Skip to main content
Log in

Development of Mn/Cu Bi-metallic MOF for electrochemical CO2 reduction into valuable products

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

In order to promote the electrochemical reduction of CO2 into valuable products and chemical feedstock, the refinement of inexpensive, functioning, highly discerning catalysts is of utmost importance to alleviate inordinate carbon dioxide emissions in the atmosphere. This study presents an innovative electrocatalyst composed of MnO and CuO nanoparticles anchored onto Mn: Cu(1:2)@MOF. These nanocomposites offer multiple active sites for electrochemical carbon dioxide reduction, resulting in a striking current density of almost − 58 mAcm−2 at − 2 V vs. Ag/AgCl (reference electrode) in 0.1 M aqueous KHCO3 electrolyte with faradic efficiency of nearly 52% for CO and 54% for methane at − 1.5 V and − 1.4 V vs. Ag/AgCl, respectively. This performance is in stark contrast to the Mn: Cu(1:1)@MOF and Mn: Cu(2:1)@MOF, which exhibit current densities of − 56 mAcm−2 and − 51 mAcm−2 respectively under similar cathodic voltages. The excellent catalytic accomplishment can be credited to the interaction between nanoparticles and MOFs, which allows enhanced absorption and activation for CO2 molecules due to approachable metallic components and matchless 2-D formation of Mn: Cu(1:2)@MOF. These finding presents a straightforward approach to promote CO2 to valuable products through the analytical formulation of MOF alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Chu S, Cui Y, Liu N (2017) The path towards sustainable energy. Nat Mater 16:16–22

    Article  Google Scholar 

  2. Manabe S, Wetherald RT (1980) On the distribution of climate change resulting from an increase in CO2 content of the atmosphere. Journal of Atmospheric Sciences 37:99–118

    Article  Google Scholar 

  3. NASA (2023) Carbon dioxide: latest measurement https://climate.nasa.gov/vital-signs/carbon-dioxide/. May 2023

  4. Davis SJ, Caldeira K, Matthews HD (2010) Future CO2 emissions and climate change from existing energy infrastructure. Science 329:1330–1333

    Article  CAS  PubMed  Google Scholar 

  5. Nitopi S et al (2019) Progress and perspectives of electrochemical CO2 reduction on copper in aqueous electrolyte. Chem Rev 119:7610–7672

    Article  CAS  PubMed  Google Scholar 

  6. Peter SC (2018) Reduction of CO2 to chemicals and fuels: a solution to global warming and energy crisis. ACS Energy Lett 3:1557–1561

    Article  CAS  Google Scholar 

  7. Lindsey R, Dahlman L ( 2020) Climate change: global temperature. Climate. Gov, 16.

  8. Sun Z et al (2017) Fundamentals and challenges of electrochemical CO2 reduction using two-dimensional materials. Chem 3(4):560–587

    Article  CAS  Google Scholar 

  9. Nie X et al (2013) Selectivity of CO2 reduction on copper electrodes: the role of the kinetics of elementary steps. Angew Chem 125(9):2519–2522

    Article  Google Scholar 

  10. Chen W et al (2023) Electrocatalytic CO2 reduction over bimetallic bi-based catalysts: a review. CCS Chemistry 5(3):544–567

    Article  CAS  Google Scholar 

  11. Pei Y, Zhong H, Jin F (2021) A brief review of electrocatalytic reduction of CO2 —materials, reaction conditions, and devices. Energy Science & Engineering 9(7):1012–1032

    Article  CAS  Google Scholar 

  12. Tang MT et al (2020) From electricity to fuels: descriptors for C1 selectivity in electrochemical CO2 reduction. Appl Catal B 279:119384

    Article  CAS  Google Scholar 

  13. Zaza L, Rossi K, Buonsanti R (2022) Well-defined copper-based nanocatalysts for selective electrochemical reduction of CO2 to C2 products. ACS Energy Lett 7(4):1284–1291

    Article  CAS  Google Scholar 

  14. Liu W et al (2022) Electrochemical CO2 reduction to ethylene by ultrathin CuO nanoplate arrays. Nat Commun 13(1):1877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Calle‐Vallejo F, and Koper MT( 2013) Theoretical considerations on the electroreduction of CO to C2 species on Cu (100) electrodes. Angewandte Chemie. 125(28):7423–7426.

  16. Xue Y et al (2022) MOF-derived Cu/Bi Bi-metallic catalyst to enhance selectivity toward formate for CO2 electroreduction. ChemElectroChem 9(4):e202101648

    Article  CAS  Google Scholar 

  17. Ning H et al (2009) Cubic Cu2O on nitrogen-doped carbon shell for electrocatalytic CO2 reduction to C2H4. Carbon 146:218–223

    Article  Google Scholar 

  18. Wang L et al (2022) Integration of ultrafine CuO nanoparticles with two-dimensional MOFs for enhanced electrochemical CO2 reduction to ethylene. Chin J Catal 43(4):1049–1057

    Article  CAS  Google Scholar 

  19. Zhang B et al (2019) Manganese acting as a high-performance heterogeneous electrocatalyst in carbon dioxide reduction. Nat Commun 10(1):2980

    Article  PubMed  PubMed Central  Google Scholar 

  20. Chen B et al (2016) Metal-organic-framework-derived bi-metallic sulfide on N, S-codoped porous carbon nanocomposites as multifunctional electrocatalysts. J Power Sources 334:112–119

    Article  CAS  Google Scholar 

  21. Chen L et al (2020) Bimetallic metal–organic frameworks and their derivatives. Chem Sci 11(21):5369–5403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kitagawa S, Kitaura R, Noro SI (2004) Functional porous coordination polymers. Angew Chem Int Ed 43(18):2334–2375

    Article  CAS  Google Scholar 

  23. Furukawa H et al (2013) The chemistry and applications of metal-organic frameworks. Science 341(6149):1230444

    Article  PubMed  Google Scholar 

  24. Ahmad A et al. (2021) Cu-doped zeolite imidazole framework (ZIF-8) for effective electrocatalytic CO2 reduction. Journal of CO2 Utilization, 2021. 48: 101523.

  25. Usman M et al (2021) Electrochemical reduction of CO2: a review of cobalt based catalysts for carbon dioxide conversion to fuels. Nanomaterials 11(8):2029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Mandal M, Chattopadhyay K, Bhattacharya S (2021) Sunlight mediated photocatalytic reduction of aqueous Cr(Vl) using metal hexacyanoferrate (M = Mn, Ni, Cu and Zn). IOP Conference Series: Materials Science and Engineering 1080:012047

    Article  CAS  Google Scholar 

  27. Irikura K, et al. (2020) Electrochemical preparation of Cu/Cu2O-Cu (BDC) metal-organic framework electrodes for photoelectrocatalytic reduction of CO2. Journal of CO2 Utilization. 42:101299.

  28. Li JR et al (2021) Insight into the catalytic performance and reaction routes for toluene total oxidation over facilely prepared Mn-Cu bimetallic oxide catalysts. Appl Surf Sci 550:149179

    Article  CAS  Google Scholar 

  29. Sundriyal S, Mishra S, Deep A (2019) Study of manganese-1, 4-benzene dicarboxylate metal-organic framework electrodes based solid state symmetrical supercapacitor. Energy Procedia 158:5817–5824

    Article  CAS  Google Scholar 

  30. Dikio ED, Farah AM (2013) Synthesis, characterization and comparative study of copper and zinc metal-organic frameworks. Chemical Science Transactions 2(4):1386–1394

    Google Scholar 

  31. Siddig LA et al (2023) Manganese-based metal-organic frameworks photocatalysts for visible light-driven oxidative coupling of benzylamine under atmospheric oxygen: a comparative study. Catalysts 13(3):613

    Article  CAS  Google Scholar 

  32. Ramachandran T et al (2018) Investigation on the electrochemical performance of hausmannite Mn3O4 nanoparticles by ultrasonic irradiation assisted co-precipitation method for supercapacitor electrodes. Journal of Taibah University for Science 12:1–9

    Google Scholar 

  33. Yang Y et al (2020) Progress in the mechanisms and materials for CO2 electroreduction toward C2+ products. Acta Phys-Chim Sin 36(1):1–13

    Article  CAS  Google Scholar 

  34. Wang J et al (2019) Heterostructured intermetallic CuSn catalysts: high performance towards the electrochemical reduction of CO2 to formate. Journal of Materials Chemistry A 7(48):27514–27521

    Article  CAS  Google Scholar 

  35. Chang Z-Y et al (2017) Facile synthesis of Cu–Ag bimetallic electrocatalyst with prior C2 products at lower overpotential for CO2 electrochemical reduction. Surfaces and Interfaces 6:116–121

    Article  CAS  Google Scholar 

  36. Chen D et al (2018) Tailoring the selectivity of bimetallic copper–palladium nanoalloys for electrocatalytic reduction of CO2 to CO. ACS Applied Energy Materials 1(2):883–890

    Article  CAS  Google Scholar 

  37. Xie H et al (2018) Boosting tunable syngas formation via electrochemical CO2 reduction on Cu/In2O3 core/shell nanoparticles. ACS Appl Mater Interfaces 10(43):36996–37004

    Article  CAS  PubMed  Google Scholar 

  38. Pan H, Barile CJ (2020) Titanium nitride-supported Cu–Ni bifunctional electrocatalysts for CO 2 reduction and the oxygen evolution reaction. Sustainable Energy Fuels 4(11):5654–5664

    Article  CAS  Google Scholar 

  39. Albo J, et al. (2019) Cu/Bi metal-organic framework-based systems for an enhanced electrochemical transformation of CO2 to alcohols. Journal of CO2 Utilization 33:157–165.

  40. Cheng Z et al (2021) Construction of cobalt-copper bimetallic oxide heterogeneous nanotubes for high-efficient and low-overpotential electrochemical CO2 reduction. J Energy Chem 54:1–6

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author would like to thank the US Pakistan Center for Advanced Studies in Energy (USPCAS-E), National University of Sciences and Technology (NUST), H-12, Islamabad, for the experimental support.

Funding

The author would like to thank the US Pakistan Center for Advanced Studies in Energy (USPCAS-E), National University of Sciences and Technology (NUST), H-12, Islamabad, for the financial support.

Author information

Authors and Affiliations

Authors

Contributions

Umar Raza: data curation, writing—original draft preparation, methodology, and conceptualization. Naseem Iqbal: editing, reviewing, and supervision. Editing and reviewing are done by Tayyaba Noor and data curation by Awais Ahmad.

Corresponding author

Correspondence to Naseem Iqbal.

Ethics declarations

Competing interests

The authors declare no competing interests..

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 714 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raza, U., Iqbal, N., Noor, T. et al. Development of Mn/Cu Bi-metallic MOF for electrochemical CO2 reduction into valuable products. J Solid State Electrochem (2024). https://doi.org/10.1007/s10008-024-05859-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10008-024-05859-w

Navigation