Skip to main content

Advertisement

Log in

Th17.1 lymphocytes: emerging players in the orchestra of immune-mediated inflammatory diseases

  • Review Article
  • Published:
Clinical Rheumatology Aims and scope Submit manuscript

Abstract

It is now well established that Th17 lymphocytes associate with myriad immune-mediated inflammatory diseases. Over the past one and a half decades, a subset of Th17 lymphocytes viz. Th17.1 lymphocytes has been identified in pre-clinical and clinical models of inflammatory rheumatic diseases. These lymphocytes secrete IL-17A (signature cytokine of Th17 lymphocytes) as well as IFN-γ (the signature cytokine of Th1 lymphocytes). They express the chemokine markers for Th1 (CXCR3) as well as Th17 (CCR6) lymphocytes. Th17.1 lymphocytes also express the drug efflux protein p-glycoprotein, which associates with resistance to corticosteroids and other immunosuppressive drugs. This narrative review overviews the evidence regarding Th17.1 lymphocytes in different inflammatory rheumatic diseases. It is now recognized that Th17.1 lymphocytes are increased in the synovial fluid of affected joints in rheumatoid arthritis (RA) and associate with poor treatment response to abatacept. Th17.1 lymphocytes from synovial fluid of RA are less responsive to immunosuppression than those from the peripheral blood. In sarcoidosis, Th17.1 lymphocytes are concentrated in mediastinal lymph nodes and alveolar lining. Such Th17.1 lymphocytes in sarcoidosis are the predominant source of IFN-γ in the sarcoid lung. Th17.1 lymphocytes are elevated in lupus and Takayasu arteritis and associate with disease activity. Future studies should evaluate isolated Th17.1 lymphocytes from peripheral blood or sites of pathology such as synovial fluid and assess their modulation with immunosuppressive therapy in vitro. The analysis of gene expression signature of isolated Th17.1 lymphocytes might enable the identification of newer therapeutic strategies specifically targeting these cell populations in inflammatory rheumatic diseases.

Key Points

• Th17.1 lymphocytes are a subset of Th17 lymphocytes secreting both IFN-γ and IL-17

• Th17.1 lymphocytes drive neutrophilic inflammation, granuloma formation, and corticosteroid resistance

• Th17.1 lymphocytes are elevated in rheumatoid arthritis and sarcoidosis at sites of inflammation

• Increased circulating Th17.1 lymphocytes have been identified in lupus and Takayasu arteritis and associate with active disease

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Data pertaining to this narrative review shall be shared on reasonable request to the corresponding author (Durga Prasanna Misra, durgapmisra@gmail.com).

Abbreviations

αCD3:

Anti-CD3

αCD28:

Anti-CD28

AAV:

ANCA-associated vasculitis

ACPA:

Anti-citrullinated peptide antibody

ANCA:

Anti-neutrophil cytoplasmic antibody

anti-dsDNA:

Antibodies to double-stranded deoxy ribonucleic acid

BAL:

Bronchoalveolar lavage

DAS28-CRP:

Disease activity score assessed using 28 joint count and C-reactive protein

EGPA:

Eosinophilic granulomatosis with polyangiitis

FACS:

Fluorescence-associated cell sorting

GCA:

Giant cell arteritis

GM-CSF:

Granulocyte monocyte colony-stimulating factor

GPA:

Granulomatosis with polyangiitis

IFN-γ:

Interferon gamma

IL:

Interleukin

JIA:

Juvenile idiopathic arthritis

MACS:

Magnetic-associated cell sorting

MDR 1:

Multidrug resistance protein 1

mRNA:

Messenger ribonucleic acid

PD-1:

Programmed cell death 1

p-gp:

P-Glycoprotein

PMA:

Phorbol myristate acetate

PsA:

Psoriatic arthritis

RA:

Rheumatoid arthritis

scRNAseq:

Single-cell RNA sequencing

SLE:

Systemic lupus erythematosus

SLEDAI:

SLE disease activity index

SS:

Sjogren’s syndrome

TAK:

Takayasu arteritis

Tc:

T cytotoxic lymphocytes

TGF-β1:

Transforming growth factor beta 1

Th:

T helper lymphocytes

Treg:

Regulatory T lymphocytes

VitD3:

1,25 Di-hydroxy vitamin D3

References

  1. Mony JT, Khorooshi R, Owens T (2014) Chemokine receptor expression by inflammatory T cells in EAE. Front Cell Neurosci. 8. https://doi.org/10.3389/fncel.2014.00187

  2. Watanabe S, Yamada Y, Murakami H (2020) Expression of Th1/Th2 cell-related chemokine receptors on CD4(+) lymphocytes under physiological conditions. Int J Lab Hematol 42:68–76. https://doi.org/10.1111/ijlh.13141

    Article  PubMed  Google Scholar 

  3. Yamaguchi H, Hiroi M, Mori K, et al. (2021) Simultaneous expression of Th1- and Treg-associated chemokine genes and CD4+, CD8+, and Foxp3+ cells in the premalignant lesions of 4NQO-induced mouse tongue tumorigenesis. Cancers 13. https://doi.org/10.3390/cancers13081835

  4. Yang P, Qian FY, Zhang MF et al (2019) Th17 cell pathogenicity and plasticity in rheumatoid arthritis. J Leukoc Biol 106:1233–1240. https://doi.org/10.1002/jlb.4ru0619-197r

    Article  CAS  PubMed  Google Scholar 

  5. Tristão FSM, Rocha FA, Carlos D et al (2017) Th17-inducing cytokines IL-6 and IL-23 are crucial for granuloma formation during experimental paracoccidioidomycosis. Front Immunol 8:949. https://doi.org/10.3389/fimmu.2017.00949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Shen H, Chen ZW (2018) The crucial roles of Th17-related cytokines/signal pathways in M. tuberculosis infection. Cell Mol Immunol 15:216–225. https://doi.org/10.1038/cmi.2017.128

    Article  CAS  PubMed  Google Scholar 

  7. Bordon Y (2014) Spotting the troublemakers. Nat Rev Immunol 14:64–65. https://doi.org/10.1038/nri3610

    Article  CAS  PubMed  Google Scholar 

  8. Ramesh R, Kozhaya L, McKevitt K et al (2014) Pro-inflammatory human Th17 cells selectively express P-glycoprotein and are refractory to glucocorticoids. J Exp Med 211:89–104. https://doi.org/10.1084/jem.20130301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Acosta-Rodriguez EV, Rivino L, Geginat J et al (2007) Surface phenotype and antigenic specificity of human interleukin 17-producing T helper memory cells. Nat Immunol 8:639–646. https://doi.org/10.1038/ni1467

    Article  CAS  PubMed  Google Scholar 

  10. Celada LJ, Kropski JA, Herazo-Maya JD, et al. (2018) PD-1 up-regulation on CD4(+) T cells promotes pulmonary fibrosis through STAT3-mediated IL-17A and TGF-beta1 production. Sci Transl Med 10. https://doi.org/10.1126/scitranslmed.aar8356

  11. Singh K, Rathore U, Rai MK et al (2022) Novel Th17 lymphocyte populations, Th17.1 and PD1+Th17, are increased in Takayasu arteritis, and both Th17 and Th17.1 sub-populations associate with active disease. J Inflamm Res 15:1521–1541. https://doi.org/10.2147/JIR.S355881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Benham H, Norris P, Goodall J et al (2013) Th17 and Th22 cells in psoriatic arthritis and psoriasis. Arthritis Res Ther 15:R136. https://doi.org/10.1186/ar4317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Raychaudhuri SK, Saxena A, Raychaudhuri SP (2015) Role of IL-17 in the pathogenesis of psoriatic arthritis and axial spondyloarthritis. Clin Rheumatol 34:1019–1023. https://doi.org/10.1007/s10067-015-2961-7

    Article  PubMed  Google Scholar 

  14. Taams LS (2020) Interleukin-17 in rheumatoid arthritis: trials and tribulations. J Exp Med 217:e20192048. https://doi.org/10.1084/jem.20192048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Nistala K, Moncrieffe H, Newton KR, Varsani H, Hunter P, Wedderburn LR (2008) Interleukin-17-producing T cells are enriched in the joints of children with arthritis, but have a reciprocal relationship to regulatory T cell numbers. Arthritis Rheum 58:875–887. https://doi.org/10.1002/art.23291

    Article  PubMed  PubMed Central  Google Scholar 

  16. Clinical trial of secukinumab in juvenile psoriatic arthritis and enthesitis-related arthritis https://clinicaltrials.gov/ct2/show/results/NCT03031782 [Accessed on 09 March 2022].

  17. Nistala K, Adams S, Cambrook H et al (2010) Th17 plasticity in human autoimmune arthritis is driven by the inflammatory environment. Proc Natl Acad Sci U S A 107:14751–14756. https://doi.org/10.1073/pnas.1003852107

    Article  PubMed  PubMed Central  Google Scholar 

  18. Jimeno R, Gomariz RP, Garín M et al (2015) The pathogenic Th profile of human activated memory Th cells in early rheumatoid arthritis can be modulated by VIP. J Mol Med (Berl) 93:457–467. https://doi.org/10.1007/s00109-014-1232-4

    Article  CAS  Google Scholar 

  19. Jimeno R, Leceta J, Garín M et al (2015) Th17 polarization of memory Th cells in early arthritis: the vasoactive intestinal peptide effect. J Leukoc Biol 98:257–269. https://doi.org/10.1189/jlb.3A0714-327R

    Article  CAS  PubMed  Google Scholar 

  20. Paulissen SM, van Hamburg JP, Davelaar N et al (2015) CCR6(+) Th cell populations distinguish ACPA positive from ACPA negative rheumatoid arthritis. Arthritis Res Ther 17:344. https://doi.org/10.1186/s13075-015-0800-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Jeffery LE, Henley P, Marium N et al (2018) Decreased sensitivity to 1,25-dihydroxyvitamin D3 in T cells from the rheumatoid joint. J Autoimmun 88:50–60. https://doi.org/10.1016/j.jaut.2017.10.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Dankers W, Davelaar N, van Hamburg JP, van de Peppel J, Colin EM, Lubberts E (2019) Human memory Th17 cell populations change into anti-inflammatory cells with regulatory capacity upon exposure to active vitamin D. Front Immunol 10:1504. https://doi.org/10.3389/fimmu.2019.01504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Dankers W, den Braanker H, Paulissen SMJ et al (2021) The heterogeneous human memory CCR6+ T helper-17 populations differ in T-bet and cytokine expression but all activate synovial fibroblasts in an IFNγ-independent manner. Arthritis Res Ther 23:157. https://doi.org/10.1186/s13075-021-02532-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Maeda S, Osaga S, Maeda T et al (2019) Circulating Th17.1 cells as candidate for the prediction of therapeutic response to abatacept in patients with rheumatoid arthritis: an exploratory research. PLoS One 14:e0215192. https://doi.org/10.1371/journal.pone.0215192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Abimannan T, Peroumal D, Parida JR, Barik PK, Padhan P, Devadas S (2016) Oxidative stress modulates the cytokine response of differentiated Th17 and Th1 cells. Free Radic Biol Med 99:352–363. https://doi.org/10.1016/j.freeradbiomed.2016.08.026

    Article  CAS  PubMed  Google Scholar 

  26. Koga T, Sato T, Umeda M et al (2016) Successful treatment of palmoplantar pustulosis with rheumatoid arthritis, with tofacitinib: impact of this JAK inhibitor on T-cell differentiation. Clin Immunol 173:147–148. https://doi.org/10.1016/j.clim.2016.10.003

    Article  CAS  PubMed  Google Scholar 

  27. den Braanker H, Razawy W, Wervers K et al (2022) Characterizing memory T helper cells in patients with psoriasis, subclinical, or early psoriatic arthritis using a machine learning algorithm. Arthritis Res Ther 24:28. https://doi.org/10.1186/s13075-021-02714-5

    Article  CAS  Google Scholar 

  28. Facco M, Cabrelle A, Teramo A et al (2011) Sarcoidosis is a Th1/Th17 multisystem disorder. Thorax 66:144. https://doi.org/10.1136/thx.2010.140319

    Article  PubMed  Google Scholar 

  29. Jain A, Singh H, Nath A et al (2020) Distinct T-cell immunophenotypic signature in a subset of sarcoidosis patients with arthritis. J R Coll Physicians Edinb 50:226–232. https://doi.org/10.4997/jrcpe.2020.304

    Article  PubMed  Google Scholar 

  30. Ramstein J, Broos CE, Simpson LJ et al (2016) IFN-γ-producing T-helper 17.1 cells are increased in sarcoidosis and are more prevalent than T-helper type 1 cells. Am J Respir Crit Care Med 193:1281–1291. https://doi.org/10.1164/rccm.201507-1499OC

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Broos CE, Koth LL, van Nimwegen M et al (2018) Increased T-helper 17.1 cells in sarcoidosis mediastinal lymph nodes. Eur Respir J 51:1701124. https://doi.org/10.1183/13993003.01124-2017

    Article  CAS  PubMed  Google Scholar 

  32. Arger NK, Machiraju S, Allen IE, Woodruff PG, Koth LL (2020) T-bet expression in peripheral Th17.0 cells is associated with pulmonary function changes in sarcoidosis. Front Immunol 11:1129. https://doi.org/10.3389/fimmu.2020.01129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lepzien R, Nie M, Czarnewski P et al (2022) Pulmonary and blood dendritic cells from sarcoidosis patients more potently induce IFNγ-producing Th1 cells compared with monocytes. J Leukoc Biol 111:857–866. https://doi.org/10.1002/jlb.5a0321-162r

    Article  CAS  PubMed  Google Scholar 

  34. Lomax AJ, McGuire HM, McNeil C et al (2017) Immunotherapy-induced sarcoidosis in patients with melanoma treated with PD-1 checkpoint inhibitors: case series and immunophenotypic analysis. Int J Rheum Dis 20:1277–1285. https://doi.org/10.1111/1756-185x.13076

    Article  CAS  PubMed  Google Scholar 

  35. Koth LL, Harmacek LD, White EK et al (2021) Defining CD4 T helper and T regulatory cell endotypes of progressive and remitting pulmonary sarcoidosis (BRITE): protocol for a US-based, multicentre, longitudinal observational bronchoscopy study. BMJ Open 11:e056841. https://doi.org/10.1136/bmjopen-2021-056841

    Article  PubMed  PubMed Central  Google Scholar 

  36. Koga T, Ichinose K, Kawakami A, Tsokos GC (2019) The role of IL-17 in systemic lupus erythematosus and its potential as a therapeutic target. Expert Rev Clin Immunol 15:629–637. https://doi.org/10.1080/1744666x.2019.1593141

    Article  CAS  PubMed  Google Scholar 

  37. Zhong W, Jiang Y, Ma H, Wu J, Jiang Z, Zhao L (2017) Elevated levels of CCR6(+) T helper 22 cells correlate with skin and renal impairment in systemic lupus erythematosus. Sci Rep 7:12962. https://doi.org/10.1038/s41598-017-13344-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zickert A, Amoudruz P, Sundström Y, Rönnelid J, Malmström V, Gunnarsson I (2015) IL-17 and IL-23 in lupus nephritis - association to histopathology and response to treatment. BMC Immunol 16:7. https://doi.org/10.1186/s12865-015-0070-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Shenoy S, Chaurasia S, Edavalath S et al (2018) Effect of induction therapy on circulating T-helper 17 and T-regulatory cells in active proliferative lupus nephritis. Int J Rheum Dis 21:1040–1048. https://doi.org/10.1111/1756-185x.13272

    Article  CAS  PubMed  Google Scholar 

  40. Jakiela B, Kosałka J, Plutecka H, Bazan-Socha S, Sanak M, Musiał J (2018) Facilitated expansion of Th17 cells in lupus nephritis patients. Clin Exp Immunol 194:283–294. https://doi.org/10.1111/cei.13196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zhong W, Jiang Z, Wu J, Jiang Y, Zhao L (2018) CCR6(+) Th cell distribution differentiates systemic lupus erythematosus patients based on anti-dsDNA antibody status. PeerJ 6:e4294. https://doi.org/10.7717/peerj.4294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Psianou K, Panagoulias I, Papanastasiou AD et al (2018) Clinical and immunological parameters of Sjögren’s syndrome. Autoimmun Rev 17:1053–1064. https://doi.org/10.1016/j.autrev.2018.05.005

    Article  CAS  PubMed  Google Scholar 

  43. Peng X, Lu Y, Wei J et al (2021) A cohort study of T helper 17 cell-related cytokine levels in tear samples of systemic lupus erythematosus and Sjögren’s syndrome patients with dry eye disease. Clin Exp Rheumatol 39(Suppl 133):159–165

    Article  Google Scholar 

  44. Li B, Xing Y, Gan Y, He J, Hua H (2021) Labial gland-derived mesenchymal stem cells and their exosomes ameliorate murine Sjögren’s syndrome by modulating the balance of Treg and Th17 cells. Stem Cell Res Ther 12:478. https://doi.org/10.1186/s13287-021-02541-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Koga T, Mizokami A, Nakashima M et al (2016) Histological improvement in salivary gland along with effector memory Th17-1 cell reduction in a primary Sjogren’s syndrome patient with dermatomyositis and diffuse large B-cell lymphoma by R-CHOP therapy. Clin Immunol 165:35–37. https://doi.org/10.1016/j.clim.2016.03.005

    Article  CAS  PubMed  Google Scholar 

  46. Guo H, Ju Y, Choi M et al (2022) Supra-lacrimal protein-based carriers for cyclosporine A reduce Th17-mediated autoimmunity in murine model of Sjögren’s syndrome. Biomaterials 283:121441. https://doi.org/10.1016/j.biomaterials.2022.121441

    Article  CAS  PubMed  Google Scholar 

  47. Wilde B, Thewissen M, Damoiseaux J, van Paassen P, Witzke O, Tervaert JW (2010) T cells in ANCA-associated vasculitis: what can we learn from lesional versus circulating T cells? Arthritis Res Ther 12:204. https://doi.org/10.1186/ar2923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Deng J, Younge BR, Olshen RA, Goronzy JJ, Weyand CM (2010) Th17 and Th1 T-cell responses in giant cell arteritis. Circulation 121:906–915. https://doi.org/10.1161/circulationaha.109.872903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Saadoun D, Garrido M, Comarmond C et al (2015) Th1 and Th17 cytokines drive inflammation in Takayasu arteritis. Arthritis Rheumatol 67:1353–1360. https://doi.org/10.1002/art.39037

    Article  CAS  PubMed  Google Scholar 

  50. Misra DP, Chaurasia S, Misra R (2016) Increased circulating Th17 cells, serum IL-17A, and IL-23 in Takayasu arteritis. Autoimmune Dis 2016:7841718. https://doi.org/10.1155/2016/7841718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Drozdzik M, Rudas T, Pawlik A et al (2006) The effect of 3435C>T MDR1 gene polymorphism on rheumatoid arthritis treatment with disease-modifying antirheumatic drugs. Eur J Clin Pharmacol 62:933–937. https://doi.org/10.1007/s00228-006-0192-1

    Article  CAS  PubMed  Google Scholar 

  52. Takatori R, Takahashi KA, Tokunaga D et al (2006) ABCB1 C3435T polymorphism influences methotrexate sensitivity in rheumatoid arthritis patients. Clin Exp Rheumatol 24:546–554

    CAS  PubMed  Google Scholar 

  53. Yang XY, Xu DH (2007) MDR1(ABCB1) gene polymorphisms associated with steroid-induced osteonecrosis of femoral head in systemic lupus erythematosus. Pharmazie 62:930–932

    CAS  PubMed  Google Scholar 

  54. Gonzalez TP, Mucenic T, Brenol JC, Xavier RM, Schiengold M, Chies JA (2008) ABCB1 C1236T, G2677T/A and C3435T polymorphisms in systemic lupus erythematosus patients. Braz J Med Biol Res 41:769–772. https://doi.org/10.1590/s0100-879x2008000900005

    Article  CAS  PubMed  Google Scholar 

  55. Ranganathan P, Culverhouse R, Marsh S et al (2008) Methotrexate (MTX) pathway gene polymorphisms and their effects on MTX toxicity in Caucasian and African American patients with rheumatoid arthritis. J Rheumatol 35:572–579

    CAS  PubMed  Google Scholar 

  56. Chen J, Chen L, Mao N, Liu Y (2012) Association of the MDR1 3435 polymorphism in patients with refractory rheumatoid arthritis in a Chinese population. Rheumatol Int 32:3127–3130. https://doi.org/10.1007/s00296-011-2088-3

    Article  CAS  PubMed  Google Scholar 

  57. Prasad S, Tripathi D, Rai MK, Aggarwal S, Mittal B, Agarwal V (2014) Multidrug resistance protein-1 expression, function and polymorphisms in patients with rheumatoid arthritis not responding to methotrexate. Int J Rheum Dis 17:878–886. https://doi.org/10.1111/1756-185x.12362

    Article  CAS  PubMed  Google Scholar 

  58. Jorgensen C, Sun R, Rossi JF et al (1995) Expression of a multidrug resistance gene in human rheumatoid synovium. Rheumatol Int 15:83–86. https://doi.org/10.1007/bf00262714

    Article  CAS  PubMed  Google Scholar 

  59. Yudoh K, Matsuno H, Nakazawa F, Yonezawa T, Kimura T (1999) Increased expression of multidrug resistance of P-glycoprotein on Th1 cells correlates with drug resistance in rheumatoid arthritis. Arthritis Rheum 42:2014–2015. https://doi.org/10.1002/1529-0131(199909)42:9%3c2014::AID-ANR32%3e3.0.CO;2-R

    Article  CAS  PubMed  Google Scholar 

  60. Tsujimura S, Saito K, Nakayamada S, Nakano K, Tanaka Y (2005) Clinical relevance of the expression of P-glycoprotein on peripheral blood lymphocytes to steroid resistance in patients with systemic lupus erythematosus. Arthritis Rheum 52:1676–1683. https://doi.org/10.1002/art.21032

    Article  CAS  PubMed  Google Scholar 

  61. Hider SL, Owen A, Hartkoorn R et al (2006) Down regulation of multidrug resistance protein-1 expression in patients with early rheumatoid arthritis exposed to methotrexate as a first disease-modifying antirheumatic drug. Ann Rheum Dis 65:1390–1393. https://doi.org/10.1136/ard.2005.049189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Henmi K, Yoshida M, Yoshikawa N, Hirano T (2008) P-glycoprotein functions in peripheral-blood CD4+ cells of patients with systemic lupus erythematosus. Biol Pharm Bull 31:873–878. https://doi.org/10.1248/bpb.31.873

    Article  CAS  PubMed  Google Scholar 

  63. Lu MC, Lai NS, Li KJ, Hsieh SC, Wu CH, Yu CL (2008) Increased multidrug resistance-associated protein activity in mononuclear cells of patients with systemic lupus erythematosus. Clin Exp Rheumatol 26:638–645

    PubMed  Google Scholar 

  64. Tsujimura S, Saito K, Nawata M, Nakayamada S, Tanaka Y (2008) Overcoming drug resistance induced by P-glycoprotein on lymphocytes in patients with refractory rheumatoid arthritis. Ann Rheum Dis 67:380–388. https://doi.org/10.1136/ard.2007.070821

    Article  CAS  PubMed  Google Scholar 

  65. Agarwal V, Mittal SK, Misra R (2009) Expression of multidrug resistance-1 protein correlates with disease activity rather than the refractoriness to methotrexate therapy in rheumatoid arthritis. Clin Rheumatol 28:427–433. https://doi.org/10.1007/s10067-008-1071-1

    Article  CAS  PubMed  Google Scholar 

  66. Suzuki K, Saito K, Tsujimura S et al (2010) Tacrolimus, a calcineurin inhibitor, overcomes treatment unresponsiveness mediated by P-glycoprotein on lymphocytes in refractory rheumatoid arthritis. J Rheumatol 37:512–520. https://doi.org/10.3899/jrheum.090048

    Article  CAS  PubMed  Google Scholar 

  67. Zhang B, Shi Y, Lei TC (2012) Detection of active P-glycoprotein in systemic lupus erythematosus patients with poor disease control. Exp Ther Med 4:705–710. https://doi.org/10.3892/etm.2012.667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Ragab SM, Soliman MA (2013) P-glycoprotein-1 functional activity in CD5+CD7+ and CD20+ lymphocytes in systemic lupus erythematosus children: relation to disease activity, complications and steroid response. Egypt J Immunol 20:101–115

    PubMed  Google Scholar 

  69. Kansal A, Tripathi D, Rai MK, Agarwal V (2016) Persistent expression and function of P-glycoprotein on peripheral blood lymphocytes identifies corticosteroid resistance in patients with systemic lupus erythematosus. Clin Rheumatol 35:341–349. https://doi.org/10.1007/s10067-015-3079-7

    Article  PubMed  Google Scholar 

  70. Perez-Guerrero EE, Gamez-Nava JI, Muñoz-Valle JF et al (2018) Serum levels of P-glycoprotein and persistence of disease activity despite treatment in patients with systemic lupus erythematosus. Clin Exp Med 18:109–117. https://doi.org/10.1007/s10238-017-0459-0

    Article  CAS  PubMed  Google Scholar 

  71. Diamanti AP, Rosado M, Germano V et al (2011) Reversion of resistance to immunosuppressive agents in three patients with psoriatic arthritis by cyclosporine A: modulation of P-glycoprotein function. Clin Immunol 138:9–13. https://doi.org/10.1016/j.clim.2010.10.001

    Article  CAS  PubMed  Google Scholar 

  72. Edavalath S, Rai MK, Gupta V et al (2022) Tacrolimus induces remission in refractory and relapsing lupus nephritis by decreasing P-glycoprotein expression and function on peripheral blood lymphocytes. Rheumatol Int. https://doi.org/10.1007/s00296-021-05057-1

    Article  PubMed  Google Scholar 

  73. Misra DP, Rathore U, Patro P, Agarwal V, Sharma A (2021) Disease-modifying anti-rheumatic drugs for the management of Takayasu arteritis—a systematic review and meta-analysis. Clin Rheumatol 40:4391–4416. https://doi.org/10.1007/s10067-021-05743-2

    Article  PubMed  PubMed Central  Google Scholar 

  74. Kiner E, Willie E, Vijaykumar B et al (2021) Gut CD4(+) T cell phenotypes are a continuum molded by microbes, not by T(H) archetypes. Nat Immunol 22:216–228. https://doi.org/10.1038/s41590-020-00836-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. van Beek JJP, Rescigno M, Lugli E (2021) A fresh look at the T helper subset dogma. Nat Immunol 22:104–105. https://doi.org/10.1038/s41590-020-00858-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Gao Y, Dunlap G, Elahee M, Rao DA (2021) Patterns of T-cell phenotypes in rheumatic diseases from single-cell studies of tissue. ACR Open Rheumatol 3:601–613. https://doi.org/10.1002/acr2.11296

    Article  PubMed  PubMed Central  Google Scholar 

  77. Yazar S, Alquicira-Hernandez J, Wing K et al (2022) Single-cell eQTL mapping identifies cell type-specific genetic control of autoimmune disease. Science 376:eabf3041. https://doi.org/10.1126/science.abf3041

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Durga Prasanna Misra acknowledges support from Indian Council of Medical Research (Grant No 5/4/1-2/2019-NCD-II) for his research on Takayasu arteritis.

Author information

Authors and Affiliations

Authors

Contributions

The conception and design of the study—DPM, VA; acquisition of data, analysis, and interpretation of data—DPM;

drafting the article—DPM; revising it critically for important intellectual content—VA; final approval of the version to be submitted—DPM, VA;

Agreement to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved—DPM, VA.

Corresponding author

Correspondence to Durga Prasanna Misra.

Ethics declarations

Disclosures

None.

Disclaimer

The funding agency had no role in the actual conduct or reporting of this review.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Misra, D.P., Agarwal, V. Th17.1 lymphocytes: emerging players in the orchestra of immune-mediated inflammatory diseases. Clin Rheumatol 41, 2297–2308 (2022). https://doi.org/10.1007/s10067-022-06202-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10067-022-06202-2

Keywords

Navigation