Skip to main content

Advertisement

Log in

Hydrogeochemical and isotopic assessment and geothermometry applications in relation to the Karahayıt Geothermal Field (Denizli Basin, SW Anatolia, Turkey)

Evaluation hydrogéochimique et isotopique et applications de la géothermométrie, en relation avec le champ géothermal de Karahayit (Bassin de Denizli, Anatolie du Sud-Ouest, Turquie)

Evaluación hidrogeoquímica e isotópica y aplicaciones de geotermometría en relación con el Karahayıt Geothermal Field (Denizli Basin, SW Anatolia, Turquía)

(土耳其安纳托利亚西南部Denizli流域)有关Karahayıt地热田水文地球化学和同位素评价及地热温度测量应用

Avaliação hidrogeoquímica e isotópica e aplicações geotermométricas em relação ao Campo Geotermal de Karahayit (Bacia de Denizli, SO da Anatólia, Turquia)

  • Paper
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

The Karahayıt Geothermal Field (KGF) is located at the northern margin of the Denizli Basin in SW Anatolia (Turkey) where thermal waters discharge along the Quaternary normal fault segments locally displaced by conjugate transfer faults. Major and trace element contents and stable isotopes (δ18O, δ2H, δ3H and δ13C) of the KGF thermal and cold waters were analyzed in order to determine their origin and evolution and reservoir temperatures. Two main thermal waters, indicated as being fed by steam-heated aquifers, are recognized: (1) Ca-HCO3 and (2) Ca-SO4 types. All thermal waters have shown non-equilibrium chemical conditions, indicating mixing processes. According to the δ18O (−9.14 to −8.07‰) and δ2H (−59.50 to −51.80‰) data, the KGF thermal waters are meteoric in origin and originated from precipitation in the northern piedmont of Yenice Horst with elevation of 900 m asl. Various geothermometers yield the reservoir temperatures of 80–130 °C. A conceptual flow model for the KGF was suggested as follows: the thermal waters were derived from a regional flow system with high recharge areas and deep circulation depth. The NW- and NE-trending conjugate fault segments (the Pamukkale Fault Zone) serve as features of hydraulic channelling, magmatic heat source and fluid convection in the extensional settings. This fault system is characterized by migration of a large amount of CO2-rich gas from the deep geothermal reservoir. Consequently, the KGF is characterized by a fault-hosted geothermal system affected by magmatism and active extensional tectonics, the same as other geothermal fields in this crustal extensional setting.

Résumé

Le Champ Géothermal de Karahayit (CGK) est localisé sur la bordure septentrionale du Bassin de Denizli, en Anatolie du Sud-Ouest (Turquie) où des eaux thermales émergent le long des segments d’une faille normale d’âge quaternaire, localement décrochés par des failles conjuguées en extension. Les concentrations des éléments majeurs et des éléments traces et les isotopes stables (δ18O, δ2H, δ3H et δ13C) des eaux thermales et des eaux froides du CGK ont été mesurées dans le but de déterminer leur origine, leur évolution et les températures du réservoir. Deux types principaux d’eaux thermales, indiquées comme étant alimentées par des aquifères à eaux chaudes induites par la vapeur, sont reconnus: les types (1) Ca-HCO3 et (2) Ca-SO4. Toutes les eaux thermales ont montré des conditions de non-équilibre chimique, révélant l’existence de processus de mélange. Selon les données du δ18O (–9.14 à –8.07‰) et du δ2H (–59.50 à –51.80‰), les eaux thermales du CGK sont d’origine météorique et proviennent de précipitations dans le piedmont nord du Horst de Yenice, à l’altitude de 900 m au-dessus du niveau de la mer. Divers géothermomètres révèlent des températures de réservoir de 80–130 °C. Un modèle d’écoulement conceptuel du CGK a été proposé comme suit: les eaux thermales sont dérivées d’un système d’écoulement régional avec des zones de forte recharge et une profondeur de circulation importante. Les segments de faille conjuguées orientées NW et NE (Zone de la Faille de Pamukkale) expriment des caractéristiques de canalisation hydraulique, de source de chaleur magmatique et de convection du fluide dans les contextes d’extension. Ce système de failles est caractérisé par la migration d’une grande quantité de gaz riche en CO2 provenant d’un réservoir géothermal profond. En conséquence, le CGK est caractérisé par un système géothermal lié à une faille, affecté par le magmatisme et une tectonique extensive active, à l’instar des autres champs géothermaux dans ce contexte d’extension crustale.

Resumen

El Karahayıt Geothermal Field (KGF) está ubicado en el margen norte de la cuenca Denizli en SW Anatolia (Turquía), donde las aguas termales se descargan a lo largo de los segmentos de fallas normales del Cuaternario desplazados localmente por fallas conjugadas de transferencia. Los contenidos de elementos mayoritarios y oligoelementos e isótopos estables (δ18O, δ2H, δ3H and δ13C) de las aguas termales y aguas frías de KGF se analizaron para determinar su origen y evolución y las temperaturas del yacimiento. Se reconocen dos aguas termales principales, indicadas como alimentadas por acuíferos calentados por vapor: (1) Ca-HCO3 y (2) Ca-SO4. Todas las aguas termales han mostrado condiciones químicas de no equilibrio, lo que indica procesos de mezcla. De acuerdo con los datos de δ18O (–9.14 a –8.07‰) y δ2H (–59.50 a –51.80‰), las aguas termales de KGF son de origen meteórico y se originaron de la precipitación en el piedemonte norte de Yenice Horst con una elevación de 900 msnm. Los geotermómetros producen las temperaturas del reservorio de 80–130 °C. A continuación, se sugirió un modelo de flujo conceptual para el KGF: las aguas termales se derivaron de un sistema de flujo regional con áreas de alta recarga y profundidad de circulación profunda. Los segmentos de fallas conjugadas de tendencia NW y NE (la zona de falla de Pamukkale) sirven como características de canalización hidráulica, fuente de calor magmático y convección de fluidos en las configuraciones de extensión. Este sistema de fallas se caracteriza por la migración de una gran cantidad de gas enriquecido en CO2-desde el depósito geotérmico profundo. En consecuencia, el KGF se caracteriza por un sistema geotérmico con fallas afectado por magmatismo y tectónica extensional activa, al igual que otros campos geotérmicos con esta configuración extensional de la corteza.

摘要

Karahayıt地热田位于(土耳其)纳托利亚西南部Denizli流域的北缘, 这里地热水沿由于共轭转移断层造成局部位移的第四纪正断层段排泄。分析了Karahayıt地热田热水和冷水中的主要和微量元素含量和稳定同位素(δ18O、 δ2H、 δ3H 和 δ13C), 目的就是确定其起源和演化以及储地温度。两种主要热水由蒸汽加热的含水层补给, 这两种热水确认为:(1)Ca-HCO3 和 (2) Ca-SO4类型。所有的热水都显示出不平衡的化学状况, 表明了有混合过程。根据δ18O (–9.14 至 –8.07‰) 和 δ2H (–59.50 至 –51.80‰)数据, Karahayıt地热田地热水是大气来源, 来源于海拔900米的Yenice地垒北部山前地带的降水。各种地温计得出的储地温度为80–130 °C。提出了Karahayıt地热田概念水流模型如下:热水由具有很高的补给区和很深的循环深度的区域水流系统流出。NW-向和 NE-向的共轭断层段(Pamukkale断层带)在外延背景下充当水力渠道、岩浆热源以及流体对流的角色。这个断层系统的特点就是大量的富含CO2气体从深部的地热储迁移出来。因此, Karahayıt地热田具有断层主导的地热系统特征, 受到岩浆作用和活跃外延构造运动的影响, 与这个地壳外延背景下的其它地热田相同。

Resumo

O Campo Geotermal de Karahayıt (CGK) está localizado na margem norte da Bacia de Denizli, no sudoeste da Anatólia (Turquia), onde águas termais descarregam ao longo dos segmentos de falha normal do Quaternário, localmente deslocados por falhas de transferência de conjugado. Os teores de elementos principais e traços e os isótopos estáveis (δ18O, δ2H, δ3H e δ13C) das águas termais e frias do CGK foram analisados para determinar sua origem e a evolução e temperaturas do reservatório. Foram identificadas duas águas termais principais alimentadas por aquíferos aquecidos a vapor: (1) dos tipos Ca-HCO3 e (2) Ca-SO4. Todas as águas termais mostraram condições químicas de não-equilíbrio, indicando processos de mistura. De acordo com os dados de δ18O (–9.14 a –8.07‰) e δ2H (–59.50 a –51.80‰), as águas termais do CGK são de origem meteórica e originadas da precipitação no Piemonte Setentrional de Yenice Horst, cuja elevação é de 900 manm. Vários geotermômetros produzem as temperaturas de reservatório entre 80–130 °C. Foi sugerido um modelo de fluxo conceitual para o CGK que funcionaria da seguinte forma: as águas termais proveem de um sistema de fluxo regional com áreas de recarga em altitude e profunda circulação subterrânea. Os segmentos de falha de conjugado de tendência NO e NE (a zona de falha de Pamukkale) servem como elementos de canalização hidráulica, fonte de calor magmático e convecção de fluido por toda a sua extensão. Este sistema de falhas é caracterizado pela migração de uma grande quantidade de gás rico em CO2 do reservatório geotérmico profundo. Consequentemente, o CGK é caracterizado por um sistema geotérmico hospedado por falhas, afetado por um magmatismo e uma tectônica extensional e ativa, ao igual que outros campos geotérmicos em cenários extensional crustal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Akkuş İ, Akıllı H, Ceyhan S, Dilemre A, Tekin Z (2005) Geothermal inventory of Turkey (in Turkish). General Directorate of Mineral Research and Exploration, no. 201, Ankara, Turkey

  • Alçiçek H (2007) Sedimentological investigations of Neogene deposits of the Denizli Basin (Sarayköy-Buldan Area, SW Turkey). PhD Thesis, Ankara University, Turkey, 304 pp

  • Alçiçek H, Varol B, Özkul M (2007) Sedimentary facies, depositional environments and palaeogeographic evolution of the Neogene Denizli Basin of SW Anatolia, Turkey. Sediment Geol 202:596–637

    Article  Google Scholar 

  • Alçiçek H, Bülbül A, Alçiçek MC (2016) Hydrogeochemistry of the thermal waters from the Yenice geothermal field (Denizli Basin, southwestern Turkey). J Volcanol Geotherm Res 309:118–138

    Article  Google Scholar 

  • Alçiçek H, Bülbül A, Brogi A, Liotta D, Ruggieri G, Capezzuoli E, Meccheri M, Yavuzer İ, Alçiçek MC (2018) Origin, evolution and geothermometry of thermal waters in the Gölemezli geothermal field, Denizli Basin (SW Anatolia, Turkey). J Volcanol Geotherm Res 349:1–30

    Article  Google Scholar 

  • Alçiçek H, Bülbül A, Yavuzer İ, Alçiçek MC (2019) Origin and evolution of the thermal waters from the Pamukkale geothermal field (Denizli Basin, SW Anatolia, Turkey): insights from hydrogeochemistry and geothermometry. J Volcanol Geotherm Res 372:48–70

  • Alçiçek MC, Brogi A, Capezzuoli E, Liotta D, Meccheri M (2013) Superimposed basin formation during Neogene–Quaternary extension in SW-Anatolia (Turkey): insights from the kinematics of the Dinar Fault Zone. Tectonophysics 608:713–727

  • Altunel E (1996) Pamukkale travertenlerinin morfolojik özellikleri, yaşları ve neotektonik önemleri. Bull. Mineral Res. Explor. Direct. Turkey (MTA) 118, 47–64

  • Altunel E, Hancock PL (1996) Structural attributes of travertine-filled extensional fissures in the Pamukkale plateau, western Turkey. Int Geol Rev 38:768–777

    Article  Google Scholar 

  • Altunel E, Hancock PL (1993a) Active fissuring, faulting and travertine deposition at Pamukkale (W Turkey). In: Stewart IS, Vita-Finzi C, Owen LA (eds) Neotectonics and active faulting. Zeitschrift Geomorfol 99:285–302

  • Altunel E, Hancock PL (1993b) Morphological features and tectonic setting of Quaternary travertines at Pamukkale, western Turkey. Geol J 28:335–346

    Article  Google Scholar 

  • Baba A, Sözbilir H (2012) Source of arsenic based on geological and hydrogeochemical properties of geothermal systems in western Turkey. Chem Geol 33:364–377

    Article  Google Scholar 

  • Ballentine CJ, Burgess R, Marty B (2002) Tracing fluid origin, transport and interaction in the crust. In: Porcelli D, Ballentine CJ, Wieler R (eds) Noble gases in geochemistry and cosmochemistry. Rev Mineral Geochem 47:539–614

  • Barut İF, Erdoğan N, Erol FB, Güneri FD (2013) Geçmişten günümüze denizli termal mineralli sularının hidrokimyasal özellikleri ile kullanımının değerlendirilmesi [Evaluation from past to present of the hydrochemical characteristics of thermal mineral waters of Denizli İstanbul]. Yerbilimleri Dergisi 26:1–24

    Google Scholar 

  • Becker JA, Bickle MJ, Galy A, Holland TJB (2008) Himalayan metamorphic CO2 fluxes: quantitative constraints from hydrothermal springs. Earth Planet Sci Lett 265:616–629

    Article  Google Scholar 

  • Boulbes N, Mayda S, Titov VV, Alçiçek MC (2014) Les grands mammifères pléistocènes des travertins du Bassin de Denizli, Sud-Ouest de l’Anatolie, Turquie [The large upper Villafranchian mammals from the Denizli Basin travertines, southwest Anatolia, Turkey]. Anthropologie 118:44–73

    Article  Google Scholar 

  • Bozkurt E (2003) Origin of NE-trending basins in western Turkey. Geodin Acta 16:61–81

    Article  Google Scholar 

  • Brilli M, Giustini F, Conte AM, Mercadal PL, Quarta G, Plumed HR, Scardozzi G, Belardi G (2015) Petrography, geochemistry and cathodoluminescence of ancient white marble from quarries in the southern Phrygia and northern Caria regions of Turkey: considerations on provenance discrimination. J Archaeol Sci Rep 4:124–142

    Google Scholar 

  • Brogi A, Capezzuoli E, Alçiçek MC, Gandin A (2014) Evolution of a fault-controlled travertine fissure-ridge in the western Anatolia extensional province: the Çukurbağ fissure-ridge (Pamukkale, Turkey). J Geol Soc 171:425–441

    Article  Google Scholar 

  • Brogi A, Alçiçek MC, Yalçıner CÇ, Capezzuoli E, Liotta D, Meccheri M, Rimondi V, Ruggieri G, Gandin A, Boschi C, Büyüksaraç A, Alçiçek H, Bülbül A, Baykara MO, Shen C-C (2016) Hydrothermal fluids circulation and travertine deposition in an active tectonic setting: insights from the Kamara geothermal area (western Anatolia, Turkey). Tectonophysics 680:211–232

    Article  Google Scholar 

  • Çağlar KÖ (1961) Türkiye maden suları ve kaplıcaları [Mineral waters and spas in Turkey]. No. 107, Fasikül 4, MTA Enstitüsü Yayını, Ankara

  • Çakır Z (1999) Along-strike discontinuity of active normal faults and its influence on Quaternary travertine deposition: examples from western Turkey. Turk J Earth Sci 8:67–80

    Google Scholar 

  • Capezzuoli E, Ruggieri G, Rimondi V, Brogi A, Liotta D, Alçiçek MC, Alçiçek H, Bülbül A, Gandin A, Meccheri M, Shen C-C, Baykara MO (2018) Calcite veining and feeding conduits in a hydrothermal system: insights from a natural section across the Pleistocene Gölemezli travertine depositional system (western Anatolia, Turkey). Sediment Geol 364:180–203

    Article  Google Scholar 

  • Clark WB, Jenkins WJ, Top Z (1997) Determination of tritium by mass spectrometric measurements. J Appl Radioactive Isot 27:515–522

    Article  Google Scholar 

  • Collins AS, Robertson AHF (1998) Processes of late cretaceous to Late Miocene episodic thrust-sheet translation in the Lycian Taurides, SW Turkey. J Geol Soc Lond 155:759–772

    Article  Google Scholar 

  • Craig H (1961) Isotopic variation in meteoric waters. Science 133:1702–1703

    Article  Google Scholar 

  • Coplen TB (2011) Guidelines and recommended terms for expression of stable isotope ratio and gas ratio measurement results. Rapid Commun Mass Spectrom 25:2538–2560

    Article  Google Scholar 

  • De Filippis L, Faccenna C, Billi A, Anzalone E, Brilli M, Soligo M, Tucccimei P (2013) Plateau versus fissure ridge travertines from Quaternary geothermal springs of Italy and Turkey: interactions and feedbacks between fluid discharge, paleoclimate, and tectonics. Earth-Sci Rev 123:35–52

    Article  Google Scholar 

  • Dilsiz C (2006) Conceptual hydrodynamic model of the Pamukkale hydrothermal field, southwestern Turkey, based on hydrochemical and isotopic data. Hydrogeol J 14:562–572

    Article  Google Scholar 

  • Ercan T, Günay E, Baş H (1983) Denizli volkanitlerinin petrolojisi ve plaka tektoniği açısından bölgesel yorumu [Petrology and plate tectonics of the Denizli volcanics as regional implications]. Bull Geol Soc Turk 26:153–160

  • Ercan T, Matsuda J, Nagao K, Kita I (1994) Anadolu’daki sıcak sularda bulunan doğal suların izotopik bileşimleri ve karbondioksit gazının enerji açısından önemi [Importance of isotopic compositions of thermal waters and carbon dioxide in Anatolia]. Türkiye 6. Enerji Kongresi, İzmir, Türkiye, pp 197–207

  • Ersoy Y, Helvacı C (2007) Stratigraphy and geochemical features of the Early Miocene bimodal (ultrapotassic and calcalkaline) volcanic activity within the NE-trending Selendi basin, western Anatolia, Turkey. Turk J Earth Sci 16:117–139

    Google Scholar 

  • Evans MJ, Derry LA, France-Lanord C (2008) Degassing of metamorphic carbon dioxide from the Nepal Himalaya. Geochem Geophys Geosyst 9:Q04021. https://doi.org/10.1029/2007GC001796

    Google Scholar 

  • Filiz Ş (1982) Ege bölgesindeki önemli jeotermal alanların 18O, 2H, 3H ve 13C izotoplarıyla incelenmesi [18O, 2H, 3H ve 13C isotopic compositions of geothermal fields in the Aegean Region]. Ege Ü, Yer Bil Fak, Doçentlik Tezi, İzmir, Turkey

  • Filiz Ş (1984) Investigation of the important geothermal areas by using C, H, O, isotopes. Seminar on the utilization of Geothermal Energy for Electric Power Generation and Space Heating. Seminar ref. no. EP/SEM. 9/R.3, Florence, Italy, 14–17 May 1984

  • Filiz Ş (1989) Isotopic analyses of CO2 and travertines in the Denizli geothermal province (West Anatolia). U.N. Seminar on New Developments in Geothermal Energy. 22–25 May 1989, Ankara

  • Filiz Ş, Gökgöz A, Tarcan G (1992) Hydrogeologic comparisons of geothermal fields in the Gediz and Büyük Menderes Grabens. XI Congress of World Hydrothermal Organization, İstanbul, May 1992

  • Fournier RO (1977) Chemical geothermometers and mixing models for geothermal systems. Geothermics 5:41–50

    Article  Google Scholar 

  • Fournier RO, Truesdell AH (1973) An empirical Na-K-ca geothermometer for natural waters. Geochim Cosmochim Acta 37:1255–1275

    Article  Google Scholar 

  • Gat JR, Carmi I (1970) Evolution in the isotopic composition of atmospheric waters in the Mediterranean Sea area. J Geophys Res 75:3039–3048

    Article  Google Scholar 

  • Gat JR, Gonfiantini R (IAEA) (eds) (1981) Stable isotope hydrology. Deuterium and oxygen-18 in water cycle. IAEA technical report no. 210, IAEA, Vienna, 339 pp

  • Giggenbach WF (1988) Geothermal solute equilibria: derivation of Na-K-Mg-Ca geoindicators. Geochim Cosmochim Acta 52:2749–2765

    Article  Google Scholar 

  • Giggenbach WF, Gonfiantini R, Jangi BL, Truesdell AH (1983) Isotopic and chemical composition of Parbati valley geothermal discharges, NW-Himalaya, India. Geothermics 12:199–222

    Article  Google Scholar 

  • Gökgöz A (1994) Pamukkale-Karahayıt-Gölemezli Hidrotermal Karstının Hidrojeolojisi [Hydrogeology of Pamukkale-Karahayıt-Gölemezli geothermal fields]. PhD Thesis, Süleyman Demirel University, Isparta, Turkey

  • Gökgöz A (1998) Geochemistry of the Kızıldere-Tekkehamam-Buldan-Pamukkale Geothermal Fields. Reports, UNU, Geothermal Training Programme, Reykjavik, Iceland, pp 115–156

  • Gökgöz A, Yılmazlı IE, Güngör İ, Yavuzer İ (2010) Hydrogeology and environmental study at the Karahayit geothermal field (western Turkey). Proceedings World Geothermal Congress, Bali, April 2010, pp 1–10

  • Güleç N, Hilton DR (2006) Helium and heat distribution in Western Anatolia, Turkey: relationship to active extension and volcanism. In: Dilek Y, Pavlides S (eds) Post-collisional tectonics and magmatism in the Eastern Mediterranean Region. GSA Special Paper 409, Geological Society of America, Boulder CO, pp 305–319

  • Güleç N, Hilton DR (2016) Turkish geothermal fields as natural analogues of CO2 storage sites: gas geochemistry and implications for CO2 trapping mechanisms. Geothermics 64:96–110

    Article  Google Scholar 

  • Güleç N, Hilton DR, Mutlu H (2002) Helium isotope variations in Turkey: relationship to tectonics, volcanism and recent seismic activities. Chem Geol 187:129–142

    Article  Google Scholar 

  • Güleç N, Mutlu H, Hilton DR (2014) Gas geochemistry of Turkish geothermal fluids: He-CO2 systematics in relation to active tectonics and volcanism. In: Baba A, Bundschuh J, Chandrasekharam D (eds) Geothermal systems and energy resources: Turkey and Greece. Taylor and Francis, Leiden, The Netherlands, pp 13–23

    Google Scholar 

  • Han DN, Liang X, Jin MG, Currell MJ, Song XF, Liu CM (2010) Evolution of groundwater hydrochemical characteristic and mixing behavior in the Daying and Qicum geothermal systems, Xinzhou Basin. J Volcanol Geotherm Res 189:99–104

    Article  Google Scholar 

  • Karakuş H, Şimşek Ş (2013) Tracing deep thermal water circulation systems in the E–W trending Büyük Menderes Graben, western Turkey. J Volcanol Geotherm Res 252:38–52

    Article  Google Scholar 

  • Karaoğlu Ö, Helvacı C (2014) Isotopic evidence for a transition from subduction to slab-tear related volcanism in western Anatolia, Turkey. Lithos 192–195:226–239

    Article  Google Scholar 

  • Kaymakçı N (2006) Kinematic development and paleostress analysis of the Denizli Basin (western Turkish): implications of spatial variation of relative paleostress magnitudes and orientations. J Asian Earth Sci 27:207–222

    Article  Google Scholar 

  • Kele S, Özkul M, Gökgöz A, Fórizs I, Baykara MO, Alçiçek MC, Németh T (2011) Stable isotope geochemical and facies study of Pamukkale travertines: new evidences of low-temperature non-equilibrium calcite-water fractionation. Sediment Geol 238:191–212

    Article  Google Scholar 

  • Kennedy BM, van Soest MC (2007) Flow of mantle fluids through the ductile lower crust: helium isotope trends. Science 318:1433–1436

    Article  Google Scholar 

  • Kennedy BM, Kharaka YK, Evans WC, Ellwood A, Depaolo DJ, Thordsen J, Ambats G, Mariner RH (1997) Mantle fluids in the San Andreas fault system, California. Science 278:1278–1281

    Article  Google Scholar 

  • Kıymaz İ (2012) Karahayıt (Denizli) yöresinin jeotermal potansiyeli [Geothermal potential of Karahayıt-Denizli geothermal field]. MSc Thesis, Süleyman Demirel University, Isparta, Turkey

  • Koçyiğit A (2005) The Denizli graben-horst system and the eastern limit of western Anatolian continental extension: basin-fill, structure, deformational mode, throw amount and episodic evolutionary history, SW Turkey. Geodin Acta 18:167–208

    Article  Google Scholar 

  • Konak N, Şenel M (2002) Geological map of Turkey in 1/500.000 scale: Denizli sheet. Mineral Research and Exploration Directorate of Turkey (MTA), Ankara

  • Koralay T, Baykara MO, Deniz K, Kadıoğlu YK, Duman B, Shen C-C (2018) Multi-isotope investigations for scientific characterisation and provenance implication of banded travertines from Tripolis Antique City (Denizli-Turkey). Environ Archaeol. https://doi.org/10.1080/14614103.2018.1498164

  • Kutlu DŞ (2015) Pamukkale (Denizli) ve yakın çevresi jeotermal sularının hidrojeolojik, hidrojeokimyasal ve izotop jeokimyasal özellikleri [Hydrogeological, hydrogeochemical and isotopic properties of thermal waters of the Pamukkale-Denizli and its surroundings]. MSc Thesis, Süleyman Demirel University, Isparta, Turkey

  • Lebatard A-E, Alçiçek MC, Rochette P, Khatib S, Vialet A, Boulbes N, Bourlès DL, Demory F, Guipert G, Mayda S, Titov VV, Vidal L, de Lumley H (2014a) Dating the Homo erectus bearing travertine from Kocabaş (Denizli, Turkey) at at least 1.1 Ma. Earth Planet Sci Lett 390:8–18

    Article  Google Scholar 

  • Lebatard A-E, Bourlès DL, Alçiçek MC (2014b) Datation des travertins de Kocabaş par la méthode des nucléides cosmogéniques 26Al/10Be [Dating of the Kocabaş travertines with the 26Al/10Be cosmogenic nuclide method]. Anthropologie 118:34–43

    Article  Google Scholar 

  • Ma R, Wang Y, Sun Z, Zheng C, Ma T, Prommer H (2011) Geochemical evolution of groundwater in carbonate aquifers in Taiyuan, northern China. Appl Geochem 26:884–897

    Article  Google Scholar 

  • McCollom TM, Lollar BS, Lacrampe-couloume G, Seewald JS (2010) The influence of carbon source on abiotic organic synthesis and carbon isotope fractionation under hydrothermal conditions. Geochim Cosmochim Acta 74:2717–2740

    Article  Google Scholar 

  • Möller P, Dulski P, Savasçın Y, Conrad M (2004) Rare earth elements, yttrium and Pb isotope ratios in thermal spring and well waters of West Anatolia, Turkey: a hydrochemical study of their origin. Chem Geol 206:97–118

    Article  Google Scholar 

  • Möller P, Dulski P, Özgür N (2008) Partitioning of rare earths and some major elements in the Kızıldere geothermal field, Turkey. Geothermics 37:132–156

    Article  Google Scholar 

  • Müller G (1967) Diagenesis in argillaceous sediments. In: Larsen G, Chilingar GV (eds) Diagenesis in sediments. Elsevier, Amsterdam, pp 127–177

    Chapter  Google Scholar 

  • Nebert K (1958) Denizli Pliyosen teressübatı ve bunların Batı Anadolu tatlı su Neojen stratigrafisi için ehemmiyeti. Bull. Mineral Res. Explor. Direct. Turkey(MTA) 51, 7–20

  • Nicholson K (1993) Geothermal fluids: chemistry and exploration techniques. Springer, Heidelberg, Germany

    Book  Google Scholar 

  • Okay Aİ (2001) Stratigraphic and metamorphic inversions in the Central Menderes massif: a new structural model. Int J Earth Sci 89:709–727

    Article  Google Scholar 

  • Okay Aİ (1989) Denizli’nin güneyinde Menderes masifi ve Likya naplarının jeolojisi [Geology and Menderes massif and Lycian nappes in southern Denizli]. Bull Mineral Res Explor 109:45–58

    Google Scholar 

  • Özkul M, Kele S, Gökgöz A, Forisz I, Alçiçek MC, Eros A (2009) Stable isotopic studies on travertines for paleoenvironmental and paleoclimatic reconstruction: a comparative study on the genesis of occurrences in Turkey and Hungary. TÜBİTAK-NKHT project (106Y207), TÜBİTAK-NKHT project, TÜBİTAK, Ankara, 124 pp

  • Parkhurst DL, Appelo CAJ (1999) User’s guide to PHREEQC (version 2): a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. US Geol Survey Water Resour Invest Rep 99-4259, 312 pp

  • Paton SM (1992) The relationship between extension and volcanism in westernTurkey, the Aegean Sea, and central Greece.Unpubl. PhD Thesis, Cambridge University, p 300

  • Pentecost A (1995) Geochemistry of carbon dioxide in six travertine-depositing waters of Italy. J Hydrol 167:263–278

    Article  Google Scholar 

  • Prelević D, Akal C, Romer RL, Mertz-Kraus R, Helvacı C (2015) Magmatic response to slab tearing: constraints from the Afyon alkaline volcanic complex, western Turkey. J Petrol 56:527–562

    Article  Google Scholar 

  • Ravikumar P, Somashekar RK (2011) Environmental tritium (3H) and hydrochemical investigations to evaluate groundwater in Varahi and Markedenya river basins, Karnataka, India. J Environ Radioact 102:153–162

    Article  Google Scholar 

  • Reed MH, Spycher NF (1984) Calculation of pH and mineral equilibria in hydrothermal waters with application to geothermometry and studies of boiling and dilution. Geochim Cosmochim Acta 48:1479–1492

    Article  Google Scholar 

  • Saraç G (2003) Türkiye Omurgalı Fosil Yatakları. Mineral Res. Expl. Direct. Turkey (MTA), Scientific Report No:10609, p 208 Ankara, Turkey (in Turkish)

  • Şengör AMC, Yılmaz Y (1981) Tethyan evolution of Turkey: a plate tectonic approach. Tectonophysics 75, 181-241

  • Shipton ZK, Evans JP, Kirschner D, Kolesar PT, Williams AP, Heath J (2004) Analysis of CO2 leakage through 'low-permeability' faults from natural reservoirs in the Colorado Plateau, East-central Utah. Geological Society, London, Special Publications 233, 43-58

  • Şimşek Ş (1981) Aydın (Germencik) alanının jeotermal enerji olanakları [Geothermal energy facilities of Aydın-Germencik field]. Yeni ve Yenilenebilir Enerji Simpozyumu Yayını 5, Ankara, Turkey

  • Şimşek Ş (1984) Denizli, Kızıldere-Tekkehamam-Tosunlar-Buldan-Yenice alanının jeolojisi ve jeotermal enerji olanakları [Geology and geothermal energy facilities of Denizli, Kızıldere-Tekkehamam-Tosunlar-Buldan-Yenice fields]. Scientific report no. 7846, MTA, Ankara, Turkey

  • Şimşek Ş (1985) Geothermal model of Denizli, Sarayköy-Buldan area. Geothermics 14:393–417

    Article  Google Scholar 

  • Şimşek Ş (2003a) Hydrogeological and isotopic survey of geothermal fields in the Büyük Menderes graben, Turkey. Geothermics 32:669–678

    Article  Google Scholar 

  • Şimşek Ş (2003b) Present status and future development p[ossibilities of Aydın-Denizli Geothermal Province. International Geothermal Conference, Reykjavík, Session 5, September 2003, Paper 034, pp 11–16

  • Şimşek Ş, Yıldırım N, Gülgör A (2005) Developmental and environmental effects of the Kızıldere Geothermal Power Project. Geothermics 34:239–256

    Google Scholar 

  • Sulpizio R, Alçiçek MC, Zanchetta G, Solari L (2013) Recognition of the Minoan tephra in the Acıgöl Basin, western Turkey: implications for inter archive correlations and fine ash dispersal. J Quat Sci 28:329–335

    Article  Google Scholar 

  • Sun S (1990) Denizli-Uşak Arasının Jeolojisi ve Linyit Olanakları [Geology of Denizli-Uşak regions and their potentials of lignite]. Scientific report no. 9985, MTA, Ankara, Turkey

  • Tamgaç ÖF, Yıldırım N, Çetiner HL (1995) Denizli-Karahayıt-Pamukkale ve çevresi sıcak su kaynaklarının korunması ve geliştirilmesine ait hidrojeoloji etüt raporu [Hydrogeology of thermal waters of the Denizli-Karahayıt-Pamukkale and their surroundings]. Scientific report no. 9942, MTA, Ankara, Turkey

  • Ten Veen JH, Boulton SJ, Alçiçek MC (2009) From palaeotectonics to neotectonics in the Neotethys realm: the importance of kinematic decoupling and inherited structural grain in SW Anatolia (Turkey). Tectonophysics 473:261–281

    Article  Google Scholar 

  • Tole MP, Armansson H, Pang Z, Arnorsson S (1993) Fluid/mineral equilibrium calculations for geothermal fluids and chemical geothermometry. Geothermics 22:17–37

    Article  Google Scholar 

  • Truesdell AH, Fournier RD (1977) Procedure for estimating the temperature of a hot-water component in a mixed water by using a plot of dissolved silica versus enthalpy. J Res US Geol Survey 5:49–52

    Google Scholar 

  • Turkish State Meteorological Service (2018) Meteorology of Ankara. https://mgm.gov.tr. Accessed 5 August 2018

  • Uysal IT, Feng Y, Zhao JX, Altunel E, Weatherley D, Karabacak V, Cengiz O, Golding SD, Lawrence MG, Collerson KD (2007) U-series dating and geochemical tracing of Late Quaternary travertine in coseismic fissures. Earth Planet Sci Lett 257:450–462

    Article  Google Scholar 

  • Uysal IT, Feng Y, Zhao JX, Işık V, Nuriel P, Golding SD (2009) Hydrothermal CO2 degassing in seismically active zones during the Late Quaternary. Chem Geol 265:442–454

    Article  Google Scholar 

  • Uzun E (2017) Pamukkale (Denizli) travertenleri oluşumu, geçmişi ve korunması [Conservation, history and formation of Pamukkale-Denizli travertines]. MSc Thesis, Süleyman Demirel University, Isparta, Turkey

  • Vengosh A, Helvacı C, Karamanderesi İH (2002) Geochemical constraints for the origin of thermal waters from western Turkey. Appl Geochem 17:163–183

    Article  Google Scholar 

  • Wiersberg T, Süer S, Güleç N, Erzinger J, Parlaktuna M (2011) Noble gas isotopes and the chemical composition of geothermal gases from the eastern part of the Büyük Menderes graben (Turkey). J Volcanol Geotherm Res 208:112–121

    Article  Google Scholar 

  • Yalçınlar İ (1983) Türkiye`de Neojen ve Kuvaterner omurgalı araziler ve jeomorfolojik karakterleri. İTÜ Edebiyat Fak. Yayınları, No. 2741, p.240

  • Yaman D (2005) Menderes Masifi kıtasal rift zonlarında yer alan jeotermal sulardaki yüksek bor değerlerinin kökeni [Origin of the high boron concentrations in thermal waters of the rift zones in the Menderes Massif]. PhD Thesis, Süleyman Demirel University, Isparta, Turkey

  • Yıldırım N, Güner İN (2002) Büyük Menderes grabeninin doğusunda yeralan jeotermal sahalarda bulunan suların izotopik ve hidrojeokimyasal özellikleri [Isotopic and hydrogeochemical properties of thermal waters in the southern Büyük Menderes graben]. Hidrojeolojide İzotop Tekniklerinin Kullanılması Sempozyumu, Ankara, Turkey, pp 69–87

Download references

Acknowledgements

The authors thank associate editor Moutaz Al-Dabbas and reviewers Salih Muhammad Awad and Hussein Abed Jassas for their valuable comments and suggestions.

Funding

This study is funded by the Scientific and Technical Research Council of Turkey (TÜBİTAK) within the international bilateral cooperation with CNR (National Research Council of Italy), with the grant number 113Y551. M.C.A. is grateful to the Turkish Academy of Sciences (TÜBA) for the Young Scientist Award (GEBİP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hülya Alçiçek.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alçiçek, H., Bülbül, A., Yavuzer, İ. et al. Hydrogeochemical and isotopic assessment and geothermometry applications in relation to the Karahayıt Geothermal Field (Denizli Basin, SW Anatolia, Turkey). Hydrogeol J 27, 1791–1816 (2019). https://doi.org/10.1007/s10040-019-01927-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-019-01927-y

Keywords

Navigation