Skip to main content

Advertisement

Log in

Thermal safety and performances analysis of gel polymer electrolytes synthesized by in situ polymerization for Li-ion battery

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

This work obtained gel polymer electrolytes (GPEs) via in situ polymerization of methyl methacrylate (MMA) in the environment of lithium bis(trifluoromethane sulfonyl)imide (LiTFSI) and N-methyl-N-propylpyrrolidinium bis(trifluoromethane sulfonyl)amide (Py13TFSI). The thermogravimetric analysis (TGA) and the differential scanning calorimeter (DSC) determined the non-isothermal decomposition of Py13TFSI/LiTFSI/PMMA polymer electrolyte for Li-ion battery. TGA, DSC, and the infrared graph analyzed thermodynamic properties, and the results showed the addition of Py13TFSI significantly improved the thermostability of electrolytes. Flynn-Wall-Ozawa (Ozawa), Kissinger-Akahira-Sunose (KAS), and Friedman methods applied for kinetics characteristics to activation energy (Ea) and pre-exponential factor (A). The Ea value from Ozawa and KAS methods was 208.478 kJ mol−1 and 207.423 kJ mol−1, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Liu K, Liu Y, Lin D, Pei A, Cui Y (2018) Materials for lithium-ion battery safety. Sci Adv 4:9820–9831

    Google Scholar 

  2. Mukhopadhyay A, Jangid MK (2018) Li metal battery, heal thyself. Science 359(6383):1463–1464

    CAS  PubMed  Google Scholar 

  3. Shao D, Wang X, Li X, Luo K, Yang L, Liu L, Liu H (2019) Internal in situ gel polymer electrolytes for high-performance quasi-solid-state lithium ion batteries. J Solid State Electr 23(10):2785–2792

    CAS  Google Scholar 

  4. Li X, Wang X, Shao D, Liu L, Yang L (2019) Preparation and performance of poly(ethylene oxide)-based composite solid electrolyte for all solid-state lithium batteries. J Appl Polym Sci 136(19):47498

    Google Scholar 

  5. Wang QY, Zhang L, He WM, Yang L, Zhang C, Wang ZY, Zhang R, Chen JH, Wang S, Zang SQ, Mak TCW (2020) High-performance primary explosives derived from copper thiolate cluster-assembled materials for micro-initiating device. Chem Eng J 389:124455

    CAS  Google Scholar 

  6. Yang L, Dai Q, Liu L, Shao D, Luo K, Jamil S, Liu H, Luo Z, Chang B, Wang X (2020) Rapid sintering method for highly conductive Li7La3Zr2O12 ceramic electrolyte. Ceram Int 46(8):10917–10924

    CAS  Google Scholar 

  7. Luo K, Shao D, Yang L, Liu L, Chen X, Zou C, Wang D, Luo Z, Wang X (2020) Semi-interpenetrating gel polymer electrolyte based on PVDF-HFP for lithium ion batteries. J Appl Polym Sci 138(11):49993

    Google Scholar 

  8. Peng X, Zhou L, Jing B, Cao Q, Wang X, Tang X, Zeng J (2016) A high-performance electrospun thermoplastic polyurethane/poly(vinylidene fluoride-co-hexafluoropropylene) gel polymer electrolyte for Li-ion batteries. J Soild State Electr 20(1):255–262

    CAS  Google Scholar 

  9. Zheng J, Li X, Yu Y, Zhen X, Song Y, Feng X, Zhao Y (2014) Cross-linking copolymers of acrylates’ gel electrolytes with high conductivity for lithium-ion batteries. J Soild State Electr 18(7):2013–2018

    CAS  Google Scholar 

  10. Kurc B (2014) Precipitated silica as filler for polymer electrolyte based on poly(acrylonitrile)/sulfolane. J Soild State Electr 18(7):2035–2046

    CAS  Google Scholar 

  11. Guerfi A, Dontigny M, Kobayashi Y, Vijh A, Zaghib K (2009) Investigations on some electrochemical aspects of lithium-ion ionic liquid/gel polymer battery systems. J Soild State Electr 13(7):1003–1014

    CAS  Google Scholar 

  12. Yuan L, Piao J, Cao Y, Yang H, Ai X (2005) Preparation and performance characterization of polymer Li-ion batteries using gel poly(diacrylate) electrolyte prepared by in situ thermal polymerization. J Soild State Electr 9(4):183–189

    CAS  Google Scholar 

  13. Zhang S, Ervin M, Foster D, Xu K, Jow T (2005) Fabrication and evaluation of a polymer Li-ion battery with microporous gel electrolyte. J Soild State Electr 9(2):77–82

    Google Scholar 

  14. Zhu Y, Wang Y, Cai G, Zhao W, Wang X, Wu M (2020) CoMoO4-N-doped carbon hybrid nanoparticles loaded on a petroleum asphalt-based porous carbon for lithium storage. New Carbon Mater 35(4):359–370

    Google Scholar 

  15. Gao F, Qin S, Zang Y, Gu J, Qu J (2020) Highly efficient formation of Mn3O4-graphene oxide hybrid aerogels for use as the cathode material of high performance lithium ion batteries. New Carbon Mater 35(2):121–130

    Google Scholar 

  16. Liang Q, Zhang E, Yan G, Yang Y, Liu W, Liu X (2020) A lithium ion-imprinted adsorbent using magnetic carbon nanospheres as a support for the selective recovery of lithium ions. New Carbon Mater 35(6):696–706

    Google Scholar 

  17. Chin-Wei S, Tse-Hao K, Kuo-Feng C, Hoang-Jyh L, Ting-Chia L, Ching-Han L (2019) Recycled silicon powder coated on carbon paper used as the anode of lithium ion batteries. New Carbon Mater 34(2):140–145

    Google Scholar 

  18. Karthik K, Murugan R (2018) Lithium garnet based free-standing solid polymer composite membrane for rechargeable lithium battery. J Soild State Electr 22(10):2989–2998

    CAS  Google Scholar 

  19. Wang A, Xu H, Zhou Q, Liu X, Li Z, Gao R, Liu X, Zhang L (2017) E;ectrochemical performances of a new solid composite polymer electrolyte based on hyperbranched star polymer and ionic liquid for lithium-ion batteries. J Soild State Electr 21(8):2355–2364

    CAS  Google Scholar 

  20. Daika T, Akio Y, Yusuke A, Tatsumi H (2018) Quantitative visualization of salt concentration distributions in lithium-ion battery electrolytes during battery operation using X-ray phase imaging. J Am Chem Soc 140:1608–1611

    Google Scholar 

  21. Jiang S, Chen M, Wang X, Wu Z, Zeng P, Huang C, Wang Y (2018) MoS2-coated N-doped mesoporous carbon spherical composite cathode and CNT/chitosan modified separator for advanced lithium sulfur batteries. ACS Sustain Chem Eng 6(12):16828–16837

    CAS  Google Scholar 

  22. Liu H, Chen M, Zeng P, Li X, Luo J, Li Y, Xing T, Chang B, Wang X, Luo Z (2019) Lithium sulfide-embedded three-dimensional heterogeneous micro-/mesoporous interwoven carbon architecture as the cathode of lithium–sulfur batteries. ACS Sustain Chem Eng 8(1):351–361

    Google Scholar 

  23. Luo J, Peng J, Zeng P, Wu Z, Li J, Li W, Huang Y, Chang B, Wang X (2020) TiNb2O7 nano-particle decorated carbon cloth as flexible self-support anode material in lithium-ion batteries. Electrochim Acta 332:135469

    CAS  Google Scholar 

  24. Xing T, Ouyang Y, Zheng L, Wang X, Liu H, Chen M, Yu R, Wang X, Wu C (2020) Free-standing ternary metallic sulphides/Ni/C-nanofiber anodes for high-performance lithium-ion capacitors. J Energy Chem 42:108–115

    Google Scholar 

  25. Zhou Q, Liu L, Tan J, Yan Z, Huang Z, Wang X (2015) Synthesis of lithium titanate nanorods as anode materials for lithium and sodium ion batteries with superior electrochemical performance. J Power Sources 283:243–250

    CAS  Google Scholar 

  26. Zhou Y, Shu H, Zhou Y, Sun T, Han M, Chen Y, Chen M, Chen Z, Yang X, Wang X (2020) Flower-like Bi4Ti3O12/carbon nanotubes as reservoir and promoter of polysulfide for lithium sulfur battery. J Power Sources 453:227896

    CAS  Google Scholar 

  27. Yu X, Wang L, Ma J, Sun X, Zhou X, Cui G (2020) Selectively wetted rigid–flexible coupling polymer electrolyte enabling superior stability and compatibility of high-voltage lithium metal batteries. Adv Energy Mater 10(18):1903939

    CAS  Google Scholar 

  28. Zhou Q, Ma J, Dong S, Li X, Cui G (2019) Intermolecular chemistry in solid polymer electrolytes for high-energy-density lithium batteries. Adv Mater 31(50):1902029

    CAS  Google Scholar 

  29. Zhang J, Zhao J, Yue L, Wang Q, Chai J, Liu Z, Zhou X, Li H, Guo Y, Cui G, Chen L (2015) Safety-reinforced poly(propylene carbonate)-based all-solid-state polymer electrolyte for ambient-temperature solid polymer lithium batteries. Adv Energy Mater 5(24):1501082

    Google Scholar 

  30. Xu G, Shangguan X, Dong S, Zhou X, Cui G (2020) Formulation of blended-lithium-salt electrolytes for lithium batteries. Angew Chem Int Ed Engl 59(9):3400–3415

    CAS  PubMed  Google Scholar 

  31. Ma J, Hu P, Cui G, Chen L (2016) Surface and interface issues in spinel LiNi0.5Mn1.5O4: insights into a potential cathode material for high energy density lithium ion batteries. Chem Mater 28(11):3578–3606

    CAS  Google Scholar 

  32. Gao L, Zhu M, Zhang Z, Cui G (2019) Cobalt-boron-oxide supported on N, P dual-doped carbon nanosheets as the trifunctional electrocatalyst and its application in rechargeable Zn-air battery and overall water-electrolysis. Electrochim Acta 327:134980

    CAS  Google Scholar 

  33. Ma Y, Ma J, Cui G (2019) Small things make big deal: powerful binders of lithium batteries and post-lithium batteries. Energy Storage Mater 20:146–175

    Google Scholar 

  34. Ma J, Chen B, Wang L, Cui G (2018) Progress and prospect on failure mechanisms of solid-state lithium batteries. J Power Sources 392:94–115

    CAS  Google Scholar 

  35. Meng N, Lian F, Cui G (2021) Macromolecular design of lithium conductive polymer as electrolyte for solid-state lithium batteries. Small 17(3):2005762

    CAS  Google Scholar 

  36. Li C, Pang S, Xu H, Cui G (2017) Methylamine gas based synthesis and healing process toward upscaling of perovskite solar cells: progress and perspective. Sol Rrl 1(9):1700076

    Google Scholar 

  37. Bae J, Li Y, Zhang J, Zhou X, Zhao F, Shi Y, Goodenough JB, Yu G (2018) A 3D nanostructured hydrogel framework-derived high-performance composite polymer lithium-ion electrolyte. Angew Chem Int Ed Engl 57(8):2096–2100

    CAS  PubMed  Google Scholar 

  38. Wang Y, Qiu J, Peng J, Li J, Zhai M (2017) One-step radiation synthesis of gel polymer electrolytes with high ionic conductivity for lithium-ion batteries. J Mater Chem A 5(24):12393–12399

    CAS  Google Scholar 

  39. Sivaraj P, Abbilash KP, Nalini B (2020) Free-standing, high Li-ion conducting hybrid PAN/PVdF/LiClO4/Li0.5La0.5TiO3 nanocomposite solid polymer electrolytes for all-solid-state batteries. J Solid State Electr 25(3):905–917. https://doi.org/10.1007/s10008-020-04858-x

    Article  CAS  Google Scholar 

  40. Tabani Z, Maghsoudi H, Zonouz AF (2020) High electrochemical stability of polyvinylidene fluoride (PVDF) porous membranes using phase inversion methods for lithium-ion batteries. J Solid State Electr. https://doi.org/10.1007/s10008-020-04842-04845

  41. Yang B, Li C, Zhou J, Liu J, Zhang Q (2014) Pyrrolidinium-based ionic liquid electrolyte with organic additive and LiTFSI for high-safety lithium-ion batteries. Electrochim Acta 148:39–45

    CAS  Google Scholar 

  42. Urness KN, Gough RV, Widegren JA, Bruno TJ (2016) Thermal decomposition kinetics of polyol ester lubricants. Energ Fuel 30:10167–10170

    Google Scholar 

  43. Caballero JA, Conesa JA (2011) New approach to thermal analysis kinetics by considering several first order reactions. Thermochim Acta 525(1-2):40–49

    CAS  Google Scholar 

  44. Ping P, Wang Q, Huang P, Sun J, Chen C (2014) Thermal behaviour analysis of lithium-ion battery at elevated temperature using deconvolution method. Appl Energ 129:261–273

    CAS  Google Scholar 

  45. Zhao FJ, Wang YL, Song J, Ma HC, Liu HL (2018) Performance and thermal decomposition analysis of foaming agent NPL-10 for use in heavy oil recovery by steam injection. Open Chem 16(1):29–34

    Google Scholar 

  46. Natarajan M, Murugavel SC (2016) Thermal stability and thermal degradation kinetics of bio-based epoxy resins derived from cardanol by thermogravimetric analysis. Polym Bull 74:3319–3340

    Google Scholar 

  47. Arshad MA, Maaroufi A, Pinto G, El-Barkany S, Elidrissi A (2016) Morphology, thermal stability and thermal degradation kinetics of cellulose-modified urea–formaldehyde resin. Materi Sci 39:1609–1618

    CAS  Google Scholar 

  48. Zhu YL, Shan MX, Xiao ZX, Wang JS, Jiao QJ (2015) Kinetics of thermal decomposition of ε-hexanitrohexaazaisowurtzitane by TG-DSC-MS-FTIR. Korean J Chem Eng 32(6):1164–1169

    CAS  Google Scholar 

  49. Vázquez J, García G, Barreda D, López-Alemany PL, Villares P, Jiménez-Garay R (2005) A comparative study on the single-scan and multiple-scan techniques in differential scanning calorimetry: application to the crystallization of the semiconducting Ge0.13Sb0.23Se0.64 alloy. Thermochim Acta 430(1-2):173–182

    Google Scholar 

  50. Feng WQ, Lu YH, Chen Y, Lu YW, Yang T (2016) Thermal stability of imidazolium-based ionic liquids investigated by TG and FTIR techniques. J Therm Anal Calorim 125(1):143–154

    CAS  Google Scholar 

  51. Gu H, He JM, Hu J, Huang YD (2011) Thermal degradation kinetics of semi-aromatic polyamide containing benzoxazole unit. J Therm Anal Calorim 107:1251–1257

    Google Scholar 

  52. Dong F, Sun X, Feng S (2016) Thermal degradation kinetics of functional polysiloxanes containing chloromethyl croups. Thermochim Acta 639:14–19

    CAS  Google Scholar 

  53. Huidobro JA, Iglesias I, Alfonso BF, Espina A, Trobajo C, Garcia JR (2016) Reducing effects of noise in the calculation of the activation energy by the friedman method. Chemometr Intell Lab 151:146–152

    CAS  Google Scholar 

  54. Vélez JF, Aparicio M, Mosa J (2016) Covalent silica-PEO-LiTFSI hybrid solid electrolytes via sol-gel for Li-ion battery applications. Electrochim Acta 213:831–841

    Google Scholar 

  55. Sun Y, Rohan R, Cai W, Wan X, Pareek K, Lin A, Zhang Y, Cheng H (2014) A polyamide single-ion electrolyte membrane for application in lithium-ion batteries. Energy Technol 2(8):698–704

    CAS  Google Scholar 

  56. Alshehri SM, Al-Fawaz A, Ahamad T (2013) Thermal kinetic parameters and evolved gas analysis (TG–FTIR–MS) for thiourea–formaldehyde based polymer metal complexes. J Anal Appl Pyrol 101:215–221

    CAS  Google Scholar 

  57. Tian N, Tong X, Gu H, Wu Q, Yan W (2013) Synthesis and conductivity of hybrid materials based on germanium-containing polyoxometalates and ionic liquids. J Coord Chem 66(3):379–384

    CAS  Google Scholar 

  58. Kin S, Hwang J, Lee J, Lee J (2020) Polymer blend directed anisotropic self-assembly toward mesoporous inorganic bowls and nanosheets. Sci Adv 6:eabb3814

    Google Scholar 

  59. Luming G, Mingzu Z, Jinlin H, Ni P (2018) A porous cross-linked gel polymer electrolyte separa tor for lithium-ion batteries prepared by using zinc oxide nanoparticle as a foaming agent and filler. Electrochim Acta 292:769–778

    Google Scholar 

  60. Sun CY, Ren CH, Gao M (2010) Application of calculus equation in solving thermal decomposition kinetics parameters of fire-retardant foam. Adv Mater Res 152-153:424–427

    Google Scholar 

  61. Bo Y, Yanmo C, Hao Y, Bin S, Meifang Z (2009) Kinetics of the thermal degradation of hyperbranched poly(phenylene sulfide). J Appl Polym Sci 111(4):1900–1904

    Google Scholar 

  62. Naktiyok J, Bayrakçeken H, Özer AK, Gülaboğlu MŞ (2017) Investigation of combustion kinetics of umutbaca-lignite by thermal analysis technique. J Therm Anal Calorim 129(1):531–539

    CAS  Google Scholar 

  63. Yao F, Wu Q, Lei Y, Guo W, Xu Y (2008) Thermal decomposition kinetics of natural fibers: activation energy with dynamic thermogravimetric analysis. Polym Degrad Stabil 93(1):90–98

    CAS  Google Scholar 

  64. Siddiqui MN, Redhwi HH, Antonakou E, Achilias DS (2018) Pyrolysis mechanism and thermal degradation kinetics of poly(bisphenol a carbonate)-based polymers originating in waste electric and electronic equipment. J Anal Appl Pyrol 123:123–133

    Google Scholar 

  65. Shan YH, Li LB, Yang XY (2021) Solid-state polymer electrolyte solves the transfer of lithium ions between the solid-solid interface of the electrode and the electrolyte in lithium-sulfur and lithium-ion batteries. ACS Appl Energy Mater. https://doi.org/10.1021/acsaem.1c00658

  66. Li LB, Shan YH, Yang XY (2021) New insights for constructing solid polymer electrolytes with ideal lithium-ion transfer channels by using inorganic filler. Mater Today Commun 26:101910

Download references

Funding

This work was supported financially by the National Natural Science Foundation of China (grant numbers 21706043).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Libo Li or Jia Li.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supporting information

The Supporting Information is available free of charge on the Springer Nature website.

α as a function of T (K) obtained from TG curves at different heating rates(Table S1), the chart of logβ versus 1000/T for Ozawa method (Table S2) and the chart of ln(β/T2) versus1000/T for KAS method (Table S3) (PDF).

ESM 1

(DOC 278 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, L., Xie, M., Zhang, Y. et al. Thermal safety and performances analysis of gel polymer electrolytes synthesized by in situ polymerization for Li-ion battery. J Solid State Electrochem 25, 2021–2032 (2021). https://doi.org/10.1007/s10008-021-04965-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-021-04965-3

Keywords

Navigation