Skip to main content
Log in

β-Cyclodextrin covalent organic framework–modified organic polymer monolith as a stationary phase for combined hydrophilic and hydrophobic aqueous capillary electrochromatographic separation of small molecules

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A β-Cyclodextrin covalent organic framework (β-CD COF) was successfully prepared under ambient temperature with a mild chemistry strategy from heptakis(6-amino-6-deoxy)-β-cyclodextrin and terephthalaldehyde. It was embedded into the poly[(glycidyl methacrylate)-co-(ethylene dimethacrylate)] [poly(GMA-co-EDMA)] monolith and served as the β-CD COF material–incorporated monolith. The synthetic materials were characterized by field emission scanning electron microscopy, energy-dispersive X-ray mapping analysis, transmission electron microscopy, thermogravimetric analysis, Fourier transform infrared spectroscopy, and N2 adsorption-desorption isotherm. The β-CD COF material–incorporated monolith achieved baseline separation in capillary electrochromatographic separation of three amides, three amino acids, three nucleosides, four aromatic acids, and three positional isomers (with resolution values of three amides, 1.75 and 1.54; three amino acids, 5.24 and 1.75; three nucleosides, 2.56 and 1.77; four aromatic acids, 6.96, 2.74, and 1.64; three positional isomers, 1.61 and 1.50). In comparison with the original monolith, the β-CD COF material–incorporated monolith shows significantly enhanced resolution for mixed molecules. The effect of pH and concentration of buffer and applied voltage were discussed in detail. The fabricated monolith showed good stability and reproducibility (relative standard deviation (RSD) < 6.9%). Molecular modeling illuminated the interactions between the small molecules and stationary phase, and provided a sufficient theoretical basis for experimental data.

Schematic presentation of the preparation of β-cyclodextrin covalent organic framework (β-CD COF) material–incorporated organic polymer monolith for separating the amides, amino acids, nucleosides, aromatic acids, and positional isomers. β-CD COF materials were synthesized and incorporated into the monolith as the stationary phase. Then, the incorporated monolith was applied in the capillary electrochromatography system for separating small molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Lu T, Klein L, Ha S, Rustandi R (2020) High-resolution capillary electrophoresis separation of large RNA under non-aqueous conditions. J Chromatogr A 10:460875. https://doi.org/10.1016/j.chroma.2020.460875

    Article  CAS  Google Scholar 

  2. Kitte S, Fereja T, Halawa M, Lou B, Li H, Xu G (2019) Recent advances in nanomaterial-based capillary electrophoresis. Electrophoresis 40:2050–2057. https://doi.org/10.1002/elps.201800534

    Article  CAS  PubMed  Google Scholar 

  3. Mao Z, Chen Z (2019) Advances in capillary electro-chromatography. J Pharm Anal 9:227–237. https://doi.org/10.1016/j.jpha.2019.05.002

    Article  PubMed  PubMed Central  Google Scholar 

  4. Sun X, Du Y, Zhao S, Huang Z, Feng Z (2019) Enantioseparation of propranolol, amlodipine and metoprolol by electrochromatography using an open tubular capillary modified with β-cyclodextrin and poly (glycidyl methacrylate) nanoparticles. Microchim Acta 186:128. https://doi.org/10.1007/s00604-018-3163-1

    Article  CAS  Google Scholar 

  5. Liu Z, Du Y, Feng Z (2017) Enantioseparation of drugs by capillary electrochromatography using a stationary phase covalently modified with graphene oxide. Microchim Acta 184:583–593. https://doi.org/10.1007/s00604-016-2014-1

    Article  CAS  Google Scholar 

  6. Carrasco-Correa E, Ramis-Ramos G, Herrero-Martinez J (2015) Hybrid methacrylate monolithic columns containing magnetic nanoparticles for capillary electrochromatography. J Chromatogr A 1385:77–84. https://doi.org/10.1016/j.chroma.2015.01.044

    Article  CAS  PubMed  Google Scholar 

  7. Mao Z, Chen Z (2017) Monolithic column modified with bifunctional ionic liquid and styrene stationary phases for capillary electrochromatography. J Chromatogr A 1480:99–105. https://doi.org/10.1016/j.chroma.2016.12.030

    Article  CAS  PubMed  Google Scholar 

  8. Huang H, Cheng Y, Liu W, Hsu Y (2010) Poly(divinylbenzene-alkyl methacrylate) monolithic stationary phases in capillary electrochromatography. J Chromatogr A 1217:5839–5847. https://doi.org/10.1016/j.chroma.2010.07.050

    Article  CAS  PubMed  Google Scholar 

  9. Khadka S, Rassi Z (2016) Post polymerization modification of a hydroxy monolith precursor. Part I. Epoxy alkane and octadecyl isocyanate modified poly (hydroxyethyl methacrylate-co-pentaerythritol triacrylate) monolithic capillary columns for reversed-phase capillary electrochromatography. Electrophoresis 37:3160–3171. https://doi.org/10.1002/elps.201600321

    Article  CAS  PubMed  Google Scholar 

  10. Liu C, Deng Q, Fang G, Feng X, Qian H, Wang S (2014) Facile preparation of organic-inorganic hybrid polymeric ionic liquid monolithic column with a one-pot process for protein separation in capillary electrochromatography. Anal Bioanal Chem 406:7175–7183. https://doi.org/10.1007/s00216-014-8137-5

    Article  CAS  PubMed  Google Scholar 

  11. Li M, Tarawally M, Liu X, Liu X, Guo L, Yang L, Wang G (2013) Application of cyclodextrin-modified gold nanoparticles in enantioselective monolith capillary electrochromatography. Talanta 109:1–6. https://doi.org/10.1016/j.talanta.2013.03.035

    Article  CAS  PubMed  Google Scholar 

  12. Karenga S, Rassi Z (2010) Naphthyl methacrylate-based monolithic column for RP-CEC via hydrophobic and pi interactions. Electrophoresis 31:991–1002. https://doi.org/10.1002/elps.200900700

    Article  CAS  PubMed  Google Scholar 

  13. Wang M, Yan X (2012) Fabrication of graphene oxide nanosheets incorporated monolithic column via one-step room temperature polymerization for capillary electrochromatography. Anal Chem 84:39–44. https://doi.org/10.1021/ac202860a

    Article  CAS  PubMed  Google Scholar 

  14. Miao C, Bai R, Xu S, Hong T, Ji Y (2017) Carboxylated single-walled carbon nanotube-functionalized chiral polymer monoliths for affinity capillary electrochromatography. J Chromatogr A 1487:227–234. https://doi.org/10.1016/j.chroma.2017.01.025

    Article  CAS  PubMed  Google Scholar 

  15. Ganewatta N, Rassi ZE (2017) Monolithic capillary columns consisting of poly(glycidyl methacrylate-co-ethylene glycol dimethacrylate) and their diol derivatives with incorporated hydroxyl functionalized multiwalled carbon nanotubes for reversed-phase capillary electrochromatography. Analyst 143:270–279. https://doi.org/10.1039/C7AN01426K

    Article  PubMed  Google Scholar 

  16. Li Y, Chen Y, Xiang R, Ciuparu D, Pfefferle LD, Horváth C, Wilkins JA (2005) Incorporation of single-wall carbon nanotubes into an organic polymer monolithic stationary phase for μ-HPLC and capillary electrochromatography. Anal Chem 77:1398–1406. https://doi.org/10.1021/ac048299h

    Article  CAS  PubMed  Google Scholar 

  17. Perez-Cejuela HM, Carrasco-Correa-EJ SA, Simo-Alfonso EF, Herrero-Martinez JM (2019) Incorporation of metal-organic framework amino-modified MIL-101 into glycidyl methacrylate monoliths for nano LC separation. J Sep Sci 42:834–842. https://doi.org/10.1002/jssc.201801135

    Article  CAS  PubMed  Google Scholar 

  18. Mao Z, Bao T, Li Z, Chen Z (2018) Ionic liquid-copolymerized monolith incorporated with zeolitic imidazolate framework-8 as stationary phases for enhancing reversed phase selectivity in capillary electrochromatography. J Chromatogr A 1578:99–105. https://doi.org/10.1016/j.chroma.2018.10.008

    Article  CAS  PubMed  Google Scholar 

  19. Darder M, Salehinia S, Parra J, Herrero-Martinez J, Svec F, Cerda V (2017) Nanoparticle-directed metal-organic framework/porous organic polymer monolithic supports for flow-based applications. ACS Appl Mater Interfaces 9:1728–1736. https://doi.org/10.1021/acsami.6b10999

    Article  CAS  PubMed  Google Scholar 

  20. Chen L, Wu Q, Gao J, Li H, Dong S, Shi X, Zhao L (2019) Applications of covalent organic frameworks in analytical chemistry. Trends Anal Chem 113:182–193. https://doi.org/10.1016/j.trac.2019.01.016

    Article  CAS  Google Scholar 

  21. Sharma A, Babarao R, Medhekar NV, Malani A (2018) Methane adsorption and separation in slipped and functionalized covalent organic frameworks. Ind Eng Chem Res 57:4767–4778. https://doi.org/10.1021/acs.iecr.7b05031

    Article  CAS  Google Scholar 

  22. Xu Q, Tang Y, Zhang X, Oshima Y, Chen Q, Jiang D (2018) Template conversion of covalent organic frameworks into 2D conducting nanocarbons for catalyzing oxygen reduction reaction. Adv Mater 30:789–794. https://doi.org/10.1002/adma.201706330

    Article  CAS  Google Scholar 

  23. Zhuang G, Gao Y, Zhou X, Tao X, Luo J, Gao Y, Yan Y, Gao P, Zhong X, Wang J (2017) ZIF-67/COF-derived highly dispersed Co3O4/N-doped porous carbon with excellent performance for oxygen evolution reaction and Li-ion batteries. Chem Eng J 330:1255–1264. https://doi.org/10.1016/j.cej.2017.08.076

    Article  CAS  Google Scholar 

  24. Yang C, Liu C, Cao Y, Yan X (2015) Facile room-temperature solution-phase synthesis of a spherical covalent organic framework for high-resolution chromatographic separation. Chem Commun 51:12254–12257. https://doi.org/10.1039/c5cc03413b

    Article  CAS  Google Scholar 

  25. Zhao W, Hu K, Hu C, Wang X, Yu A, Zhang S (2017) Silica gel microspheres decorated with covalent triazine-based frameworks as an improved stationary phase for high performance liquid chromatography. J Chromatogr A 1487:83–88. https://doi.org/10.1016/j.chroma.2016.12.082

    Article  CAS  PubMed  Google Scholar 

  26. Bao T, Tang P, Kong D, Mao Z, Chen Z (2016) Polydopamine-supported immobilization of covalent-organic framework-5 in capillary as stationary phase for electrochromatographic separation. J Chromatogr A 1445:140–148. https://doi.org/10.1016/j.chroma.2016.03.085

    Article  CAS  PubMed  Google Scholar 

  27. Kong D, Bao T, Chen Z (2017) In situ synthesis of the imine-based covalent organic framework LZU1 on the inner walls of capillaries for electrochromatographic separation of nonsteroidal drugs and amino acids. Microchim Acta 184:1169–1176. https://doi.org/10.1007/s00604-017-2095-5

    Article  CAS  Google Scholar 

  28. Wang R, Wei X, Feng Y (2018) β-Cyclodextrin covalent organic framework for selective molecular adsorption. Chem Eur J 24:10979–10983. https://doi.org/10.1002/chem.201802564

    Article  CAS  PubMed  Google Scholar 

  29. Xi Y, Du Y, Sun X, Zhao S, Feng Z, Chen C, Ding W (2019) A monolithic capillary modified with a copoplymer prepared from the ionic liquid 1-vinyl-3-octylimidazolium bromide and styrene for electrochromatography of alkylbenzenes, polycyclic aromatic hydrocarbons, proteins and amino acids. Microchim Acta 187:67. https://doi.org/10.1007/s00604-019-3894-7

    Article  CAS  Google Scholar 

  30. Scriba G (2016) Chiral recognition in separation science-an update. J Chromatogr A 1467:56–78. https://doi.org/10.1016/j.chroma.2016.05.061

    Article  CAS  PubMed  Google Scholar 

  31. Li M, Zhao Y, Zhou L, Yu J, Wang J, Guo X (2018) Study of the enantiomeric separation of the anticholinergic drugs on two immobilized polysaccharide-based chiral stationary phases by HPLC and the possible chiral recognition mechanisms. Electrophoresis 39:1361–1369. https://doi.org/10.1002/elps.201800039

    Article  CAS  PubMed  Google Scholar 

  32. Yang S, Ye F, Lv Q, Zhang C, Shen S, Zhao S (2014) Incorporation of metal-organic framework HKUST-1 into porous polymer monolithic capillary columns to enhance the chromatographic separation of small molecules. J Chromatogr A 1360:143–149. https://doi.org/10.1016/j.chroma.2014.07.067

    Article  CAS  PubMed  Google Scholar 

  33. Carrasco-Correa E, Martínez-Vilata A, Herrero-Martínez J, Parra J, Maya F, Cerdà V, Cabello C, Palomino G, Svec F (2017) Incorporation of zeolitic imidazolate framework (ZIF-8)-derived nanoporous carbons in methacrylate polymeric monoliths for capillary electrochromatography. Talanta 164:348–354. https://doi.org/10.1016/j.talanta.2016.11.027

    Article  CAS  PubMed  Google Scholar 

  34. Wang X, Hu X, Shao Y, Peng L, Zhang Q, Zhou T, Xiang Y, Ye N (2019) Ambient temperature fabrication of a covalent organic framework from 1,3,5-triformylphloroglucinol and 1,4-phenylenediamine as a coating for use in open-tubular capillary electrochromatography of drugs and amino acids. Microchim Acta 186:650. https://doi.org/10.1007/s00604-019-3741-x

    Article  CAS  Google Scholar 

  35. Ye N, Wang X, Liu Q, Hu X (2018) Covalent bonding of Schiff base network-1 as a stationary phase for capillary electrochromatography. Anal Chim Acta 1028:113–120. https://doi.org/10.1016/j.aca.2018.04.037

    Article  CAS  PubMed  Google Scholar 

  36. Tang Y, Cui X, Zhang Y, Ji Y (2019) Preparation and evaluation of a polydopamine modified capillary silica monolith for capillary electrochromatography. New J Chem 43:1009–1016. https://doi.org/10.1039/c8nj04912b

    Article  CAS  Google Scholar 

  37. Wang L, Yang C, Yan X (2017) In situ growth of covalent organic framework shells on silica microspheres for liquid chromatography. ChemPlusChem 82:933–938. https://doi.org/10.1002/cplu.201700223

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The authors are thankful for financial support from the Natural Science Foundation of Jiangsu Province (program no.: BK20141353).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yingxiang Du.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 7783 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, M., Du, Y., Zhang, L. et al. β-Cyclodextrin covalent organic framework–modified organic polymer monolith as a stationary phase for combined hydrophilic and hydrophobic aqueous capillary electrochromatographic separation of small molecules. Microchim Acta 187, 385 (2020). https://doi.org/10.1007/s00604-020-04360-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-020-04360-1

Keywords

Navigation