Skip to main content

Advertisement

Log in

Geochemical and isotopic evidence on the recharge and circulation of geothermal water in the Tangshan Geothermal System near Nanjing, China: implications for sustainable development

Evidences géochimiques et isotopiques de la recharge et des circulations d’eau géothermale dans le Système Géothermal de Tangshan près de Nanjing, chine: implications pour le développement durable

Evidencia geoquímica e isotópica sobre la recarga y circulación de agua geotérmica en el Sistema Geotérmico de Tangshan cerca de Nanjing, China: implicancias para el desarrollo sostenible

南京附近汤山地热系统地热水补给源与循环的地球化学和同位素证据:对可持续开发的启示

Evidências geoquímicas e isotópicas na recarga e circulação geotermal da água no Sistema Geotérmico Tangshan próximo a Nanjing, China: implicações para o desenvolvimento sustentável

  • Paper
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

Geothermal resources are practical and competitive clean-energy alternatives to fossil fuels, and study on the recharge sources of geothermal water supports its sustainable exploitation. In order to provide evidence on the recharge source of water and circulation dynamics of the Tangshan Geothermal System (TGS) near Nanjing (China), a comprehensive investigation was carried out using multiple chemical and isotopic tracers (δ2H, δ18O, δ34S, 87Sr/86Sr, δ13C, 14C and 3H). The results confirm that a local (rather than regional) recharge source feeds the system from the exposed Cambrian and Ordovician carbonate rocks area on the upper part of Tangshan Mountain. The reservoir temperature up to 87 °C, obtained using empirical as well as theoretical chemical geothermometers, requires a groundwater circulation depth of around 2.5 km. The temperature of the geothermal water is lowered during upwelling as a consequence of mixing with shallow cold water up to a 63% dilution. The corrected 14C age shows that the geothermal water travels at a very slow pace (millennial scale) and has a low circulation rate, allowing sufficient time for the water to become heated in the system. This study has provided key information on the genesis of TGS and the results are instructive to the effective management of the geothermal resources. Further confirmation and even prediction associated with the sustainability of the system could be achieved through continuous monitoring and modeling of the responses of the karstic geothermal reservoir to hot-water mining.

Résumé

Les ressources géothermales sont des énergies alternatives propres pratiques et compétitives face aux combustibles fossiles, et l’étude de l’origine de la recharge des eaux géothermales permettent leur exploitation durable. Afin de démontrer les origines de la recharge des eaux et leur dynamique de circulation dans le Système Géothermal du Tangshan (TGS) près de Nanjing (Chine), une étude complète a été mise en œuvre, utilisant un cortège de traceurs chimiques et isotopiques (δ2H, δ18O, δ34S, 87Sr/86Sr, δ13C, 14C and 3H). Les résultats confirment que la recharge du système est. locale (plus que régionale) et provient d’affleurements de roches carbonatées du Cambrien et de l’Ordovicien, dans la partie haute des montagnes du Tangshan. La température du réservoir jusqu’à 87 °C, obtenue en utilisant des géothermomètres chimiques empiriques aussi bien que théoriques, nécessite une circulation des eaux souterraines à une profondeur autour de 2.5 km. La température des eaux géothermales diminue lors de la remontée, en raison d’un mélange avec de l’eau froide superficielle, pouvant atteindre jusqu’à 63% de dilution. Les âges corrigés 14C montrent que les eaux géothermales se déplacent à de très faibles vitesses (d’échelle millénaire) et ont de faibles taux de circulation, leur permettant d’avoir suffisamment de temps pour se réchauffer dans le système. L’étude a fourni des informations clés sur la formation du TGS et les résultats sont instructifs pour la gestion efficace des ressources géothermales. Un suivi en continu et une modélisation de la réponse de l’aquifère karstique géothermal, à l’exploitation de l’eau chaude, permettraient de confirmer ces résultats et de prédire la pérennité du système.

Resumen

Los recursos geotérmicos son alternativas prácticas y competitivas de energía limpia a los combustibles fósiles, y el estudio de las fuentes de recarga de agua geotérmica respalda su explotación sostenible. Con el fin de proporcionar evidencias de la fuente de recarga de agua y de la dinámica de la circulación del Sistema Geotérmico de Tangshan (TGS) cerca de Nanjing (China), se realizó una investigación exhaustiva utilizando trazadores isotópicos (δ2H, δ18O, δ34S, 87Sr/86Sr, δ13C, 14C y 3H) y múltiples elementos químicos. Los resultados confirman que una fuente de recarga local (en lugar de regional) alimenta al sistema del área expuesta con rocas de carbonato del Cámbrico y Ordovícico en la parte superior de la Tangshan Mountain. La temperatura del depósito de hasta 87 °C, obtenida utilizando geotermómetros químicos tanto empíricos como teóricos, requiere una profundidad de circulación del agua subterránea de alrededor de 2.5 km. La temperatura del agua geotérmica se reduce durante la surgencia como consecuencia de la mezcla con agua fría somera hasta una dilución del 63%. La edad corregida de 14C muestra que el agua geotérmica viaja a un ritmo muy lento (escala milenaria) y tiene una baja tasa de circulación, permitiendo un tiempo suficiente para que el agua se caliente en el sistema. Este estudio ha proporcionado información clave sobre la génesis del TGS y los resultados son instructivos para la gestión eficaz de los recursos geotérmicos. Se podría lograr una confirmación e incluso una predicción adicional asociadas con la sostenibilidad del sistema a través del monitoreo y modelado continuo de las respuestas del reservorio geotérmico cárstico a la extracción de agua caliente.

摘要

地热资源是一种可以代替化石燃料且具有很强实用性和竞争力的清洁能源,对地热水补给来源的研究可以为其可持续开发提供支撑。为了提供位于南京(中国)附近的汤山地热系统(TGS)地热水补给来源和循环动力学的证据,利用多种水化学和同位素示踪剂(δ2H, δ18O, δ34S, 87Sr / 86Sr, δ13C, 14C和3H)对其进行了综合研究。研究结果表明,地热水的补给主要来自当地的(而不是区域性)汤山上部裸露的寒武系和奥陶系碳酸盐岩地区。使用经验和理论化学热力学温标方法预测深部热储温度可以达到87°C,这需要地下水循环深度在2.5公里左右。在上涌过程中地热水的温度降低了,这是因为在上涌过程中与浅层冷水发生了混合, 冷水混合比可以达到63%。经过校正的14C年龄显示,地热水以非常缓慢的速度(千年尺度)流动,并且循环更新速率较低,从而有足够的时间使水在地热系统中被加热。这项研究为TGS的成因提供了关键信息,对于地热资源的有效管理具有重要的指导意义。通过持续监测和模拟岩溶热储对热水开采的响应,可以进一步确认和预测地热系统开发的可持续性。

Resumo

Recursos geotermais são uma alternativa energética limpa prática e limpa aos combustíveis fósseis, e estudos sobre as fontes de recarga da água geotermal alicerça a sua exploração sustentável. Para fornecer evidências sobre a recarga das fontes de água e a dinâmica da circulação no Sistema Geotérmico Tangshan (SGT) próximo a Nanjing (China), uma investigação detalhada foi conduzida utilizando múltiplos traçadores químicos e isotópicos (δ2H, δ18O, δ34S, 87Sr/86Sr, δ13C, 14C e 3H). Os resultados confirmam que uma fonte de recarga local (mais do que a regional) alimenta o sistema a partir das áreas de afloramento de rochas carbonáticas Cambrianas e Ordovicianasna parte superior da Montanha Tangshan. A temperatura do reservatório acima dos 87 °C, obtido usando geotermômetros químicos tanto empíricos quanto teóricos, requer uma circulação das águas subterrâneas a uma profundidade em torno de 2.5 km. A temperatura das águas geotermais é diminuída durante ressurgência como uma consequência da mistura com águas rasas frias a uma diluição de 63%. A datação 14C corrigida mostra que a água geotermal viaja a um passo muito lento (escala milenar) e tem uma baixa taxa de circulação, permitindo tempo suficiente para que a água se torne aquecida no sistema. Esse estudo forneceu informações chave sobre a gênese do SGT e os resultados são instrutivos para uma gestão efetiva dos recursos geotérmicos. Confirmações adicionais e até predições associadas com a sustentabilidade do sistema podem ser alcançadas pelo monitoramento contínuo e modelagem da resposta do reservatório cárstico geotermal à mineração de água quente.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Al-Charideh A (2015) Isotopic evidence to characterize the sources of sulfate ions in the carbonate aquifer system in Aleppo basin (North Syria). Environ Earth Sci 73(1):127–137

    Article  Google Scholar 

  • Arnorsson S, Gunnlaugsson E, Svavarsson H (1983) The chemistry of geothermal waters in Iceland: III. chemical geothermometry in geothermal investigations. Geochim Cosmochim Acta 47(3):567–577

    Article  Google Scholar 

  • Awaleh MO, Hoch FB, Boschetti T, Soubaneh YD, Egueh NM, Elmi SA, Mohamed J, Khaireh MA (2015) The geothermal resources of the Republic of Djibouti, II: geochemical study of the Lake Abhe geothermal field. J Geochem Explor 159:129–147

    Article  Google Scholar 

  • Axelsson G (2010) Sustainable geothermal utilization-case histories, definitions, research issues and modelling. Geothermics 39(4):283–291. https://doi.org/10.1016/j.geothermics.2010.08.001

    Article  Google Scholar 

  • Bakari SS, Aagaard P, Vogt RD, Ruden F, Johansen I, Vuai SA (2013) Strontium isotopes as tracers for quantifying mixing of groundwater in the alluvial plain of a coastal watershed, south-eastern Tanzania. J Geochem Explor 130:1–14

    Article  Google Scholar 

  • Barbieri M, Morotti M (2003) Hydrogeochemistry and strontium isotopes of spring and mineral waters from Monte Vulture volcano, Italy. Appl Geochem 18:117–125

    Article  Google Scholar 

  • Bo Y, Liu C, Zhao Y, Wang L (2015) Chemical and isotopic characteristics and origin of spring waters in the Lanping–Simao Basin, Yunnan, southwestern China. Chem Erde-Geochem 75(3):287–300

    Article  Google Scholar 

  • Boschetti T, Venturelli G, Toscani L, Barbieri M, Mucchino C (2005) The Bagni di Lucca thermal waters (Tuscany, Italy): an example of Ca-SO4 waters with high Na/Cl and low Ca/SO4 ratios. J Hydrol 307:270–293

    Article  Google Scholar 

  • Bozdağ A (2016) Hydrogeochemical and isotopic characteristics of Kavak (Seydişehir-Konya) geothermal field, Turkey. J Afr Earth Sci 121:72–83

    Article  Google Scholar 

  • Brenot A, Négrel P, Petelet-Giraud E, Millot R, Malcuit E (2015) Insights from the salinity origins and interconnections of aquifers in a regional scale sedimentary aquifer system (Adour-Garonne district, SW France): contributions of δ34S and δ18O from dissolved sulfates and the 87Sr/86Sr ratio. Appl Geochem 53:27–41

    Article  Google Scholar 

  • Chandrajith R, Barth JAC, Subasinghe ND, Merten D, Dissanayake CB (2013) Geochemical and isotope characterization of geothermal spring waters in Sri Lanka: evidence for steeper than expected geothermal gradients. J Hydrol 476:360–369

    Article  Google Scholar 

  • Clark ID, Fritz P (1997) Environmental isotopes in hydrogeology. CRC, Boca Raton, FL, 328 pp

  • Diamond RE, Harris C (2000) Oxygen and hydrogen isotope geochemistry of thermal springs of the Western Cape, South Africa: recharge at high altitude? J Afr Earth Sci 31(3/4):467–481

    Article  Google Scholar 

  • Duan Z, Pang Z, Wang X (2011) Sustainable evaluation of limestone geothermal reservoirs with extended production histories in Beijing and Tianjin, China. Geothermics 40:125–135. https://doi.org/10.1016/j.geothermics.2011.02.001

    Article  Google Scholar 

  • Edmunds WM, Ma J, Aeschbach-Hertig W, Kipfer R, Darbyshire DPF (2006) Groundwater recharge history and hydrogeochemical evolution in the Minqin Basin, North West China. Appl Geochem 21(12):2148–2170

    Article  Google Scholar 

  • Eichinger L (1981) Age determination of groundwaters by means of carbon-14: measurement and interpretation of groundwaters of the Frankonian Albvorland. PhD Thesis, University of Munich, Germany

  • Evans GV, Otlet RL, Downing A, Monkhouse RA, Rae G (1979) Some problems in the interpretation of isotope measurements in United Kingdom aquifer. Isotope Hydrol 2:639–708

    Google Scholar 

  • Faure G (1986) Principles of isotope geology. Wiley, Chichester, UK

  • Fontes J-C, Garnier JM (1979) Determination of initial 14C activity of the total dissolved C: a review of the existing models and a new approach. Water Resour Res 15:399–413

    Article  Google Scholar 

  • Fournier RO (1977) Chemical geothermometers and mixing models for geothermal systems. Geothermics 5:41–50

    Article  Google Scholar 

  • Fournier RO (1979) A revised equation for Na/K geothermometers. Geoth Res Counc Trans 3:221–224

    Google Scholar 

  • Fournier RO (1991) Water geothermometers applied to geothermal energy. In: D’Amore F (ed) Applications of geochemistry in geothermal reservoir development. UNITAR/UNDP, Rome, pp 37–69

  • Fournier RO, Potter RW (1979) Magnesium correction to the Na-K-Ca chemical geothermometer. Geochim Cosmochim Acta 43:1543–1550

    Article  Google Scholar 

  • Fournier RO, Truesdell AH (1973) An empirical Na-K-Ca geothermometer for natural waters. Geochim Cosmochim Acta 37:1255–1275

    Article  Google Scholar 

  • Ghomshei MM, Clark ID (1993) Oxygen and hydrogen isotopes in deep thermal waters from the South Meager Creek geothermal area, British Columbia, Canada. Geothermics 22(2):79–89

    Article  Google Scholar 

  • Giggenbach WF (1988) Geothermal solute equilibria-derivation of Na-K-Mg-Ca geoindicators. Geochim Cosmochim Acta 52:2749–2276

    Article  Google Scholar 

  • Grobe M, Machel HG, Heuser H (2000) Origin and evolution of saline groundwater in the Munsterland cretaceous basin, Germany: oxygen, hydrogen, and strontium isotope evidence. J Geochem Explor 69-70:5–9

  • Guo Q, Wang Y, Liu W (2010) O, H, and Sr isotope evidences of mixing processes in two geothermal fluid reservoirs at Yangbajing, Tibet, China. Environ Earth Sci 59(7):1589–1597

    Article  Google Scholar 

  • Guo Q, Pang Z, Wang Y, Tian J (2017) Fluid geochemistry and geothermometry applications of the Kangding high-temperature geothermal system in eastern Himalayas. Appl Geochem. https://doi.org/10.1016/j.apgeochem.2017.03.007

  • Hähnlein S, Bayer P, Ferguson G, Blum P (2013) Sustainability and policy for the thermal use of shallow geothermal energy. Energy Pol 59:914–925

    Article  Google Scholar 

  • Han L, Plummer LN, Aggarwal P (2014) The curved 14C vs. δ13C relationship in dissolved inorganic carbon: a useful tool for groundwater age- and geochemical interpretations. Chem Geol 387:111–125

    Article  Google Scholar 

  • Huang T, Pang Z (2011) A combined conceptual model (V&P model) to correct groundwater radiocarbon age. In: Proceedings of 2011 International Symposium on Water Resource and Environmental Protection, vol 1 (ISWREP). IEEE, Piscataway, NJ

  • Huang T, Pang Z, Liu J, Ma J, Gates J (2017a) Groundwater recharge mechanism in an integrated tableland of the Loess Plateau, northern China: insights from environmental tracers. Hydrogeol J. https://doi.org/10.1007/s10040-017-1599-8

  • Huang T, Pang Z, Li J, Xiang Y, Zhao Z (2017b) Mapping groundwater renewability using age data in the Baiyang alluvial fan, NW China. Hydrogeol J 25(3):743–755

  • IAEA/WMO (2017) The GNIP database. Available at http://www.iaea.org/water. Accessed January 2018

  • Khask M, La Salle CLG, Videau G, Flinois JS, Frape S, Team A, Verdoux P (2015) Deep water circulation at the northern Pyrenean thrust: implication of high temperature water–rock interaction process on the mineralization of major spring water in an overthrust area. Chem Geol 419:114–131

    Article  Google Scholar 

  • Kong Y, Pang Z, Shao H, Hu S, Kolditz O (2014) Recent studies on hydrothermal systems in China: a review. Geotherm Energy 2:19

    Article  Google Scholar 

  • Kong Y, Pang Z, Pang J, Luo L, Luo J, Shao H, Kolditz O (2015) Deep groundwater cycle in Xiongxian geothermal field. Proceedings World Geothermal Congress 2015, Melbourne, Australia, April 19–25, 2015

  • Li A, Zhu C, Yang S (2010) The research on formation condition of Tangshan Warm Spring in Nanjing (in Chinese with English abstract). Mineral Explor 1(6):546–549

  • Li G, Li F (2010) The circulation law, sustainable development and utilization of geothermal water in Guanzhong Basin. Science Press, Beijing, 100 pp

    Google Scholar 

  • Li Y, Pang Z, Yang F, Yuan L, Tang P (2017) Hydrogeochemical characteristics and genesis of the high-temperature geothermal system in the Tashkorgan basin of the Pamir Syntax, western China. J Asian Earth Sci 149:134–144

    Article  Google Scholar 

  • Liu J, Wang K (2006) Geothermal reinjection in China. Proceedings of the 7th Asian Geothermal Symposium, July 25–26, 2006

  • Luan G, Qiu H (1998) The type of low-medium temperature geothermal system of convection type: the genesis analysis of Tangshan geothermal system in Nanjing (in Chinese with English abstract). J Ocean Univ Qingdao 28(1):156–160

  • Lund JW, Boyd TL (2016) Direct utilization of geothermal energy 2015 worldwide review. Geothermics 60:66–93

    Article  Google Scholar 

  • Ma T, Wang Y, Guo Q, Yan C, Ma R, Huang Z (2009) Hydrochemical and isotopic evidence of origin of thermal karst water at Taiyuan, northern China. J Earth Sci 20(5):879–889

    Article  Google Scholar 

  • Ma R, Wang Y, Sun Z, Zheng C, Ma T, Prommer H (2011) Geochemical evolution of groundwater in carbonate aquifers in Taiyuan, northern China. Appl Geochem 26(5):884–897

    Article  Google Scholar 

  • Majumdar N, Majumdar RK, Mukherjee AL, Bhattacharya SK, Jani RA (2005) Seasonal variations in the isotopes of oxygen and hydrogen in geothermal waters from Bakreswar and Tantloi, eastern India: implications for groundwater characterization. J Asian Earth Sci 25:269–278

    Article  Google Scholar 

  • Michael K, Golab A, Shulakova V, Ennis-King J, Allinson G, Sharma S, Aiken T (2010) Geological storage of CO2 in saline aquifers: a review of the experience from existing storage operations. Int J Greenh Gas Con 5:659–667

    Article  Google Scholar 

  • Mongillo MA (2010) Preface to geothermics special issue on sustainable geothermal utilization. Geothermics 39:279–282

    Article  Google Scholar 

  • Montanari D, Minissale A, Doveri M, Gola G, Trumpy E, Santilano A, Manzella A (2017) Geothermal resources within carbonate reservoirs in western Sicily (Italy): a review. Earth-Sci Rev 169:180–201

    Article  Google Scholar 

  • Négrel P, Roy S (1998) Chemistry of rainwater in the Massif Central (France): a strontium isotope and major element study. Appl Geochem 13(8):941–952

    Article  Google Scholar 

  • Négrel P, Petelet-Giraud E, Widory D (2004) Strontium isotope geochemistry of alluvial groundwater: a tracer for groundwater resources characterization. Hydrol Earth Syst Sci 8(5):959–972

    Article  Google Scholar 

  • Pang Z (2011) Geothermal waters. In: Gu W, Pang Z, Wang J, Song X (eds) Isotope hydrology (in Chinese with English abstract). Science Press, Beijing, pp 576–588

  • Pang Z, Reed M (1998) Theoretical chemical thermometry on geothermal waters: problems and methods. Geochim Cosmochim Acta 62:1083–1091

    Article  Google Scholar 

  • Pang Z, Yang F, Luo L (2013) Approaches in determining geothermal reservoir temperatures: a review. In: Ding Z (ed) Methodologies in solid earth sciences (in Chinese). Science Press, Beijing, pp 219–242

  • Pang Z, Pang J, Kong Y, Luo L, Duan Z, Yang F, Wang S (2015) large karstic geothermal reservoirs in sedimentary basins in China: genesis, energy potential and optimal exploitation. Proceedings of World Geothermal Congress 2015, Melbourne, Australia, April 19–25, 2015

  • Parkhurst DL, Appelo CAJ (2013) Description of input and examples for PHREEQC Version 3: a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. US Geol Surv Tech Methods 6-A43. Available at http://pubs.usgs.gov/tm/06/a43/. Accessed January 2017

  • Pearson FJ (1965) Use of 13C/12C ratios to correct radiocarbon ages of material initially diluted by limestone. In: Proceedings of the 6th International Conference on Radiocarbon and Tritium Dating, Pullman, WA, June 1965, 357 pp

  • Raidla V, Kirsimäe K, Ivask J, Kaup E, Knöller K, Marandi A, Martma T, Vaikmäe R (2014) Sulphur isotope composition of dissolved sulphate in the Cambrian-Vendian aquifer system in the northern part of the Baltic Artesian Basin. Chem Geol 383:147–154

    Article  Google Scholar 

  • Reed M, Spycher N (1984) Calculation of pH and mineral equilibria in hydrothermal waters with application to geothermometry and studies of boiling and dilution. Geochim Cosmochim Acta 48:1479–1492

    Article  Google Scholar 

  • Reinsch T, Henninges J, Asmundsson R (2013) Thermal, mechanical and chemical influences on the performance of optical fibres for distributed temperature sensing in a hot geothermal well. Environ Earth Sci 70:3465–3480. https://doi.org/10.1007/s12665-013-2248-8

    Article  Google Scholar 

  • Sack AL, Sharma S (2014) A multi-isotope approach for understanding sources of water, carbon and sulfur in natural springs of the central Appalachian region. Environ Earth Sci 71(11):4715–4724

    Article  Google Scholar 

  • Spycher N, Peiffer L, Sonnenthal, E (2013) GeoT user’s guide a computer program for multicomponent geothermometry and geochemical speciation version 1.4. Report no. LBNL-6172E, Lawrence Berkeley National Laboratory, Berkeley, CA

  • Tamers MA (1975) Validity of radiocarbon dates of groundwater. Geol Surv 2:217–239

    Article  Google Scholar 

  • Tonani F (1980) Some remarks on the application of geochemical techniques in geothermal exploration. In: Strub AS, Ungemach P (eds) Advances in European geothermal research. Springer, Dordrecht, The Netherlands, pp 428–443

  • Truesdell AH (1976) Summary of section III: geochemical techniques in exploration. In: Proc. of the 2nd United Nations Symp. on the Development and Use of Geothermal Resources, San Francisco, May 1975, pp 53–79

  • Wang D, Wang K (2011) Hydrogen and oxygen isotope characteristics of precipitation. In: Gu W, Pang Z, Wang J, Song X (eds) Isotope hydrology (in Chinese with an English abstract). Science Press, Beijing, pp 150–173

  • Wang G, Li K, Wen D, Lin W, Lin L, Liu Z, Zhang W, Ma F, Wang W (2015) Assessment of geothermal resources in China. In: Proceedings of the World Geothermal Congress 2015, Melbourne, Australia

  • Wang J (2009) Discussions on geothermal energy exploration and utilization of China, from the point of world geothermal energy. Proceedings of workshop on Chinese scientific geothermal energy exploration. Geology Press, Beijing, pp 3–6

  • Wang J, Xiong L, Pang Z (1993) Low-middle convective geothermal system (in Chinese). Science Press, Beijing

  • Wang J, Zhai Y, Teng Y, Zuo R (2011) Study on groundwater renewal capacity and reproducibility (in Chinese). J Beijing Normal Univ Nat Sci 42:213–216

  • Wang P, Chen X, Shen L, Wu K, Huang M, Xiao Q (2016) Geochemical features of the geothermal fluids from the Mapamyum non-volcanic geothermal system (western Tibet, China). J Volcanol Geoth Res 320:29–39

    Article  Google Scholar 

  • Wang Y, Guo Q, Su C, Ma T (2006) Strontium isotope characterization and major ion geochemistry of karst water flow, Shentou, northern China. J Hydrol 328(3):592–603

    Article  Google Scholar 

  • Xu W, Su X, Dai Z, Yang F, Zhu P, Huang Y (2017) Multi-tracer investigation of river and groundwater interactions: a case study in Nalenggele River basin, northwest China. Hydrogeol J 25(7):2015–2029. https://doi.org/10.1007/s10040-017-1606-0

  • Yang P, Cheng Q, Xie S, Wang J, Chang L, Yu Q, Zhan Z, Chen F (2017) Hydrogeochemistry and geothermometry of deep thermal water in the carbonate formation in the main urban area of Chongqing, China. J Hydrol 549:50–61

    Article  Google Scholar 

  • Zhao J, Zhu S (1998) Control factors and resources Prospect of geothermal water in Tangshan Hill of Nanjing, Jiangsu (in Chinese with English abstract). Geology 22(4):242–248

  • Zou P, Qiu Y, Wang C (2015) Analyses of the genesis of Tangshan Hot Spring area in Nanjing (in Chinese with English abstract). Geol J China Univ 21(1):155–162

Download references

Acknowledgements

Thanks are due to Prof. Huang Jinsheng and Prof. Luo Zhujiang for their discussions during the project implementation. Appreciation goes to Prof. Jin Zhengang and Prof. Li Yiman, who helped with stable isotope and hydrochemical analyses, respectively. The authors are also grateful to the two anonymous reviewers and guest editor Prof. Dr. Wenke Wang whose insightful comments were very helpful in improving the quality of the manuscript.

Funding

The reported study is partly financially supported by the National Natural Science Foundation of China (NSFC Grant 41430319), the 1st Geological Brigade of Jiangsu Geology and Mineral Exploration Bureau and the UCAS (UCAS [2015]37) Joint PhD Training Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhonghe Pang.

Additional information

Published in the special issue “Groundwater sustainability in fast-developing China”

Electronic supplementary material

ESM 1

(PDF 489 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, L., Pang, Z., Kong, Y. et al. Geochemical and isotopic evidence on the recharge and circulation of geothermal water in the Tangshan Geothermal System near Nanjing, China: implications for sustainable development. Hydrogeol J 26, 1705–1719 (2018). https://doi.org/10.1007/s10040-018-1721-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-018-1721-6

Keywords

Navigation