Skip to main content
Log in

Biological Treatment Processes for the Removal of Organic Micropollutants from Wastewater: a Review

  • Emerging Contaminants (D Chiang and C Walecka-Hutchison, Section Editors)
  • Published:
Current Pollution Reports Aims and scope Submit manuscript

Abstract

Micropollutants or contaminants of emerging concern (CECs) are released into the environment from a wide variety of sources. Due to the adverse effect on human health, micropollutant-containing wastewater needs to be treated before its discharge. A number of conventional physicochemical methods have been extensively studied for micropollutant degradation. However, owing to their one or more disadvantages, biological treatment using suitable microorganisms is of recent interest. Numerous bacteria and fungi are capable of degrading these micropollutants even at high concentrations. However, in order for the biological treatment to be commercially viable and industrially scalable, bioprocess development with efficient bioreactor systems is highly essential. This paper reviews state-of-the-art techniques for the removal of micropollutants by conventional biological systems such as activated sludge process, biofilm-based reactor, and trickling bed bioreactor. However, compared with conventional systems, advanced biological systems, namely two-phase partitioning bioreactor, membrane-based reactor, and cell-immobilized bioreactor systems, have not been examined and, hence, need detailed exploration. Such advanced treatment systems are capable of tolerating high pollutant load and are also able to treat highly water insoluble pollutants. Furthermore, hybrid systems comprising of a combination of different physicochemical and biological processes are discussed in this paper, which are not only capable of improving the treatment efficiency but also eliminate any accumulation of the toxic by-product produced during the treatment. Among the different hybrid systems, a combination of different biological systems is found to be highly efficient in treating micropollutant-containing wastewater. Finally, scope for future research prospects in the field are derived and addressed in details.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Barbosa MO, Moreira NF, Ribeiro AR, Pereira MF, Silva AM. Occurrence and removal of organic micropollutants: an overview of the watch list of EU Decision 2015/495. Water Res. 2016;94:257–79. https://doi.org/10.1016/j.watres.2016.02.0472.

    Article  CAS  Google Scholar 

  2. Yoon Y, Ryu J, Oh J, Choi BG, Snyder SA. Occurrence of endocrine disrupting compounds, pharmaceuticals, and personal care products in the Han River (Seoul, South Korea). Sci Total Environ. 2010;408(3):636–43. https://doi.org/10.1016/j.scitotenv.2009.10.049.

    Article  CAS  Google Scholar 

  3. Kim SD, Cho J, Kim IS, Vanderford BJ, Snyder SA. Occurrence and removal of pharmaceuticals and endocrine disruptors in South Korean surface, drinking, and wastewaters. Water Res. 2007;41(5):1013–21. https://doi.org/10.1016/j.watres.2006.06.034.

    Article  CAS  Google Scholar 

  4. Zhao JL, Ying GG, Wang L, Yang JF, Yang XB, Yang LH, et al. Determination of phenolic endocrine disrupting chemicals and acidic pharmaceuticals in surface water of the Pearl Rivers in South China by gas chromatography–negative chemical ionization–mass spectrometry. Sci Total Environ. 2009;407(2):962–74. https://doi.org/10.1016/j.scitotenv.2008.09.048.

    Article  CAS  Google Scholar 

  5. Schriks M, Heringa MB, van der Kooi MM, de Voogt P, van Wezel AP. Toxicological relevance of emerging contaminants for drinking water quality. Water Res. 2010;44(2):461–76. https://doi.org/10.1016/j.watres.2009.08.023.

    Article  CAS  Google Scholar 

  6. Behera SK, Kim HW, Oh JE, Park HS. Occurrence and removal of antibiotics, hormones and several other pharmaceuticals in wastewater treatment plants of the largest industrial city of Korea. Sci Total Environ. 2011;409(20):4351–60. https://doi.org/10.1016/j.scitotenv.2011.07.015.

    Article  CAS  Google Scholar 

  7. Campo J, Masiá A, Blasco C, Picó Y. Occurrence and removal efficiency of pesticides in sewage treatment plants of four Mediterranean River basins. J Hazard Mater. 2013;263:146–57. https://doi.org/10.1016/j.jhazmat.2013.09.061.

    Article  CAS  Google Scholar 

  8. Luo Y, Guo W, Ngo HH, Nghiem LD, Hai FI, Zhang J, et al. A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment. Sci Total Environ. 2014;473:619–41. https://doi.org/10.1016/j.scitotenv.2013.12.065.

    Article  CAS  Google Scholar 

  9. Daughton CG. Pharmaceutical ingredients in drinking water: overview of occurrence and significance of human exposure. In: Halden RU, editor. Contaminants of emerging concern in the environment: ecological and human health considerations: ACS; 2010.

  10. Ahmed MB, Zhou JL, Ngo HH, Guo W, Thomaidis NS, Xu J. Progress in the biological and chemical treatment technologies for emerging contaminant removal from wastewater: a critical review. J Hazard Mater. 2017;323:274–98. https://doi.org/10.1016/j.jhazmat.2016.04.045.

    Article  CAS  Google Scholar 

  11. Quinn B, Gagné F, Blaise C. Evaluation of the acute, chronic and teratogenic effects of a mixture of eleven pharmaceuticals on the cnidarian, Hydra attenuata. Sci Total Environ. 2009;407(3):1072–9. https://doi.org/10.1016/j.scitotenv.2008.10.022.

    Article  CAS  Google Scholar 

  12. Jiang JQ, Zhou Z, Sharma VK. Occurrence, transportation, monitoring and treatment of emerging micro-pollutants in wastewater—a review from global views. Microchem J. 2013;110:292–300. https://doi.org/10.1016/j.microc.2013.04.014.

    Article  CAS  Google Scholar 

  13. Bolong N, Ismail AF, Salim MR, Matsuura T. A review of the effects of emerging contaminants in wastewater and options for their removal. Desalination. 2009;239(1–3):229–46. https://doi.org/10.1016/j.desal.2008.03.020.

    Article  CAS  Google Scholar 

  14. Bui XT, Vo TP, Ngo HH, Guo WS, Nguyen TT. Multicriteria assessment of advanced treatment technologies for micropollutants removal at large-scale applications. Sci Total Environ. 2016;563:1050–67. https://doi.org/10.1016/j.scitotenv.2016.04.191.

    Article  CAS  Google Scholar 

  15. Song W, Huang M, Rumbeiha W, Li H. Determination of amprolium, carbadox, monensin, and tylosin in surface water by liquid chromatography/tandem mass spectrometry. Rapid Commun Mass Spectrom. 2007;21(12):1944–50. https://doi.org/10.1002/rcm.3042.

    Article  CAS  Google Scholar 

  16. Matthiessen P, Arnold D, Johnson AC, Pepper TJ, Pottinger TG, Pulman KG. Contamination of headwater streams in the United Kingdom by oestrogenic hormones from livestock farms. Sci Total Environ. 2006;367(2–3):616–30. https://doi.org/10.1016/j.scitotenv.2006.02.007.

    Article  CAS  Google Scholar 

  17. Petrović M, Gonzalez S, Barceló D. Analysis and removal of emerging contaminants in wastewater and drinking water. TrAC. 2003;22(10):685–96. https://doi.org/10.1016/S0165-9936(03)01105-1.

    Article  CAS  Google Scholar 

  18. Pruden A, Pei R, Storteboom H, Carlson KH. Antibiotic resistance genes as emerging contaminants: studies in Northern Colorado. Environ Sci Technol. 2006;40(23):7445–50. https://doi.org/10.1021/es060413l.

    Article  CAS  Google Scholar 

  19. Choi YJ, Kim LH, Zoh KD. Removal characteristics and mechanism of antibiotics using constructed wetlands. Ecol Eng. 2016;91:85–92. https://doi.org/10.1016/j.ecoleng.2016.01.058.

    Article  Google Scholar 

  20. Tijani JO, Fatoba OO, Petrik LF. A review of pharmaceuticals and endocrine-disrupting compounds: sources, effects, removal, and detections. Water Air Soil Pollut. 2013;224(11):1770. https://doi.org/10.1007/s11270-013-1770-3.

    Article  CAS  Google Scholar 

  21. Sudhakaran S, Maeng SK, Amy G. Hybridization of natural systems with advanced treatment processes for organic micropollutant removals: new concepts in multi-barrier treatment. Chemosphere. 2013;92(6):731–7. https://doi.org/10.1016/j.chemosphere.2013.04.021.

    Article  CAS  Google Scholar 

  22. Zhang A, Li Y. Removal of phenolic endocrine disrupting compounds from waste activated sludge using UV, H2O2, and UV/H2O2 oxidation processes: effects of reaction conditions and sludge matrix. Sci Total Environ. 2014;493:307–23.

    Article  CAS  Google Scholar 

  23. Coday BD, Yaffe BG, Xu P, Cath TY. Rejection of trace organic compounds by forward osmosis membranes: a literature review. Environ Sci Technol. 2014;48(7):3612–24. https://doi.org/10.1021/es4038676.

    Article  CAS  Google Scholar 

  24. Villegas LG, Mashhadi N, Chen M, Mukherjee D, Taylor KE, Biswas N. A short review of techniques for phenol removal from wastewater. Curr Pollut Rep. 2016;2(3):157–67. https://doi.org/10.1007/s4072.

    Article  CAS  Google Scholar 

  25. Umar M, Roddick F, Fan L. Recent advancements in the treatment of municipal wastewater reverse osmosis concentrate—an overview. Crit Rev Environ Sci Technol. 2015;45(3):193–248. https://doi.org/10.1080/10643389.2013.852378.

    Article  CAS  Google Scholar 

  26. Justo A, González O, Aceña J, Pérez S, Barceló D, Sans C, et al. Pharmaceuticals and organic pollution mitigation in reclamation osmosis brines by UV/H2O2 and ozone. J Hazard Mater. 2013;263:268–74. https://doi.org/10.1016/j.jhazmat.2013.05.030.

    Article  CAS  Google Scholar 

  27. Deng Y, Zhao R. Advanced oxidation processes (AOPs) in wastewater treatment. Curr Pollut Rep. 2015;1(3):167–76. https://doi.org/10.1007/s4072.

    Article  CAS  Google Scholar 

  28. Ribeiro AR, Nunes OC, Pereira MF, Silva AM. An overview on the advanced oxidation processes applied for the treatment of water pollutants defined in the recently launched Directive 2013/39/EU. Environ Int. 2015;5:33–51. https://doi.org/10.1016/j.envint.2014.10.027.

    Article  CAS  Google Scholar 

  29. Murínová S, Dercová K, Dudášová H. Degradation of polychlorinated biphenyls (PCBs) by four bacterial isolates obtained from the PCB-contaminated soil and PCB-contaminated sediment. Int Biodeterior Biodegradation. 2014;91:52–9. https://doi.org/10.1016/j.ibiod.2014.03.011.

    Article  CAS  Google Scholar 

  30. Tran NH, Urase T, Ngo HH, Hu J, Ong SL. Insight into metabolic and cometabolic activities of autotrophic and heterotrophic microorganisms in the biodegradation of emerging trace organic contaminants. Bioresour Technol. 2013;146:721–31. https://doi.org/10.1016/j.biortech.2013.07.083.

    Article  CAS  Google Scholar 

  31. Yanze-Kontchou C, Gschwind N. Mineralization of the herbicide atrazine as a carbon source by a Pseudomonas strain. Appl Environ Microbiol. 1994;60(12):4297–302.

    CAS  Google Scholar 

  32. Castillo UF, Strobel GA, Mullenberg K, Condron MM, Teplow DB, Folgiano V, et al. Munumbicins E-4 and E-5: novel broad-spectrum antibiotics from Streptomyces NRRL 3052. FEMS Microbiol Lett. 2006;255(2):296–300. https://doi.org/10.1111/j.1574-6968.2005.00080.x.

    Article  CAS  Google Scholar 

  33. Guo C, Dang Z, Wong Y, Tam NF. Biodegradation ability and dioxgenase genes of PAH-degrading Sphingomonas and Mycobacterium strains isolated from mangrove sediments. Int Biodeterior Biodegrad. 2010;64(6):419–26. https://doi.org/10.1016/j.ibiod.2010.04.008.

    Article  CAS  Google Scholar 

  34. Wong DW. Structure and action mechanism of ligninolytic enzymes. Biotechnol Appl Biochem. 2009;157(2):174–209. https://doi.org/10.1007/s12010-008-8279-z.

    Article  CAS  Google Scholar 

  35. Fabbrini M, Galli C, Gentili P. Comparing the catalytic efficiency of some mediators of laccase. J Mol Catal B Enzym. 2002;16(5–6):231–40. https://doi.org/10.1016/S1381-1177(01)00067-4.

    Article  CAS  Google Scholar 

  36. Gonzalez-Gil L, Carballa M, Lema JM. Cometabolic enzymatic transformation of organic micropollutants under methanogenic conditions. Environ Sci Technol. 2017;51(5):2963–71. https://doi.org/10.1021/acs.est.6b05549.

    Article  CAS  Google Scholar 

  37. Sarkar J, Chowdhury PP, Dutta TK. Complete degradation of di-n-octyl phthalate by Gordonia sp. strain Dop5. Chemosphere. 2013;90(10):2571–7. https://doi.org/10.1016/j.chemosphere.2012.10.101.

    Article  CAS  Google Scholar 

  38. Wen ZD, Gao DW, Wu WM. Biodegradation and kinetic analysis of phthalates by an Arthrobacter strain isolated from constructed wetland soil. Appl Microbiol Biotechnol. 2014;98(10):4683–90. https://doi.org/10.1007/s00253-014-5568-z.

    Article  CAS  Google Scholar 

  39. Marchlewicz A, Domaradzka D, Guzik U, Wojcieszyńska D. Bacillus thuringiensis B1 (2015b) is a gram-positive bacteria able to degrade naproxen and ibuprofen. Water Air Soil Pollut. 2016;227(6):197. https://doi.org/10.1007/s11270-016-2893-0.

    Article  CAS  Google Scholar 

  40. Liu J, Liu J, Xu D, Ling W, Li S, Chen M. Isolation, immobilization, and degradation performance of the 17β-estradiol-degrading bacterium Rhodococcus sp. JX-2. Water Air Soil Pollut. 2016;227(11):422. https://doi.org/10.1007/s11270-016-3122-6.

    Article  CAS  Google Scholar 

  41. Chen Y, Zhang C, Li Y. Ultrasonic-assisted biodegradation of endocrine disrupting compounds by Pseudomonas putida the importance of rhamnolipid for intermediate product degradation. Chem Res Chin Univ. 2017;33(2):179–86. https://doi.org/10.1007/s40242-017-6281-0.

    Article  CAS  Google Scholar 

  42. Zhang W, Qiu L, Gong A, Yuan X. Isolation and characterization of a high-efficiency erythromycin A-degrading Ochrobactrum sp. strain. Mar Pollut Bull. 2017;114(2):896–902. https://doi.org/10.1016/j.marpolbul.2016.10.076.

    Article  CAS  Google Scholar 

  43. Wang S, Wang J. Biodegradation and metabolic pathway of sulfamethoxazole by a novel strain Acinetobacter sp. Appl Microbiol Biotechnol. 2018;102(1):425–32. https://doi.org/10.1007/s00253-017-8562-4.

    Article  CAS  Google Scholar 

  44. Gao J, Song P, Wang G, Wang J, Zhu L, Wang J. Responses of atrazine degradation and native bacterial community in soil to Arthrobacter sp. strain HB-5. Ecotoxicol Environ Saf. 2018;159:317–23. https://doi.org/10.1016/j.ecoenv.2018.05.017.

    Article  CAS  Google Scholar 

  45. Feng L, Liu H, Cheng D, Mao X, Wang Y, Wu Z, et al. Characterization and genome analysis of a phthalate esters-degrading strain Sphingobium yanoikuyae SHJ. Biomed Res Int. 2018;2018:1–8. https://doi.org/10.1155/2018/3917054.

    Article  CAS  Google Scholar 

  46. Stylianou K, Hapeshi E, Vasquez MI, Fatta-Kassinos D, Vyrides I. Diclofenac biodegradation by newly isolated Klebsiella sp. KSC: microbial intermediates and ecotoxicological assessment. J Environ Chem Eng. 2018;6(2):3242–8. https://doi.org/10.1016/j.jece.2018.04.052.

    Article  CAS  Google Scholar 

  47. Yang S, Hai FI, Nghiem LD, Nguyen LN, Roddick F, Price WE. Removal of bisphenol A and diclofenac by a novel fungal membrane bioreactor operated under non-sterile conditions. Int Biodeterior Biodegradation. 2013;85:483–90. https://doi.org/10.1016/j.ibiod.2013.03.012.

    Article  CAS  Google Scholar 

  48. Coelho-Moreira JD, Bracht A, Souza AC, Oliveira RF, Sá-Nakanishi AB, Souza CG, et al. Degradation of diuron by Phanerochaete chrysosporium: role of ligninolytic enzymes and cytochrome P450. Biomed Res Int. 2013;2013:1–9. https://doi.org/10.1155/2013/251354.

    Article  CAS  Google Scholar 

  49. Li A, Cai R, Cui D, Qiu T, Pang C, Yang J, et al. Characterization and biodegradation kinetics of a new cold-adapted carbamazepine-degrading bacterium, Pseudomonas sp. CBZ-4. J Environ Sci. 2013;25(11):2281–90. https://doi.org/10.1016/S1001-0742(12)60293-9.

    Article  CAS  Google Scholar 

  50. Bouchiat R, Veignie E, Grizard D, Soebert C, Vigier M, Rafin C. Ability of filamentous fungi to degrade four emergent water priority pollutants. Desalin Water Treat. 2016;57(15):6740–6. https://doi.org/10.1080/19443994.2015.1013508.

    Article  CAS  Google Scholar 

  51. Ahuactzin-Pérez M, Tlecuitl-Beristain S, García-Dávila J, Santacruz-Juárez E, González-Pérez M, Gutiérrez-Ruíz MC, et al. Mineralization of high concentrations of the endocrine disruptor dibutyl phthalate by Fusarium culmorum. 3 Biotech. 2018;8(1):42. https://doi.org/10.1007/s13205-017-1065-2.

    Article  Google Scholar 

  52. Ahuactzin-Pérez M, Tlecuitl-Beristain S, García-Dávila J, Santacruz-Juárez E, González-Pérez M, Gutiérrez-Ruíz MC, et al. A novel biodegradation pathway of the endocrine-disruptor di (2-ethyl hexyl) phthalate by Pleurotus ostreatus based on quantum chemical investigation. Ecotoxicol Environ Saf. 2018;147:494–9. https://doi.org/10.1016/j.ecoenv.2017.09.004.

    Article  CAS  Google Scholar 

  53. Zhao HM, Hu RW, Chen XX, Chen XB, Lü H, Li YW, et al. Biodegradation pathway of di-(2-ethylhexyl) phthalate by a novel Rhodococcus pyridinivorans XB and its bioaugmentation for remediation of DEHP contaminated soil. Sci Total Environ. 2018;640:1121–31. https://doi.org/10.1016/j.scitotenv.2018.05.334.

    Article  CAS  Google Scholar 

  54. Sahoo NK, Ramesh A, Pakshirajan K. Bacterial degradation of aromatics: an overview on metabolic pathways. In: Satyanarayana T, Johari BN, Prakash A, editors. Microorganisms in environmental management: Springer; 2012.

  55. Mahanty B, Pakshirajan K, Dasu VV. Biodegradation of pyrene by Mycobacterium frederiksbergense in a two-phase partitioning bioreactor system. Bioresour Technol. 2008;99(7):2694–8. https://doi.org/10.1016/j.biortech.2007.05.042.

    Article  CAS  Google Scholar 

  56. Ogunlaja OO, Parker WJ. Impact of activated sludge process configuration on removal of micropollutants and estrogenicity. Water Sci Technol. 2015;72(2):277–83. https://doi.org/10.2166/wst.2015.213.

    Article  CAS  Google Scholar 

  57. Lopez-Fernandez R, Tavares FV, Gomez M, Irusta R, Le-Clech P. Removal of 17-β estradiol from wastewater: comparison between a laboratory scale conventional activated sludge and a membrane bioreactor. Desalin Water Treat. 2013;51(10–12):2336–42. https://doi.org/10.1080/19443994.2013.734583.

    Article  CAS  Google Scholar 

  58. Arriaga S, de Jonge N, Nielsen ML, Andersen HR, Borregaard V, Jewel K, et al. Evaluation of a membrane bioreactor system as post-treatment in wastewater treatment for better removal of micropollutants. Water Res. 2016;15(107):37–46. https://doi.org/10.1016/j.watres.2016.10.046.

    Article  CAS  Google Scholar 

  59. Blair B, Nikolaus A, Hedman C, Klaper R, Grundl T. Evaluating the degradation, sorption, and negative mass balances of pharmaceuticals and personal care products during wastewater treatment. Chemosphere. 2015;134:395–401. https://doi.org/10.1016/j.chemosphere.2015.04.078.

    Article  CAS  Google Scholar 

  60. Casas ME, Chhetri RK, Ooi G, Hansen KM, Litty K, Christensson M, et al. Biodegradation of pharmaceuticals in hospital wastewater by staged moving bed biofilm reactors (MBBR). Water Res. 2015;15(83):293–302. https://doi.org/10.1016/j.watres.2015.06.042.

    Article  CAS  Google Scholar 

  61. Prasertkulsak S, Chiemchaisri C, Chiemchaisri W, Itonaga T, Yamamoto K. Removals of pharmaceutical compounds from hospital wastewater in membrane bioreactor operated under short hydraulic retention time. Chemosphere. 2016;150:624–31. https://doi.org/10.1016/j.chemosphere.2016.01.031.

    Article  CAS  Google Scholar 

  62. Hapeshi E, Lambrianides A, Koutsoftas P, Kastanos E, Michael C, Fatta-Kassinos D. Investigating the fate of iodinated X-ray contrast media iohexol and diatrizoate during microbial degradation in an MBBR system treating urban wastewater. Environ Sci Pollut Res. 2013;20(6):3592–606. https://doi.org/10.1007/s11356-013-1605-1.

    Article  CAS  Google Scholar 

  63. Casas ME, Bester K. Can those organic micro-pollutants that are recalcitrant in activated sludge treatment be removed from wastewater by biofilm reactors (slow sand filters)? Sci Total Environ. 2015;506:315–22. https://doi.org/10.1016/j.scitotenv.2014.10.113.

    Article  CAS  Google Scholar 

  64. Déziel E, Comeau Y, Villemur R. Two-liquid-phase bioreactors for enhanced degradation of hydrophobic/toxic compounds. Biodegradation. 1999;10(3):219–33. https://doi.org/10.1023/A:1008311430525.

    Article  Google Scholar 

  65. Abtahi SM, Petermann M, Flambard AJ, Beaufort S, Terrisse F, Trotouin T, et al. Micropollutants removal in tertiary moving bed biofilm reactors (MBBRs): contribution of the biofilm and suspended biomass. Sci Total Environ. 2018;643:1464–80. https://doi.org/10.1016/j.scitotenv.2018.06.303.

    Article  CAS  Google Scholar 

  66. Eckenfelder WW, Cleary JG. Activated sludge technologies for treating industrial wastewaters: design and troubleshooting: DEStech; 2013.

  67. Maeng SK, Choi BG, Lee KT, Song KG. Influences of solid retention time, nitrification and microbial activity on the attenuation of pharmaceuticals and estrogens in membrane bioreactors. Water Res. 2013;47(9):3151–62. https://doi.org/10.1016/j.watres.2013.03.014.

    Article  CAS  Google Scholar 

  68. Falås P, Longrée P, la Cour JJ, Siegrist H, Hollender J, Joss A. Micropollutant removal by attached and suspended growth in a hybrid biofilm-activated sludge process. Water Res. 2013;47(13):4498–506. https://doi.org/10.1016/j.watres.2013.05.010.

    Article  CAS  Google Scholar 

  69. Juneson C, Ward OP, Singh A. Biodegradation of bis (2-ethylhexyl) phthalate in a soil slurry-sequencing batch reactor. Process Biochem. 2001;37:305–13. https://doi.org/10.1016/S0032-9592(01)00196-0.

    Article  CAS  Google Scholar 

  70. Naz I, Saroj DP, Mumtaz S, Ali N, Ahmed S. Assessment of biological trickling filter systems with various packing materials for improved wastewater treatment. Environ Technol. 2015;36(4):424–34. https://doi.org/10.1080/09593330.2014.951400.

    Article  CAS  Google Scholar 

  71. Kasprzyk-Hordern B, Dinsdale RM, Guwy AJ. The removal of pharmaceuticals, personal care products, endocrine disruptors and illicit drugs during wastewater treatment and its impact on the quality of receiving waters. Water Res. 2009;43(2):363–80. https://doi.org/10.1016/j.watres.2008.10.047.

    Article  CAS  Google Scholar 

  72. Phan HV, Hai FI, Kang J, Dam HK, Zhang R, Price WE, et al. Simultaneous nitrification/denitrification and trace organic contaminant (TrOC) removal by an anoxic–aerobic membrane bioreactor (MBR). Bioresour Technol. 2014;165:96–104. https://doi.org/10.1016/j.biortech.2014.03.094.

    Article  CAS  Google Scholar 

  73. Suarez S, Lema JM, Omil F. Removal of pharmaceutical and personal care products (PPCPs) under nitrifying and denitrifying conditions. Water Res. 2010;44(10):3214–24. https://doi.org/10.1016/j.watres.2010.02.040.

    Article  CAS  Google Scholar 

  74. Sipma J, Osuna B, Collado N, Monclús H, Ferrero G, Comas J, et al. Comparison of removal of pharmaceuticals in MBR and activated sludge systems. Desalination. 2010;250(2):653–9. https://doi.org/10.1016/j.desal.2009.06.073.

    Article  CAS  Google Scholar 

  75. Judd S. The MBR book: principles and applications of membrane bioreactors for water and wastewater treatment: Elsevier; 2010.

  76. Sanguanpak S, Chiemchaisri C, Chiemchaisri W, Yamamoto K. Influence of operating pH on biodegradation performance and fouling propensity in membrane bioreactors for landfill leachate treatment. Int Biodeterior Biodegradation. 2015;102:64–72. https://doi.org/10.1016/j.ibiod.2015.03.024.

    Article  CAS  Google Scholar 

  77. Zupanc M, Kosjek T, Petkovšek M, Dular M, Kompare B, Širok B, et al. Removal of pharmaceuticals from wastewater by biological processes, hydrodynamic cavitation and UV treatment. Ultrason Sonochem. 2013;20(4):1104–12. https://doi.org/10.1016/j.ultsonch.2012.12.003.

    Article  CAS  Google Scholar 

  78. Luo Y, Jiang Q, Ngo HH, Nghiem LD, Hai FI, Price WE, et al. Evaluation of micropollutant removal and fouling reduction in a hybrid moving bed biofilm reactor–membrane bioreactor system. Bioresour Technol. 2015;191:355–9. https://doi.org/10.1016/j.biortech.2015.05.073.

    Article  CAS  Google Scholar 

  79. Daugulis AJ. Two-phase partitioning bioreactors: a new technology platform for destroying xenobiotics. Trends Biotechnol. 2001;19(11):457–62. https://doi.org/10.1016/S0167-7799(01)01789-9.

    Article  CAS  Google Scholar 

  80. MacLeod CT, Daugulis AJ. Interfacial effects in a two-phase partitioning bioreactor: degradation of polycyclic aromatic hydrocarbons (PAHs) by a hydrophobic Mycobacterium. Process Biochem. 2005;40(5):1799–805. https://doi.org/10.1016/j.procbio.2004.06.042.

    Article  CAS  Google Scholar 

  81. San-Valero P, Dorado AD, Quijano G, Álvarez-Hornos FJ, Gabaldón C. Biotrickling filter modeling for styrene abatement. Part 2: simulating a two-phase partitioning bioreactor. Chemosphere. 2018;191:1075–82. https://doi.org/10.1016/j.chemosphere.2017.10.141.

    Article  CAS  Google Scholar 

  82. Castillo AS, Guiheneuf S, Le Guével R, Biard PF, Paquin L, Amrane A, et al. Synthesis and toxicity evaluation of hydrophobic ionic liquids for volatile organic compounds biodegradation in a two-phase partitioning bioreactor. J Hazard Mater. 2016;307:221–30. https://doi.org/10.1016/j.jhazmat.2015.12.043.

    Article  CAS  Google Scholar 

  83. Tomei MC, Stazi V, Angelucci DM. Biological treatment of hypersaline wastewater in a continuous two-phase partitioning bioreactor: analysis of the response to step, ramp and impulse loadings and applicability evaluation. J Clean Prod. 2018;191:67–77. https://doi.org/10.1016/j.jclepro.2018.04.196.

    Article  CAS  Google Scholar 

  84. Sarma SJ, Pakshirajan K. Surfactant aided biodegradation of pyrene using immobilized cells of Mycobacterium frederiksbergense. Int Biodeterior Biodegradation. 2011;65(1):73–7. https://doi.org/10.1016/j.ibiod.2010.09.004.

    Article  CAS  Google Scholar 

  85. Nguyen LN, Hai FI, Kang J, Price WE, Nghiem LD. Removal of emerging trace organic contaminants by MBR-based hybrid treatment processes. Int Biodeterior Biodegradation. 2013;85:474–82. https://doi.org/10.1016/j.ibiod.2013.03.014.

    Article  CAS  Google Scholar 

  86. Melo-Guimarães A, Torner-Morales FJ, Durán-Álvarez JC, Jiménez-Cisneros BE. Removal and fate of emerging contaminants combining biological, flocculation and membrane treatments. Water Sci Technol. 2013;67(4):877–85. https://doi.org/10.2166/wst.2012.640.

    Article  CAS  Google Scholar 

  87. Reungoat J, Escher BI, Macova M, Argaud FX, Gernjak W, Keller J. Ozonation and biological activated carbon filtration of wastewater treatment plant effluents. Water Res. 2012;46(3):863–72. https://doi.org/10.1016/j.watres.2011.11.064.

    Article  CAS  Google Scholar 

  88. Ibáñez M, Gracia-Lor E, Bijlsma L, Morales E, Pastor L, Hernández F. Removal of emerging contaminants in sewage water subjected to advanced oxidation with ozone. J Hazard Mater. 2013;260:389–98. https://doi.org/10.1016/j.jhazmat.2013.05.023.

    Article  CAS  Google Scholar 

  89. Karaolia P, Michael-Kordatou I, Hapeshi E, Alexander J, Schwartz T, Fatta-Kassinos D. Investigation of the potential of a membrane bioreactor followed by solar Fenton oxidation to remove antibiotic-related microcontaminants. Chem Eng Sci. 2017;310:491–502. https://doi.org/10.1016/j.cej.2016.04.113.

    Article  CAS  Google Scholar 

  90. Prieto-Rodríguez L, Oller I, Agüera A, Malato S. Elimination of organic micro-contaminants in municipal wastewater by a combined immobilized biomass reactor and solar photo-Fenton tertiary treatment. J Adv Oxid Technol. 2017;20(1). https://doi.org/10.1515/jaots-2016-0192.

  91. Alvarino T, Komesli O, Suarez S, Lema JM, Omil F. The potential of the innovative SeMPAC process for enhancing the removal of recalcitrant organic micropollutants. J Hazard Mater. 2016;308:29–36. https://doi.org/10.1016/j.jhazmat.2016.01.040.

    Article  CAS  Google Scholar 

  92. Mardani G, Mahvi AH, Hashemzadeh-Chaleshtori M, Naseri S, Dehghani MH, Ghasemi-Dehkordi P. Application of genetically engineered dioxygenase producing Pseudomonas putida on decomposition of oil from spiked soil. Jundishapur J Nat Pharm Prod. 2017;12(3 (Supp)). https://doi.org/10.5812/jjnpp.64313.

  93. Luo Y, Guo W, Ngo HH, Nghiem LD, Hai FI, Kang J, et al. (2014) Removal and fate of micropollutants in a sponge-based moving bed bioreactor. Bioresource Technology 159:311–319

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kannan Pakshirajan.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

 Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Emerging Contaminants

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kanaujiya, D.K., Paul, T., Sinharoy, A. et al. Biological Treatment Processes for the Removal of Organic Micropollutants from Wastewater: a Review. Curr Pollution Rep 5, 112–128 (2019). https://doi.org/10.1007/s40726-019-00110-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40726-019-00110-x

Keywords

Navigation