Skip to main content

Advertisement

Log in

Expression of multidrug resistance-1 protein correlates with disease activity rather than the refractoriness to methotrexate therapy in rheumatoid arthritis

  • Original Article
  • Published:
Clinical Rheumatology Aims and scope Submit manuscript

Abstract

Disease-modifying antirheumatic drugs (DMARDs) improve the disability and slow the progression of the joint damage in rheumatoid arthritis (RA). However, a large proportion of patients experience inefficacy by the end of 2 years. This loss of efficacy may be due to expression of multidrug resistance (MDR) proteins on lymphocytes. The objective is to study the expression of MDR protein on the peripheral blood lymphocytes in patients with RA and correlate it with the disease status and response to treatment. Twenty-eight patients were enrolled. Expression of MDR-1 by flow cytometry was carried out on lymphocytes at baseline and after 4 months of therapy. This expression was correlated with disease activity scores (DAS 28). There were 25 females with mean age of 48.13 years and median disease duration of 48 months. Eighteen patients were DMARD naive and ten were refractory to DMARD (methotrexate). The percentage of cells expressing MDR-1 in the DMARD-naive (p < 0.O5) and DMARD-refractory (p < 0.05) groups were significantly higher than the healthy controls at the baseline. The relative fluorescence intensity was significantly higher in the DMARD-refractory group (p < 0.05) as compared to the DMARD-naive group. After 4 months of therapy, there was significant improvement in the D value (p < 0.01) in the DMARD-naive group (treated with methotrexate only) and DMARD-refractory group (p < 0.05). A significant correlation (r = 0.563) between the DAS 28 scores and the D value (p = 0.003) was observed. Expression of MDR-1 in RA correlated with disease activity status and improved with DMARD therapy. It is not related to the refractoriness to therapy with methotrexate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. American College of Rheumatology (2008) 2008 recommendations for the use of nonbiologic and biologic disease modifying antirheumatic drugs in rheumatoid arthritis. Arthritis Rheum 59:762–784

    Article  Google Scholar 

  2. Lindqvist E, Saxne T, Geborek P, Eberhardt K (2002) Ten year outcome in a cohort of patients with early rheumatoid arthritis: health status, disease process, and damage. Ann Rheum Dis 61:1055–1059

    Article  PubMed  CAS  Google Scholar 

  3. Situnayake RD, McConkey B (1990) Clinical and laboratory effects of prolonged therapy with sulfasalazine, gold or penicillamine: the effects of disease duration on treatment response. J Rheumatol 17:1268–1273

    PubMed  CAS  Google Scholar 

  4. Morgan C, Lunt M, Brightwell H, Bradburn P, Fallow W, Lay M, Silman A, Bruce IN (2003) Contribution of patient related differences to multidrug resistance in rheumatoid arthritis. Ann Rheum Dis 62:15–19

    Article  PubMed  CAS  Google Scholar 

  5. Dean M, Allikmets R (2001) Complete characterization of the human ABC gene family. J Bioenerg Biomembr 33:475–479

    Article  PubMed  CAS  Google Scholar 

  6. Jorgensen C, Sun R, Rossi JF, Costes J, Richard D, Bologna C et al (1995) Expression of a multidrug resistance gene in human rheumatoid synovium. Rheumatol Int 15:83–86

    Article  PubMed  CAS  Google Scholar 

  7. Maillefert JF, Duchamp O, Genne P, Solary E, Tavernier C (2000) Effects of cyclosporine at various concentrations on dexamethasone uptake in multidrug resistant cells. Ann Rheum Dis 59:146–148

    Article  PubMed  CAS  Google Scholar 

  8. Bourgeois S, Gruol DJ, Newby RF, Rajah FM (1993) Expression of an MDR gene is associated with a new form of resistance to dexamethasone-induced apoptosis. Mol Endocrinol 7:840–851

    Article  PubMed  CAS  Google Scholar 

  9. Maillefert JF, Duchamp O, Piroth C, Solary E, Tavernier C, Genne P (1997) Dexamethasone efflux associated with P-glycoprotein in human multidrug resistant cell lines. In: Galteau MM, Delwaide P, Siest G, Henny J (eds) Biologie prospective: Comptes Rendus du 9e Colloque de Pont à Mousson. John Libbey Eurotext, Paris, pp 489–492

    Google Scholar 

  10. Maillefert JF, Maynadié M, Tebib JG, Aho S, Walker P, Chatard C et al (1996) Expression of the multidrug resistance glycoprotein 170 in the peripheral blood lymphocytes of rheumatoid arthritis patients. The percentage of lymphocytes expressing glycoprotein 170 is increased in patients treated with prednisolone. Br J Rheumatol 35:430–435

    Article  PubMed  CAS  Google Scholar 

  11. Matsubara T, Funahashi K, Ohuchi N (1998) Detection of responders and non-responders of gold compounds by analysis of multidrug resistance (MDR)-1 gene in RA patients (abstract). Arthritis Rheum 41:S158

    Google Scholar 

  12. Yudoh K, Matsuno H, Nakazawa F, Yonezawa T, Kimura T (1999) Increased expression of multidrug resistance of P-glycoprotein on Th1 cells correlates with drug resistance in rheumatoid arthritis. Arthritis Rheum 42:2014–2015

    Article  PubMed  CAS  Google Scholar 

  13. van der Heijden J, de Jong MC, Dijkmans BA, Lems WF, Oerlemans R, Kathmann I, Schalkwijk CG, Scheffer GL, Scheper RJ, Jansen G (2004) Development of sulfasalazine resistance in human T cells induces expression of the multidrug resistance transporter ABCG2 (BCRP) and augmented production of TNF alpha. Ann Rheum Dis 63:138–143

    Article  PubMed  Google Scholar 

  14. Rangnathan P, McLeod HL (2005) Methotrexate and long term treatment of rheumatic disease: comment on article by Kremer. Arthritis Rheum 52:670–671

    Article  Google Scholar 

  15. Hider SL, Owen A, Hartkoorn R, Khoo S, Back D, Silman AJ, Bruce IN (2006) Down regulation of multidrug resistance protein-1 expression in patients with early rheumatoid arthritis exposed to methotrexate as a first disease-modifying antirheumatic drug. Ann Rheum Dis 65:1390–1393

    Article  PubMed  CAS  Google Scholar 

  16. van Gestel AM, Prevoo MLL, van’t Hof MA, van Rijswijk MH, van de Putte LBA, van Riel PLCM (1996) Development and validation of the European League Against Rheumatism response criteria for rheumatoid arthritis: comparison with the preliminary American College of Rheumatology and the World health Organisation/International League Against Rheumatism Criteria. Arthritis Rheum 39:34–40

    Article  PubMed  Google Scholar 

  17. Young IT (1977) Proof without prejudice: use of the Kolmogorov-Smirnov test for the analysis of histograms from flow systems and other sources. J Histochem Cytochem 25:935–941

    PubMed  CAS  Google Scholar 

  18. Tsujimura S, Saito K, Nawata M, Nakayamada S, Tanaka Y (2008) Overcoming drug resistance induced by P-glycoprotein on lymphocytes in patients with refractory rheumatoid arthritis. Ann Rheum Dis 67:380–388

    Article  PubMed  CAS  Google Scholar 

  19. Tsujimura S, Saito K, Nakayamada S, Nakano K, Tsukada J, Kohno K et al (2004) Transcriptional regulation of multidrug resistance-1 gene by interleukin-2 in lymphocytes. Genes Cells 9:1265–1273

    Article  PubMed  CAS  Google Scholar 

  20. Salmon SE, Dalton WS (1996) Relevance of multidrug resistance to rheumatoid arthritis: development of a new therapeutic hypothesis. J Rheumatol 44:97–101

    CAS  Google Scholar 

  21. Norris MD, de Graff D, Haber M, Kavallaris M, Madafiglio J, Gilbert J et al (1996) Involvement of MDR1 p-glycoprotein in multifactorial resistance to methotrexate. Int J Cancer 65:613–619

    Article  PubMed  CAS  Google Scholar 

  22. De Graff D, Sharma R, Mechetner EB, Schimke RT, Roninson IB (1996) P-glycoprotein confers methotrexate resistance in 3T6 cells with deficient carrier-mediated methotrexate uptake. Proc Natl Acad Sci U S A 93:1238–1242

    Article  Google Scholar 

  23. Hider SL, Hoggard P, Khoo S, Back D, Bruce IN (2005) Drug efflux transporters in rheumatoid arthritis: comment on the article by Kremer. Arthritis Rheum 52:670–672

    Article  PubMed  Google Scholar 

  24. Hooijberg JH, Broxterman HJ, Kool M et al (1999) Antifolate resistance mediated by the multidrug resistance proteins MRP1 and MRP2. Cancer Res 59:2532–2535

    PubMed  CAS  Google Scholar 

  25. Zeng H, Chen ZS, Belinsky MG, Rea PA, Kruh GD (2001) Transport of methotrexate (MTX) and folates by multidrug resistance protein (MRP) 3 and MRP1: effect of polyglutamylation on MTX transport. Cancer Res 61:7225–7232

    PubMed  CAS  Google Scholar 

  26. Volk EL, Farley KM, Wu Y, Li F, Robey RW, Schneider E (2002) Overexpression of wild-type breast cancer resistance protein mediates methotrexate resistance. Cancer Res 62:5035–5040

    PubMed  CAS  Google Scholar 

  27. Wolf J, Stranzl T, Filipits M, Pohl G, Pirker R, Leeb B, Smolen JS (2005) Expression of resistance markers to methotrexate predicts clinical improvement in patients with rheumatoid arthritis. Ann Rheum Dis 64:564–568

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

This study was supported by the institutional intramural research grant.

The authors are thankful to Vereniging Het Nederlands Kanker Instituut, Amsterdam for providing the MDCKII MDR-1 cell line accession number 14758 for the study.

Disclosures

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Agarwal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Agarwal, V., Mittal, S.K. & Misra, R. Expression of multidrug resistance-1 protein correlates with disease activity rather than the refractoriness to methotrexate therapy in rheumatoid arthritis. Clin Rheumatol 28, 427–433 (2009). https://doi.org/10.1007/s10067-008-1071-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10067-008-1071-1

Keywords

Navigation