the removal of methylene blue and lead (II) from simulated wastewater. Chemosphere [Internet]. 291:132673. Available from: https://www.sciencedirect.com/science/article/pii/S0045653521031453

  • Das C, Nath Ghosh N, Bhardwaj R, Narula K, Mishra P, Biswas G (2023) Enhanced photocatalytic degradation of a hydrocortisone by biomodified and biocompatible magnetite nanoparticles and its mechanistic assessment. J Ind Eng Chem [Internet]. Available from: https://www.sciencedirect.com/science/article/pii/S1226086X23004999

  • Deshpande BD, Agrawal PS, Yenkie MKN, Dhoble SJ (2020) Prospective of nanotechnology in degradation of waste water: a new challenges. Nano-Structures and Nano-Objects [internet] 22:100442. https://doi.org/10.1016/j.nanoso.2020.100442

    Article  CAS  Google Scholar 

  • Diniz MS, Salgado R, Pereira VJ, Carvalho G, Oehmen A, Reis MAM et al (2015) Ecotoxicity of ketoprofen, diclofenac, atenolol and their photolysis byproducts in zebrafish (Danio rerio). Sci Total Environ 505:282–289

    Article  CAS  Google Scholar 

  • Dolu T, Nas B (2023) Dissemination of nonsteroidal anti-inflammatory drugs (NSAIDs) and metabolites from wastewater treatment plant to soils and agricultural crops via real-scale different agronomic practices. Environ Res [Internet]. 227:115731. Available from: https://www.sciencedirect.com/science/article/pii/S0013935123005236

  • Ebele AJ, Abou-Elwafa Abdallah M, Harrad S (2017) Pharmaceuticals and personal care products (PPCPs) in the freshwater aquatic environment. Emerg Contam 3:1–16

    Article  Google Scholar 

  • GLAAS (2019) National Systems to Support Drinking-Water, Sanitation and Hygiene: Global Status Report 2019 [Internet]. Available from: https://www.who.int/water_sanitation_health/publications/glaas-report-2019/en/

  • Gumbi BP, Moodley B, Birungi G, Ndungu PG (2017) Detection and quantification of acidic drug residues in South African surface water using gas chromatography-mass spectrometry. Chemosphere 168:1042–1050

    Article  CAS  Google Scholar 

  • Han J (2022) Barcoding drug information to recycle unwanted household pharmaceuticals: a review. Environ Chem Lett. https://doi.org/10.1007/s10311-022-01420-1

    Article  Google Scholar 

  • Hapeshi E, Gros M, Lopez Serna R, Boleda MR, Ventura F, Petrovic M et al (2015) Licit and illicit drugs in urban wastewater in Cyprus. CLEAN - Soil, Air, Water 43:1–7

    Article  Google Scholar 

  • Hartlieb KJ, Ferris DP, Holcroft JM, Kandela I, Stern CL, Nassar MS et al (2017) Encapsulation of ibuprofen in CD-MOF and related bioavailability studies. Mol Pharm 14:1831–1839

    Article  CAS  Google Scholar 

  • Helenkár A, Sebok A, Molnár-Perl I, Vasanits anikó, (2010) The role of the acquisition methods in the analysis of the non-steroidal anti-inflammatory drugs in Danube River by gas chromatography - mass spectrometry. Talanta 82:600–607

    Article  Google Scholar 

  • Hu C, He M, Chen B, Hu B (2015) Simultaneous determination of polar and apolar compounds in environmental samples by a polyaniline/hydroxyl multi-walled carbon nanotubes composite-coated stir bar sorptive extraction coupled with high performance liquid chromatography. J Chromatogr A [internet] 1394:36–45. https://doi.org/10.1016/j.chroma.2015.03.046

    Article  CAS  Google Scholar 

  • Husein DZ, Hassanien R, Al-Hakkani MF (2019) Green-synthesized copper nano-adsorbent for the removal of pharmaceutical pollutants from real wastewater samples. Heliyon [internet] 5:e02339. https://doi.org/10.1016/j.heliyon.2019.e02339

    Article  Google Scholar 

  • Hussain N, Bilal M, M. N. Iqbal H (2021) Carbon-based nanomaterials with multipurpose attributes for water treatment: Greening the 21st-century nanostructure materials deployment. Biomater Polym Horiz [Internet]. 1:48–58. Available from: https://eaapublishing.org/journals/index.php/bph/article/view/131

  • Jain K, Patel AS, Pardhi VP, Flora SJ (2021) Nanotechnology in wastewater management: a new paradigm towards wastewater treatment. Moleclules 26(6):1797

    Article  CAS  Google Scholar 

  • Jodeh S, Abdelwahab F, Jaradat N, Warad I, Jodeh W (2016) Adsorption of diclofenac from aqueous solution using Cyclamen persicum tubers based activated carbon (CTAC). J Assoc Arab Univ Basic Appl Sci [internet] 20:32–38. https://doi.org/10.1016/j.jaubas.2014.11.002

    Article  Google Scholar 

  • Kajal N, Singh V, Gupta R, Gautam S 2022 Metal organic frameworks for electrochemical sensor applications: a review. Environ Res [Internet]. 204:112320. Available from: https://www.sciencedirect.com/science/article/pii/S0013935121016212

  • Kanaujiya DK, Paul T, Sinharoy A, Pakshirajan K (2019) Biological treatment processes for the removal of organic micropollutants from wastewater: a review. Curr Pollut Reports 5:112–128

    Article  Google Scholar 

  • Kansal SK, Kundu P, Sood S, Lamba R, Umar A, Mehta SK (2014) Photocatalytic degradation of the antibiotic levofloxacin using highly crystalline TiO2 nanoparticles. New J Chem [internet] 38:3220–3226. https://doi.org/10.1039/C3NJ01619F

    Article  CAS  Google Scholar 

  • Kaphle A, Navya PN, Umapathi A, Daima HK (2018) Nanomaterials for agriculture, food and environment: applications, toxicity and regulation. Environ Chem Lett [internet] 16:43–58. https://doi.org/10.1007/s10311-017-0662-y

    Article  CAS  Google Scholar 

  • Kaushal A, Singh SK (2017) Removal of heavy metals by nanoadsorbents: a review. J Environ Biotechnol 6:96–104

    Google Scholar 

  • Khan NA, Khan AH, Ahmed S, Farooqi IH, Alam SS, Ali I, et al (2022) Efficient removal of ibuprofen and ofloxacin pharmaceuticals using biofilm reactors for hospital wastewater treatment. Chemosphere [Internet]. 298:134243. Available from: https://www.sciencedirect.com/science/article/pii/S0045653522007366

  • Kıpçak S, Çağanoğlu D, Ergün P, Bor S (2022) In vitro and in vivo effects of nonsteroidal anti-inflammatory drugs and aspirin on rabbit esophageal epithelium. Turkish J Gastroenterol off J Turkish Soc Gastroenterol 33:257–270

    Article  Google Scholar 

  • Kołecka K, Gajewska M, Caban M (2022) From the pills to environment – Prediction and tracking of non-steroidal anti-inflammatory drug concentrations in wastewater. Sci Total Environ [Internet]. 825:153611. Available from: https://www.sciencedirect.com/science/article/pii/S0048969722007033

  • Kollarahithlu SC, Balakrishnan RM (2019) Adsorption of ibuprofen using cysteine-modified silane-coated magnetic nanomaterial. Environ Sci Pollut Res 26:34117–34126

    Article  CAS  Google Scholar 

  • Kolodzik JM, Eilers MA, Angelos MG (1990) Nonsteroidal anti-inflammatory drugs and coma: a case report of fenoprofen overdose. Ann Emerg Med 19:378–381

    Article  CAS  Google Scholar 

  • Kotyza J, Soudek P, Kafka Z, Vanĕk T (2010) Phytoremediation of pharmaceuticals—preliminary study. Int J Phytoremediation 12:306–316

    Article  CAS  Google Scholar 

  • Kumar S, Yadav S, Kataria N, Chauhan AK, Joshi S, Gupta R et al (2023) Recent advancement in nanotechnology for the treatment of pharmaceutical wastewater: sources, toxicity, and remediation technology. Curr Pollut Reports 9:110–142

    Article  CAS  Google Scholar 

  • Li Y, Wang Y, He L, Meng L, Lu H, Li X (2020) Preparation of poly(4-vinylpyridine)-functionalized magnetic Al-MOF for the removal of naproxen from aqueous solution. J Hazard Mater 383:121144. https://doi.org/10.1016/j.jhazmat.2019.121144

    Article  CAS  Google Scholar 

  • Lin S, Zhao Y, Yun YS (2018) Highly effective removal of nonsteroidal anti-inflammatory pharmaceuticals from water by Zr(IV)-based metal-organic framework: adsorption performance and mechanisms. ACS Appl Mater Interfaces 10:28076–28085

    Article  CAS  Google Scholar 

  • Lin N, Gong Y, Wang R, Wang Y, Zhang X (2022) Critical review of perovskite-based materials in advanced oxidation system for wastewater treatment: Design, applications and mechanisms. J Hazard Mater [Internet]. 424:127637. Available from: https://www.sciencedirect.com/science/article/pii/S0304389421026054

  • Lindim C, van Gils J, Georgieva D, Mekenyan O, Cousins IT (2016) Evaluation of human pharmaceutical emissions and concentrations in Swedish river basins. Sci Total Environ 572:508–519

    Article  CAS  Google Scholar 

  • Liu X, Shan Y, Zhang S, Kong Q, Pang H (2023) Application of metal organic framework in wastewater treatment. Green Energy Environ [Internet]. 8:698–721 https://www.sciencedirect.com/science/article/pii/S2468025722000565

  • Loh SH, Yahaya N, Ishak SM, Wan Mohd Khalik WMA, Che Abdullah NS, Aboul-Enein HY et al (2021) Recent trends in adsorbent-based microextraction of micropollutants in environmental waters. Curr Pollut Reports 7:89–103

    Article  CAS  Google Scholar 

  • Lolić A, Paíga P, Santos LHMLM, Ramos S, Correia M, Delerue-Matos C (2015) Assessment of non-steroidal anti-inflammatory and analgesic pharmaceuticals in seawaters of North of Portugal: occurrence and environmental risk. Sci Total Environ 508:240–250

    Article  Google Scholar 

  • Lourens A, Falch A, Malgas-Enus R (2023) Magnetite immobilized metal nanoparticles in the treatment and removal of pollutants from wastewater: a review. J Mater Sci [internet] 58:2951–2970. https://doi.org/10.1007/s10853-023-08167-2

    Article  CAS  Google Scholar 

  • Lv M, Sun Q, Hu A, Hou L, Li J, Cai X et al (2014) Pharmaceuticals and personal care products in a mesoscale subtropical watershed and their application as sewage markers. J Hazard Mater 280:696–705

    Article  CAS  Google Scholar 

  • Manikandan S, Subbaiya R, Saravanan M, Ponraj M, Selvam M, Pugazhendhi A (2022) A critical review of advanced nanotechnology and hybrid membrane based water recycling, reuse, and wastewater treatment processes. Chemosphere [Internet]. 289:132867. Available from: https://www.sciencedirect.com/science/article/pii/S0045653521033397

  • Maramraj KK, Subbalakshmi G, Ali MS, Dikid T, Yadav R, Sodha SV et al (2020) A community-wide acute diarrheal disease outbreak associated with drinking contaminated water from shallow bore-wells in a tribal village, India, 2017. BMC Public Health 20:1–8

    Article  Google Scholar 

  • Meléndez-Marmolejo J, Díaz de León-Martínez L, Galván-Romero V, Villarreal-Lucio S, Ocampo-Pérez R, Medellín-Castillo NA et al (2022) Design and application of molecularly imprinted polymers for adsorption and environmental assessment of anti-inflammatory drugs in wastewater samples. Environ Sci Pollut Res [internet]. https://doi.org/10.1007/s11356-022-19130-0

    Article  Google Scholar 

  • Mitkidis P, Chrysochou P, Obolevich V, Mitkidis K (2022) Effectiveness of environmental health and loss framing on household pharmaceutical take-back schemes. Waste Manag [Internet]. 143:61–68. Available from: https://www.sciencedirect.com/science/article/pii/S0956053X22001015

  • Mohamed A, Salama A, Nasser WS, Uheida A (2018) Photodegradation of ibuprofen, cetirizine, and naproxen by PAN-MWCNT/TiO2–NH2 nanofiber membrane under UV light irradiation. Environ Sci Eur [internet]. https://doi.org/10.1186/s12302-018-0177-6

    Article  Google Scholar 

  • Mohd Hanafiah Z, Wan Mohtar WHM, Abd Manan TSB, Bachi’ NA, Abdullah NA, Abd Hamid HH, et al. (2022) The occurrence of non-steroidal anti-inflammatory drugs (NSAIDs) in Malaysian urban domestic wastewater. Chemosphere [Internet]. 287:132134. Available from: https://www.sciencedirect.com/science/article/pii/S0045653521026060

  • Mohiuddin I, Grover A, Aulakh JS, Malik AK, Lee SS, Brown RJC et al (2021) Starch-Mg/Al layered double hydroxide composites as an efficient solid phase extraction sorbent for non-steroidal anti-inflammatory drugs as environmental pollutants. J Hazard Mater 401:123782

    Article  CAS  Google Scholar 

  • Morales I, Feijoo G, Moreira M, Lema J (2012) Operation of stirred tank reactors (STRs) and fixed-bed reactors (FBRs) with free and immobilized Phanerochaete chrysosporium for the continuous removal of pharmaceutical compounds. Biochem Eng J 66:38–45

    Article  Google Scholar 

  • Mukherjee D, Barghi S, Ray AK (2014) Preparation and characterization of the TiO2 immobilized polymeric photocatalyst for degradation of aspirin under UV and solar light. Processes 2:12–23

    Article  CAS  Google Scholar 

  • Murgolo S, Moreira IS, Piccirillo C, Castro PML, Ventrella G, Cocozza C et al (2018) Photocatalytic degradation of diclofenac by hydroxyapatite-TiO2 composite material: Identification of transformation products and assessment of toxicity. Materials (basel) 11(9):1779

    Article  Google Scholar 

  • Mutiyar PK, Gupta SK, Mittal AK (2018) Fate of pharmaceutical active compounds (PhACs) from River Yamuna, India: an ecotoxicological risk assessment approach. Ecotoxicol Environ Saf 150:297–304

    Article  CAS  Google Scholar 

  • Nadais H, Li X, Alves N, Couras C, Andersen HR, Angelidaki I et al (2018) Bio-electro-fenton process for the degradation of non-steroidal anti-inflammatory drugs in wastewater. Chem Eng J 338:401–410

    Article  CAS  Google Scholar 

  • Näslund J, Asker N, Fick J, Larsson DGJ, Norrgren L (2020) Naproxen affects multiple organs in fish but is still an environmentally better alternative to diclofenac. Aquat Toxicol 227:105583

    Article  Google Scholar 

  • Nasrollahzadeh M, Sajjadi M, Iravani S, Varma RS (2021) Carbon-based sustainable nanomaterials for water treatment: State-of-art and future perspectives. Chemosphere [Internet]. 263:128005. Available from: https://www.sciencedirect.com/science/article/pii/S0045653520322001

  • Oaks JL, Gilbert M, Virani MZ, Watson RT, Meteyer CU, Rideout BA et al (2004) Diclofenac residues as the cause of vulture population decline in Pakistan. Nature 427:630–633

    Article  CAS  Google Scholar 

  • Osorio V, Cruz-Alcalde A, Pérez S (2022) Nitrosation and nitration of diclofenac and structurally related nonsteroidal anti-inflammatory drugs (NSAIDs) in nitrifying activated sludge. Sci Total Environ [Internet]. 807:150533. Available from: https://www.sciencedirect.com/science/article/pii/S0048969721056102

  • Paíga P, Santos L, Ramos S, Jorge S, Silva J, Delerue-Matos C (2016) Presence of pharmaceuticals in the Lis river (Portugal): sources, fate and seasonal variation. Sci Total Environ 573:164–177

    Article  Google Scholar 

  • Papageorgiou M, Kosma C, Lambropoulou D (2016) Seasonal occurrence, removal, mass loading and environmental risk assessment of 55 pharmaceuticals and personal care products in a municipal wastewater treatment plant in Central Greece. Sci Total Environ 543:547–569

    Article  CAS  Google Scholar 

  • Pashaei R, Dzingelevičienė R, Abbasi S, Szultka-Młyńska M, Buszewski B (2022) Determination of 15 human pharmaceutical residues in fish and shrimp tissues by high-performance liquid chromatography-tandem mass spectrometry. Environ Monit Assess 194:325. https://doi.org/10.1007/s10661-022-09993-8

    Article  CAS  Google Scholar 

  • Peng Y, Lin C, Tang M, Yang L, Yang Y, Liu J, et al. 2020 Niobium pentoxide ultra-thin nanosheets: A photocatalytic degradation and recyclable surface-enhanced Raman scattering substrate. Appl Surf Sci [Internet]. 2020;509:145376. Available from: https://www.sciencedirect.com/science/article/pii/S016943322030132X

  • Petrie B, Camacho-Muñoz D (2021) Analysis, fate and toxicity of chiral non-steroidal anti-inflammatory drugs in wastewaters and the environment: a review. Environ Chem Lett [internet] 19:43–75. https://doi.org/10.1007/s10311-020-01065-y

    Article  CAS  Google Scholar 

  • Petrovic M, Skrbic B, Živančev J, Ferrando-Climent L, Barcelo D (2013) Determination of 81 pharmaceutical drugs by high performance liquid chromatography coupled to mass spectrometry with hybrid triple quadrupole-linear ion trap in different types of water in Serbia. Sci Total Environ 468-469C:415–428

    Google Scholar 

  • Pourzamani H, Menglizadeh N, Hajizadeh Y, Mohammadi H (2018) Electrochemical degradation of diclofenac using three-dimensional electrode reactor with multi-walled carbon nanotubes. Environ Sci Pollut Res 25:24746–24763

    Article  CAS  Google Scholar 

  • Praveenkumarreddy Y, Vimalkumar K, Ramaswamy BR, Kumar V, Singhal RK, Basu H et al (2021) Assessment of non-steroidal anti-inflammatory drugs from selected wastewater treatment plants of Southwestern India. Emerg Contam 7:43–51

    Article  CAS  Google Scholar 

  • Pylypchuk IV, Daniel G, Kessler VG, Seisenbaeva GA (2020) Removal of diclofenac, paracetamol, and carbamazepine from model aqueous solutions by magnetic sol–gel encapsulated horseradish peroxidase and lignin peroxidase composites. Nanomaterials 10(2):2823

    Article  Google Scholar 

  • Qiu H, Fan P, Li X, Hou G (2021) Electrochemical degradation of DCF by boron-doped diamond anode: degradation mechanism, pathways and influencing factors. Water Sci Technol [internet] 84:431–444. https://doi.org/10.2166/wst.2021.231

    Article  CAS  Google Scholar 

  • Rasheed T, Bilal M, Hassan AA, Nabeel F, Bharagava RN, Romanholo Ferreira LF et al (2020) Environmental threatening concern and efficient removal of pharmaceutically active compounds using metal-organic frameworks as adsorbents. Environ Res 185:109436. https://doi.org/10.1016/j.envres.2020.109436

    Article  CAS  Google Scholar 

  • Rastkari N, Eslami A, Nasseri S, Piroti E, Asadi A (2017) Optimizing parameters on nanophotocatalytic degradation of ibuprofen using UVC/ZnO processes by response surface methodology. Polish J Environ Stud 26:785–794

    Article  CAS  Google Scholar 

  • Rogowska J, Zimmermann A, Muszyńska A, Ratajczyk W, Wolska L (2019) Pharmaceutical household waste practices: preliminary findings from a case study in Poland. Environ Manage [internet] 64:97–106. https://doi.org/10.1007/s00267-019-01174-7

    Article  Google Scholar 

  • Russo V, Hmoudah M, Broccoli F, Iesce MR, Jung O-S, Di Serio M (2020) Applications of metal organic frameworks in wastewater treatment: a review on adsorption and photodegradation. Front Chem Eng 2:581487

    Article  Google Scholar 

  • Saeid S, Tolvanen P, Kumar N, Eränen K, Peltonen J, Peurla M et al (2018) Advanced oxidation process for the removal of ibuprofen from aqueous solution: a non-catalytic and catalytic ozonation study in a semi-batch reactor. Appl Catal B Environ 230:77–90

    Article  CAS  Google Scholar 

  • Sahar E, David I, Gelman Y, Cikurel H, Aharoni A, Messalem R et al (2011) The use of RO to remove emerging micropollutants following CAS/UF or MBR treatment of municipal wastewater. Desalination 273:142–147

    Article  CAS  Google Scholar 

  • Santos L, Gros M, Rodríguez-Mozaz S, Delerue-Matos C, Pena A, Barcelo D et al (2013) Contribution of hospital effluents to the load of pharmaceuticals in urban wastewaters: identification of ecologically relevant pharmaceuticals. Sci Total Environ 461-462C:302–316

    Article  Google Scholar 

  • Scott T-M, Phillips PJ, Kolpin DW, Colella KM, Furlong ET, Foreman WT, et al. (2018) Pharmaceutical manufacturing facility discharges can substantially increase the pharmaceutical load to U.S. wastewaters. Sci Total Environ [Internet]. 636:69–79. Available from: https://www.sciencedirect.com/science/article/pii/S0048969718313354

  • Seo PW, Bhadra BN, Ahmed I, Khan NA, Jhung SH (2016) Adsorptive removal of pharmaceuticals and personal care products from water with functionalized metal-organic frameworks: remarkable adsorbents with hydrogen-bonding abilities. Sci Rep [internet] 6:1–11. https://doi.org/10.1038/srep34462

    Article  CAS  Google Scholar 

  • Serra-Pérez E, Álvarez-Torrellas S, Ismael Águeda V, Larriba M, Ovejero G, García J (2021) Effective removal of naproxen from aqueous solutions by CWAO process using noble metals supported on carbon nanospheres catalysts. Sep Purif Technol [Internet]. 259:118084. Available from: https://www.sciencedirect.com/science/article/pii/S1383586620325570

  • Shafiee A, Rabiee N, Ahmadi S, Baneshi M, Khatami M, Iravani S et al (2022) Core-shell nanophotocatalysts: review of materials and applications. ACS Appl Nano Mater [internet] 5:55–86. https://doi.org/10.1021/acsanm.1c03714

    Article  CAS  Google Scholar 

  • Sharma J, Mariam I, Suresh-Kareya M, Pavan-Jutur P, Joshi M, Harish et al (2023) Metabolomic response of microalgae towards diclofenac sodium during its removal from water and concomitant recovery of pigments and lipids. Bioresour Technol 371:128617

    Article  CAS  Google Scholar 

  • Sharma J, Sharma M, Nigam S, Joshi M (2023) Environmental-friendly algal-mediated magnetic activated carbon for adsorptive removal of contaminants from water. Chem Phys Impact 6:100169

    Article  Google Scholar 

  • Sharma J, Dubey M, Chakrabarti S, Srivastava SK, Mishra YK, Bhatnagar A et al (2023) Nitrogen-doped graphene nanosheets for sustainable removal of pharmaceutical contaminants from water: kinetics and ANFIS modeling. ChemNanoMat. https://doi.org/10.1002/cnma.202300093

    Article  Google Scholar 

  • Sharma M, Joshi M, Nigam S, Shree S, Avasthi DK, Adelung R, et al. (2019) ZnO tetrapods and activated carbon based hybrid composite: Adsorbents for enhanced decontamination of hexavalent chromium from aqueous solution. Chem Eng J [Internet]. 358:540–551. Available from: https://www.sciencedirect.com/science/article/pii/S1385894718319727

  • Sharma J, Joshi M, Bhatnagar A, Chaurasia AK, Nigam S (2022) Pharmaceutical residues: One of the significant problems in achieving ‘clean water for all’ and its solution. Environ Res [Internet]. 215:114219. Available from: https://www.sciencedirect.com/science/article/pii/S0013935122015468

  • Sharma J, Joshi M, Nigam S (2022) Chapter 4 - Role of microalgae in degradation of pharmaceutical compounds from water. In: Shah M, Rodriguez-Couto S, De La Cruz CBV, Biswas JBT-AI of PP in WT, Eds. Elsevier, Amsterdam, pp 75–102

  • Singh T, Shukla S, Kumar P, Wahla V, Bajpai VK (2017) Application of nanotechnology in food science: perception and overview. Front Microbiol 8:1–7

    Article  Google Scholar 

  • Smith CA (2002) Managing Pharmaceutical Waste- What Pharmacist should Know. J Pharm Soc Wisconsin [Internet]. 17–22. Available from: https://gecap.org/pdf/managing_pharmaceutical_waste.pdf

  • Soares SF, Trindade T, Daniel-Da-Silva AL (2021) Enhanced removal of non-steroidal inflammatory drugs from water by quaternary chitosan-based magnetic nanosorbents. Coatings 11(8):964

    Article  CAS  Google Scholar 

  • Štrbac D, Aggelopoulos CA, Štrbac G, Dimitropoulos M, Novaković M, Ivetić T et al (2018) Photocatalytic degradation of Naproxen and methylene blue: comparison between ZnO, TiO2 and their mixture. Process Saf Environ Prot 113:174–183

    Article  Google Scholar 

  • Suarez S, Lema JM, Omil F (2009) Pre-treatment of hospital wastewater by coagulation–flocculation and flotation. Bioresour Technol [Internet]. 100:2138–2146. Available from: https://www.sciencedirect.com/science/article/pii/S0960852408009267

  • Subedi B, Codru N, Dziewulski DM, Wilson LR, Xue J, Yun S et al (2015) A pilot study on the assessment of trace organic contaminants including pharmaceuticals and personal care products from on-site wastewater treatment systems along Skaneateles Lake in New York State, USA. Water Res 72:28–39

    Article  CAS  Google Scholar 

  • Subedi B, Balakrishna K, Sinha RK, Yamashita N, Balasubramanian VG, Kannan K (2015) Mass loading and removal of pharmaceuticals and personal care products, including psychoactive and illicit drugs and artificial sweeteners, in five sewage treatment plants in India. J Environ Chem Eng 3:2882–2891

    Article  CAS  Google Scholar 

  • Sung H-H, Chiu Y-W, Wang S-Y, Chen C-M, Huang D-J (2014) Acute toxicity of mixture of acetaminophen and ibuprofen to Green Neon Shrimp, Neocaridina denticulate. Environ Toxicol Pharmacol 38:8–13

    Article  CAS  Google Scholar 

  • Tang J, Sun J, Wang W, Yang L, Xu Y (2021) Pharmaceuticals in two watersheds in Eastern China and their ecological risks. Environ Pollut 277:116773. https://doi.org/10.1016/j.envpol.2021.116773

    Article  CAS  Google Scholar 

  • Thalla AK, Vannarath AS (2020) Occurrence and environmental risks of nonsteroidal anti-inflammatory drugs in urban wastewater in the southwest monsoon region of India. Environ Monit Assess 192:193

    Article  CAS  Google Scholar 

  • Tidmas V, Brazier J, Hawkins J, Forbes SC, Bottoms L, Farrington K (2022) Nutritional and Non-Nutritional Strategies in Bodybuilding: Impact on Kidney Function. Int J Environ Res Public Heal 19(7):4288

    Article  Google Scholar 

  • Tran N, Urase T, Ta T (2014) A preliminary study on the occurrence of pharmaceutically active compounds in hospital wastewater and surface water in Hanoi, Vietnam. CLEAN–Soil Air Water 42:267–275

    Article  CAS  Google Scholar 

  • Tshangana CS, Muleja AA, Mamba BB (2022) Photocatalytic activity of graphene oxide quantum dots in an effluent from a South African wastewater treatment plant. J Nanoparticle Res. https://doi.org/10.1007/s11051-022-05422-6

    Article  Google Scholar 

  • Vaudin P, Augé C, Just N, Mhaouty-Kodja S, Mortaud S, Pillon D (2022) When pharmaceutical drugs become environmental pollutants: Potential neural effects and underlying mechanisms. Environ Res [Internet]. 205:112495. Available from: https://www.sciencedirect.com/science/article/pii/S0013935121017965

  • Vergili I (2013) Application of nanofiltration for the removal of carbamazepine, diclofenac and ibuprofen from drinking water sources. J Environ Manage 127:177–187

    Article  CAS  Google Scholar 

  • Vicente-Martínez Y, Caravaca M, Soto-Meca A, Solana-González R (2020) Magnetic core-modified silver nanoparticles for ibuprofen removal: an emerging pollutant in waters. Sci Rep 10:1–10

    Article  Google Scholar 

  • Vieira Y, Pereira HA, Leichtweis J, Mistura CM, Foletto EL, Oliveira LFS, et al. (2021) Effective treatment of hospital wastewater with high-concentration diclofenac and ibuprofen using a promising technology based on degradation reaction catalyzed by Fe0 under microwave irradiation. Sci Total Environ [Internet]. 783:146991. Available from: https://www.sciencedirect.com/science/article/pii/S0048969721020611

  • Vollmer G (2010) Disposal of pharmaceutical waste in households – A European survey the environmental burden. pp. 165–178

  • Wang Y, Wang X, Li M, Dong J, Sun C, Chen G (2018) Removal of pharmaceutical and personal care products (PPCPs) from Municipal Waste Water with Integrated Membrane Systems, MBR-RO/NF. Int J Environ Res Public Health 15:269

    Article  Google Scholar 

  • Wang Y, Liu H, Xie Y, Ni T, Liu G (2015) Oxidative removal of diclofenac by chlorine dioxide: Reaction kinetics and mechanism. Chem Eng J [Internet]. 279:409–415. Available from: https://www.sciencedirect.com/science/article/pii/S1385894715007093

  • Wei H, Deng S, Huang Q, Nie Y, Wang B, Huang J et al (2013) Regenerable granular carbon nanotubes/alumina hybrid adsorbents for diclofenac sodium and carbamazepine removal from aqueous solution. Water Res [internet] 47:4139–4147. https://doi.org/10.1016/j.watres.2012.11.062

    Article  CAS  Google Scholar 

  • Wijaya L, Alyemeni M, Ahmad P, Alfarhan A, Barcelo D, El-Sheikh MA et al (2020) Ecotoxicological effects of ibuprofen on plant growth of vigna unguiculata L. Plants 9(11):1473

    Article  CAS  Google Scholar 

  • Wilt A, Butkovskyi A, Tuantet K, Leal L, Fernandes T, Langenhoff A et al (2015) Micropollutant removal in an algal treatment system fed with source separated wastewater streams. J Hazard Mater 304:84–92

    Article  Google Scholar 

  • Wojcieszyńska D, Domaradzka D, Hupert-Kocurek K, Guzik U (2014) Bacterial degradation of naproxen – Undisclosed pollutant in the environment. J Environ Manage 145:157–161

    Article  Google Scholar 

  • Xu L, Cui X, Liao J, Liu Y, Jiang B, Niu J (2021) Synchronous mineralization of three aqueous non-steroidal anti-inflammatory drugs in electrochemical advanced oxidation process. Chinese Chem Lett [Internet]. Available from: https://www.sciencedirect.com/science/article/pii/S1001841721009050

  • Yan Q, Zhang Y, Kang J, Gan X, Xu-Y P, Guo J et al (2014) A Preliminary study on the occurrence of pharmaceutically active compounds in the river basins and their removal in two conventional drinking water treatment plants in Chongqing, China. CLEAN - Soil Air Water 43(6):794–803

    Article  Google Scholar 

  • You L, Nguyen VT, Pal A, Chen H, He Y, Reinhard M et al (2015) Investigation of pharmaceuticals, personal care products and endocrine disrupting chemicals in a tropical urban catchment and the influence of environmental factors. Sci Total Environ 536:955–963

    Article  CAS  Google Scholar 

  • Zha R, Shi T, He L, Zhang M (2022) Chemistry and nanotechnology-oriented strategies toward nanocellulose for human water treatment. Adv Sustain Syst [internet] 6:2100302. https://doi.org/10.1002/adsu.202100302

    Article  CAS  Google Scholar 

  • Zhao R, Ma T, Li S, Tian Y, Zhu G (2019) Porous aromatic framework modified electrospun fiber membrane as a highly efficient and reusable adsorbent for pharmaceuticals and personal care products removal. ACS Appl Mater Interfaces 11:16662–16673

    Article  CAS  Google Scholar 

  • Zhao P, Liu N, Jin C, Chen H, Zhang Z, Zhao L et al (2019) UiO-66: an advanced platform for investigating the influence of functionalization in the adsorption removal of pharmaceutical waste. Inorg Chem 58:8787–8792

    Article  CAS  Google Scholar 

Download references

Acknowledgements

J.M. would like to thank help and support received from Applied Sciences Cluster, at School of Engineering, University of Petroleum and Energy Studies, Dehradun, India. J.S., S.N, and M.J. are thankful and grateful to Directors of Amity Institute of Biotechnology and Amity Institute of Nanotechnology, Amity University, Noida, for their support and assistance.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

JM and JS contributed to conceptualization, data curation, formal analysis, validation, visualization, writing—review, and editing. MS performed validation, visualization, writing—review, and editing. YKM performed formal analysis, writing—review, editing, and supervision. SN contributed to conceptualization, data curation, formal analysis, investigation, methodology, validation, visualization, supervision, resources, writing—review, and editing. MJ contributed to conceptualization, data curation, formal analysis, investigation, validation, visualization, supervision, resources, writing—review, and editing.

Corresponding authors

Correspondence to Subhasha Nigam or Monika Joshi.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Human and animal rights

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mangalam, J., Sharma, J., Sharma, M. et al. Recent advances of nanomaterials for non-steroidal anti-inflammatory drugs removal from wastewater: a critical review. Clean Techn Environ Policy (2024). https://doi.org/10.1007/s10098-023-02701-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10098-023-02701-1

Keywords

Navigation