Skip to main content
Log in

Effect of IL incorporation on ionic transport in PVdF-HFP-based polymer electrolyte nanocomposite doped with NiBTC-metal-organic framework

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Ni-based metal-organic framework (MOF), nickel 1,3,5-benzene tricarboxylate (NiBTC) has been synthesized by solvothermal method and incorporated with ionic liquid (IL) 1-butyl-3-methylimidazolium tetrafluoroborate (BMIMBF4) at varying weight ratios to use as nanofiller in the polymer matrix of poly (vinylidene fluoride-co-hexafluoropropylene) (PVdF-HFP). The structural properties of MOF-NiBTC-based composite polymer electrolyte system upon IL incorporation have been investigated by XRD, FTIR, BET, scanning EXAFS and XANES techniques. Shifting of vibrational modes of –COOH groups is observed from FTIR spectra due to strong interaction of Ni metal cluster with BF4 anion of the IL. Local coordination structure and oscillation periodicity of Ni K-edge are investigated in R-space and k-space from the EXAFS as well as XANES spectra. Asymmetric oscillatory behavior with reduction in coordination number is observed upon IL incorporation due to strong interaction of guest IL with the host MOF-NiBTC. Dielectric relaxation and scaling of AC conductivity have been analyzed in the temperature range of 300–380 K and frequency range of 42 Hz–5 MHz. Non Debye type dielectric relaxation dynamics is observed due to short range hopping of ions. Ion concentration and temperature independent scaling behaviors are followed by the composite polymer electrolyte membranes. Optimum ionic conductivity of 6.5 × 10−3 S cm−1 and electrochemical stability up to 5.7 V have been obtained at 50 wt% of IL incorporation in the porous nanocomposite electrolyte system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Li J, Kupplerand RJ, Zhou H (2009) Chem Soc Rev 38(5):1477–1504

    Article  CAS  PubMed  Google Scholar 

  2. Shekhah O, Liu J, Fischer R, Woll C (2011) Chem Soc Rev 40(2):1081–1106

    Article  CAS  PubMed  Google Scholar 

  3. Bohrmanand JA, Carreon MA (2012) Chem Commun 48(42):5130–5132

    Article  CAS  Google Scholar 

  4. Welton T (1997) Chem Rev 99(8):2071–2084

    Article  CAS  Google Scholar 

  5. Seddon KR (1997) Chem Technol Biotechnol 68(4):351–356

    Article  CAS  Google Scholar 

  6. Chen Y, Hu Z, Gupta Krishna M, Jianwen J (2011) J Phys Chem C 115(44):21736–21742

    Article  CAS  Google Scholar 

  7. Kazuyuki F, Kazuya O, Ryuichi I, Teppei Y, Hiroshi K (2015) Chem Sci 6:4306–4310

    Article  CAS  Google Scholar 

  8. Prestipino C, Regli L, Vitillo JG, Bonino F, Damin A, Lamberti C, Zecchina A, Solari PL, Kongshaug KO, Bordiga S (2006) Chem Mater 18(5):1337–1346

    Article  CAS  Google Scholar 

  9. Sang X, Zhang J, Xiang J, Cui J, Zheng L, Zhang J, Wu Z, Li Z, Mo G, Xu Y, Song J, Liu C, Tan X, Luo T, Zhang B, Han B (2017) Nat Commun 8:1–7

    Article  CAS  Google Scholar 

  10. Sciortino L, Alessi A, Messina F, Buscarino G, Gelardi FM (2015) J Phys Chem C 119:7826−7830

    Article  CAS  Google Scholar 

  11. Morel FL, Pin S, Huthwelker T, Ranocchiari M, van Bokhoven JA (2015) Phys Chem Chem Phys 17(5):3326–3331

    Article  CAS  PubMed  Google Scholar 

  12. Muller M, Hermes S, Kahler K, van den Berg MWE, Muhler M, Fischer RA (2008) Chem Mater 20(14):4576–4587

    Article  CAS  Google Scholar 

  13. Wright PV (1975) British Polym J 7(5):319–327

    Article  CAS  Google Scholar 

  14. Polu AR, Rhee HW (2017) Int J Hydrog Energy 42(10):7212–7219

    Article  CAS  Google Scholar 

  15. Pitawala J, Navarra MA, Scrosati B, Jacobsson P, Matic A (2014) J Power Sources 245:830–835

    Article  CAS  Google Scholar 

  16. Hofmann A, Schulz M, Hanemann T (2013) Electrochim Acta 89:823–831

    Article  CAS  Google Scholar 

  17. Weston JE, Steele BCH (1982) Solid State Ionics 7(1):75–79

    Article  CAS  Google Scholar 

  18. Croce F, Appetecchi GB, Persi L, Scrosati B (1998) Nature 394(6692):456–458

    Article  CAS  Google Scholar 

  19. Wieczorek W, Florjanczyk Z, Stevens JR (1995) Electrochim Acta 40:2251–2258

    Article  CAS  Google Scholar 

  20. Gerbaldi C, Nair Jijeesh R, Kulandainathan Anbu M, Kumar Senthil R, Chiara F, Piercarlo M, Manuel SA (2014) J Mater Chem A 2:9948–9954

    Article  CAS  Google Scholar 

  21. Farrukh I, Daye C, Yeongmin K, Kyung KD (2016) Ultrason Sonochem 31:93–101

    Article  CAS  Google Scholar 

  22. Yuzhen H, Qi P, Junwen Z, Xiao F, Li S, Xiaotao F, Jingshu Z, Danni Y, Bo W (2015) ACS Appl Mater Interfaces 7:26608–26613

    Article  CAS  Google Scholar 

  23. Saha D, Deng S (2009) Int J Hydrog Energy 34(6):2670–2678

    Article  CAS  Google Scholar 

  24. Osada I, de Vries H, Scrosati B, Passerin S (2016) Angew Chem Int Ed 55:500–513

    Article  CAS  Google Scholar 

  25. Dhumal Nilesh R, Singh Manish P, Anderson JA, Kiefer J, Kim JH (2016) J Phys Chem C 120:3295–3304

    Article  CAS  Google Scholar 

  26. D’Souza L, Prabha D, Divya Shridhar MP, Naik Chandrakant G (2008) Anal Chem Insights 3:135–143

    PubMed  PubMed Central  Google Scholar 

  27. Sim LN, Majid SR, Arof AK (2012) Vib Spectrosc 58:57–66

    Article  CAS  Google Scholar 

  28. Kumar TM, Shrikant P, Harish S, Khemraj B, Snehasis J (2015) Pharm Anal Acta 6:1000395

    Google Scholar 

  29. Srivastav A, Saxena Subha R, Sunil M, Singh Y (2012) Orient J Chem 28(3):1517–1529

    Article  CAS  Google Scholar 

  30. Govind PS, De A, De U (2011) International Journal of Spectroscopy 2011:1–7

    Google Scholar 

  31. Singh R, Arora V, Tandon RP, Mansingh A, Chandra S (1999) Synth Met 104(2):137–144

    Article  CAS  Google Scholar 

  32. Havriliak S, Negami S (1967) Polymer 8:161–210

    Article  CAS  Google Scholar 

  33. Subhojtoti S, Kumar CS, Jiten G, Kumar MA (2014) J Phys D Appl Phys 47(27):275301–275313

    Article  CAS  Google Scholar 

  34. Xi Y, Bin Y, Chiang CK, Matsuo M (2007) Carbon 45(6):1302–1309

    Article  CAS  Google Scholar 

  35. Kohlrausch R (1847) Prog Anal Phys 123:393–399

    Google Scholar 

  36. Hazarika J, Kumar A (2014) Synth Met 198:239–247

    Article  CAS  Google Scholar 

  37. Nath AK, Kumar A (2013) Solid State Ionics 253:8–17

    Article  CAS  Google Scholar 

  38. Yang H, Zhuang GV, Ross PN (2006) J Power Sources 161(1):573–579

    Article  CAS  Google Scholar 

  39. Asheesh K, Raghunandan S, Suresh M, Das Malay K, Kar Kamal K (2017) Journal of Elastomers & Plastics 49(6):513–526

    Article  CAS  Google Scholar 

  40. Aziz Shujahadeen B, Woo Thompson J, Kadir MFZ, Ahmed Hameed M (2018) Journal of Science: Advanced Materials and Devices 3:1–17

    Google Scholar 

  41. Agrawal RC, Chandra A, Bhatt A, Mahipal YK (2008) New J Phys 10:043023–043033

    Article  CAS  Google Scholar 

  42. Roling B, Martiny C, Funke K (1999) J Non-Cryst Solids 249(2-3):201–209

    Article  CAS  Google Scholar 

  43. Jonscher AK (1977) Nature 267(5613):673–679

    Article  CAS  Google Scholar 

  44. Mariappan CR, Govindaraj G (2002) Mater Sci Eng B 94(1):82–88

    Article  Google Scholar 

  45. Papathanassiou AN, Sakellis I, Grammatikakis J (2010) Appl Phys Lett 97(4):041913

    Article  CAS  Google Scholar 

  46. Funke K, Banhatti RD, Bruckner S, Cramer C, Krieger C, Mandanici A, Martiny C, Ross I (2002) Phys Chem Chem Phys 4(14):3155–3167

    Article  CAS  Google Scholar 

  47. Park CH, Kim DW, Prakash J, Sun YK (2003) Solid State Ionics 159:111–119

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors sincerely acknowledge the financial support from DST-INSPIRE, Govt. of India through Grant No.: DST/INSPIRE Fellowship/2015/IF150994. Authors are also thankful to Professor S. N. Jha and Chandrani Nayak, Raja Raman Centre for Advanced Technology (RRCAT), Indore, India, for extending help in Scanning EXAFS and XANES facilities using synchrotron beamline.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dutta, R., Kumar, A. Effect of IL incorporation on ionic transport in PVdF-HFP-based polymer electrolyte nanocomposite doped with NiBTC-metal-organic framework. J Solid State Electrochem 22, 2945–2958 (2018). https://doi.org/10.1007/s10008-018-3999-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-018-3999-7

Keywords

Navigation