Skip to main content
Log in

Sulfonic acid functionalized monolithic column for high selectivity capillary electrochromatography separation

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A new nano-scale spherical vinyl-functionalized covalent organic polymer (TAPT-DVA-COP) with uniform sizes around 300 nm was initially constructed using 2,5-divinyl-1,4-benzaldehyde (DVA) and 2,4,6-tris(4-aminophenyl)-1,3,5-triazine (TAPT) as monomers. Then, a sulfonic acid (-SO3H) modified COP termed COP-SO3H was developed based on post-sythesis method employing TAPT-DVA-COP as precursor. Capillary electrochromatography (CEC) monolithic columns were fabricated using the physical doping technique to exhibit the application potential of TAPT-DVA-COP and COP-SO3H. Compared to the TAPT-DVA-COP monolithic column, the COP-SO3H monolithic column achieved a highly selective separation between analytes with different properties, including monosubstituted benzenes, alkylbenzenes, hydroxybenzoates, nucleoside bases, and biogenic amines. Non-covalent interaction (NCI) analysis and experimental data show that the synergism of the sulfonic acid group and aromatic moieties on COP-SO3H endows the new stationary phase with diverse interactions, including ion exchange, hydrophobic, π-π and hydrogen bonding. In addition, the COP-SO3H monolithic column exhibited good reproducibility and excellent potential for the determination of hydroxybenzoates in compact powders and alkylbenzenes in effluent samples.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  1. Zhao H, Wang Y, Zhang D et al (2018) Electrochromatographic performance of graphene and graphene oxide modified silica particles packed capillary columns. Electrophoresis 39(7):933–940. https://doi.org/10.1002/elps.201700435

    Article  CAS  PubMed  Google Scholar 

  2. Hong T, Chen X, Xu Y et al (2016) Preparation of graphene oxide-modified affinity capillary monoliths based on three types of amino donor for chiral separation and proteolysis. J Chromatogr A 1456:249–256. https://doi.org/10.1016/j.chroma.2016.06.025

    Article  CAS  PubMed  Google Scholar 

  3. Ji B, Yi G, Gui Y et al (2021) High-Efficiency and Versatile Approach To Fabricate Diverse Metal-Organic Framework Coatings on a Support Surface as Stationary Phases for Electrochromatographic Separation. ACS Appl Mater Interfaces 13(34):41075–41083. https://doi.org/10.1021/acsami.1c10481

    Article  CAS  PubMed  Google Scholar 

  4. Hong T, Yang X, Xu Y et al (2016) Recent advances in the preparation and application of monolithic capillary columns in separation science. Anal Chim Acta 931:1–24. https://doi.org/10.1016/j.aca.2016.05.013

    Article  CAS  PubMed  Google Scholar 

  5. Ma S, Zhang H, Li Y et al (2018) Fast preparation of hybrid monolithic columns via photo-initiated thiol-yne polymerization for capillary liquid chromatography. J Chromatogr A 1538:8–16. https://doi.org/10.1016/j.chroma.2018.01.028

    Article  CAS  PubMed  Google Scholar 

  6. Carrasco-Correa EJ, Ramis-Ramos G, Herrero-Martínez JM (2015) Hybrid methacrylate monolithic columns containing magnetic nanoparticles for capillary electrochromatography. J Chromatogr A 1385:77–84. https://doi.org/10.1016/j.chroma.2015.01.044

    Article  CAS  PubMed  Google Scholar 

  7. Wang M-M, Yan X-P (2012) Fabrication of Graphene Oxide Nanosheets Incorporated Monolithic Column via One-Step Room Temperature Polymerization for Capillary Electrochromatography. Anal Chem 84(1):39–44. https://doi.org/10.1021/ac202860a

    Article  CAS  PubMed  Google Scholar 

  8. Xi Y, Du Y, Sun X et al (2019) A monolithic capillary modified with a copoplymer prepared from the ionic liquid 1-vinyl-3-octylimidazolium bromide and styrene for electrochromatography of alkylbenzenes, polycyclic aromatic hydrocarbons, proteins and amino acids. Microchim Acta 187(1):67. https://doi.org/10.1007/s00604-019-3894-7

    Article  CAS  Google Scholar 

  9. Nischang I, Teasdale I, Brüggemann O (2011) Porous polymer monoliths for small molecule separations: advancements and limitations. Anal Bioanal Chem 400(8):2289–2304. https://doi.org/10.1007/s00216-010-4579-6

    Article  CAS  PubMed  Google Scholar 

  10. Liu X, Yang C, Qian H-L et al (2021) Three-Dimensional Nanoporous Covalent Organic Framework-Incorporated Monolithic Columns for High-Performance Liquid Chromatography. ACS Appl Nano Mater 4(5):5437–5443. https://doi.org/10.1021/acsanm.1c00770

    Article  CAS  Google Scholar 

  11. Qian H-L, Yang C-X, Yan X-P (2016) Bottom-up synthesis of chiral covalent organic frameworks and their bound capillaries for chiral separation. Nat Commun 7(1):12104. https://doi.org/10.1038/ncomms12104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wu C, Liang Y, Yang K et al (2016) Clickable Periodic Mesoporous Organosilica Monolith for Highly Efficient Capillary Chromatographic Separation. Anal Chem 88(3):1521–1525. https://doi.org/10.1021/acs.analchem.5b04641

    Article  CAS  PubMed  Google Scholar 

  13. He N, Li Z, Hu C et al (2022) In situ synthesis of a spherical covalent organic framework as a stationary phase for capillary electrochromatography. J Pharm Anal 12(4):610–616. https://doi.org/10.1016/j.jpha.2022.06.005

    Article  PubMed  PubMed Central  Google Scholar 

  14. Carrasco-Correa EJ, Martínez-Vilata A, Herrero-Martínez JM et al (2017) Incorporation of zeolitic imidazolate framework (ZIF-8)-derived nanoporous carbons in methacrylate polymeric monoliths for capillary electrochromatography. Talanta 164:348–354. https://doi.org/10.1016/j.talanta.2016.11.027

    Article  CAS  PubMed  Google Scholar 

  15. Zhang J, Chen Z (2017) Metal-organic frameworks as stationary phase for application in chromatographic separation. J Chromatogr A 1530:1–18. https://doi.org/10.1016/j.chroma.2017.10.065

    Article  CAS  PubMed  Google Scholar 

  16. Zhang L-S, Du P-Y, Gu W et al (2016) Monolithic column incorporated with lanthanide metal-organic framework for capillary electrochromatography. J Chromatogr A 1461:171–178. https://doi.org/10.1016/j.chroma.2016.07.015

    Article  CAS  PubMed  Google Scholar 

  17. Ma M, Du Y, Zhang L et al (2020) β-Cyclodextrin covalent organic framework–modified organic polymer monolith as a stationary phase for combined hydrophilic and hydrophobic aqueous capillary electrochromatographic separation of small molecules. Microchim Acta 187(7):385. https://doi.org/10.1007/s00604-020-04360-1

    Article  CAS  Google Scholar 

  18. De Bruycker K, Welle A, Hirth S et al (2020) Mass spectrometry as a tool to advance polymer science. Nat Rev Chem 4(5):257–268. https://doi.org/10.1038/s41570-020-0168-1

    Article  PubMed  Google Scholar 

  19. Li Z, Yang Y-W (2022) Macrocycle-Based Porous Organic Polymers for Separation, Sensing, and Catalysis. Adv Mater 34(6):2107401. https://doi.org/10.1002/adma.202107401

    Article  CAS  Google Scholar 

  20. Xiang Z, Cao D (2013) Porous covalent–organic materials: synthesis, clean energy application and design. J Mater Chem A 1(8):2691–2718. https://doi.org/10.1039/C2TA00063F

    Article  CAS  Google Scholar 

  21. Lima RJS, Okhrimenko DV, Rudić S et al (2020) Ammonia Storage in Hydrogen Bond-Rich Microporous Polymers. ACS Appl Mater Interfaces 12(52):58161–58169. https://doi.org/10.1021/acsami.0c18855

    Article  CAS  PubMed  Google Scholar 

  22. Luo S, Zhang Q, Zhang Y et al (2018) Facile Synthesis of a Pentiptycene-Based Highly Microporous Organic Polymer for Gas Storage and Water Treatment. ACS Appl Mater Interfaces 10(17):15174–15182. https://doi.org/10.1021/acsami.8b02566

    Article  CAS  PubMed  Google Scholar 

  23. Puthiaraj P, Lee Y-R, Zhang S et al (2016) Triazine-based covalent organic polymers: design, synthesis and applications in heterogeneous catalysis. J Mater Chem A 4(42):16288–16311. https://doi.org/10.1039/C6TA06089G

    Article  CAS  Google Scholar 

  24. Dawson R, Cooper AI, Adams DJ (2012) Nanoporous organic polymer networks. Prog Polym Sci 37(4):530–563. https://doi.org/10.1016/j.progpolymsci.2011.09.002

    Article  CAS  Google Scholar 

  25. McKeown NB, Budd PM (2010) Exploitation of Intrinsic Microporosity in Polymer-Based Materials. Macromolecules 43(12):5163–5176. https://doi.org/10.1021/ma1006396

    Article  CAS  Google Scholar 

  26. Giri A, Biswas S, Hussain MDW et al (2022) Nanostructured Hypercrosslinked Porous Organic Polymers: Morphological Evolution and Rapid Separation of Polar Organic Micropollutants. ACS Appl Mater Interfaces 14(5):7369–7381. https://doi.org/10.1021/acsami.1c24393

    Article  CAS  PubMed  Google Scholar 

  27. Shanmugaraju S, Umadevi D, Savyasachi AJ et al (2017) Reversible adsorption and storage of secondary explosives from water using a Tröger’s base-functionalised polymer. J Mater Chem A 5(47):25014–25024. https://doi.org/10.1039/C7TA07292A

    Article  CAS  Google Scholar 

  28. Kim S, Landfester K, Ferguson CTJ (2022) Hairy Conjugated Microporous Polymer Nanoparticles Facilitate Heterogeneous Photoredox Catalysis with Solvent-Specific Dispersibility. ACS Nano 16(10):17041–17048. https://doi.org/10.1021/acsnano.2c07156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. AsadiTashvigh A, Benes NE (2022) Covalent organic polymers for aqueous and organic solvent nanofiltration. Sep Purif Technol 298:121589. https://doi.org/10.1016/j.seppur.2022.121589

    Article  CAS  Google Scholar 

  30. Ding H, Mal A, Wang C (2020) Tailored covalent organic frameworks by post-synthetic modification. Mater Chem Front 4(1):113–127. https://doi.org/10.1039/C9QM00555B

    Article  CAS  Google Scholar 

  31. Segura JL, Royuela S, Mar Ramos M (2019) Post-synthetic modification of covalent organic frameworks. Chem Soc Rev 48(14):3903–3945. https://doi.org/10.1039/C8CS00978C

    Article  CAS  PubMed  Google Scholar 

  32. Zheng Q, He Y, Ma W et al (2021) Facile synthesis of spherical covalent organic frameworks as stationary phases for short-column liquid chromatography. Chem Commun 57(61):7501–7504. https://doi.org/10.1039/D1CC03182A

    Article  CAS  Google Scholar 

  33. Zhu D, Yan Q, Zhu Y et al (2022) Solvent-Induced Incremental Pore Collapse in Two-Dimensional Covalent Organic Frameworks. ACS Mater Lett 4(11):2368–2374. https://doi.org/10.1021/acsmaterialslett.2c00672

    Article  CAS  Google Scholar 

  34. Shyni P, Pradyumnan PP (2022) Effect of polar solvents on the growth, morphology and thermoelectric properties of Bi2Te3 nano particles. Phys E 138:115072. https://doi.org/10.1016/j.physe.2021.115072

    Article  CAS  Google Scholar 

  35. Guo C, Zhang Y, Guo Y et al (2018) A general and efficient approach for tuning the crystal morphology of classical MOFs. Chem Commun 54(3):252–255. https://doi.org/10.1039/C7CC07698C

    Article  CAS  Google Scholar 

  36. Neequaye T, El Rassi Z (2022) Poly(carboxyethyl acrylate-co-ethylene glycol dimethacrylate) precursor monolith with bonded anthracenyl ligands for use in reversed-phase capillary electrochromatography based on hydrophobic and π-π interactions. J Chromatogr A 1682:463526. https://doi.org/10.1016/j.chroma.2022.463526

    Article  CAS  PubMed  Google Scholar 

  37. Sun T, Huang Q, Zhang W et al (2022) Performance and selectivity of amphiphilic pillar[5]arene as stationary phase for capillary gas chromatography. J Chromatogr A 1671:463008. https://doi.org/10.1016/j.chroma.2022.463008

    Article  CAS  PubMed  Google Scholar 

  38. Wang F, Lv W, Zhang Y et al (2022) Synthesis of spherical three-dimensional covalent organic frameworks and in-situ preparation of capillaries coated with them for capillary electrochromatographic separation. J Chromatogr A. 1681:463463. https://doi.org/10.1016/j.chroma.2022.463463

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge financial support from the projects of National Natural Science Foundation of China (21974124, 22004109 and 22276177); China Postdoctoral Science Foundation (2022M710167) and Postdoctoral Research Grant in Henan Province (202102080).

Author information

Authors and Affiliations

Authors

Contributions

Shuyu Dai: Conceptualizatin, Methodology, Experiment, Formal analysis, Writing the original draft. Yun Guo: Methodology, Validation, Investigation. Hongyan Mao: Writing-review & editing. Xiaohui Wei: Methodology, Experiment supplement. Wenfen Zhang: Project administration, Writing—review & editing, Supervision, Funding acquisition. Xin Chen: Methodology, Experiment supplement. Wuduo Zhao: Writing—review & editing. Shusheng Zhang: Project administration, Writing—review & editing, Supervision, Funding acquisition.

Corresponding authors

Correspondence to Wenfen Zhang or Shusheng Zhang.

Ethics declarations

Competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 6.09 MB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, S., Guo, Y., Mao, H. et al. Sulfonic acid functionalized monolithic column for high selectivity capillary electrochromatography separation. Microchim Acta 190, 402 (2023). https://doi.org/10.1007/s00604-023-05994-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-023-05994-7

Keywords

Navigation