Skip to main content
Log in

An electrochemical aptasensor for the detection of chloramphenicol based on ultra-small Au-inserted hollow PCN-222 MOF

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The excessive utilization of antibiotics has led to significant water contamination and posed severe threats to human well-being. Consequently, the pressing imperative to identify antibiotics in the environment arises. In this study, we have successfully synthesized a hollow PCN-222 MOF distinguished by its substantial surface area and abundant functional groups, particularly the porphyrin cores. To augment the electrical conductivity of the hollow PCN-222 (HPCN-222), gold (Au) particles were incorporated within the porphyrin core using a fundamental hydrothermal method. This modification facilitated the effective immobilization of aptamer strands through π-π stacking and electrostatic interactions. As a result, the Au@HPCN-222 composite demonstrated exceptional efficacy as a substrate for immobilizing the aptamer (Apt) onto the GCE surface. By employing differential pulse voltammetry (DPV) we successfully achieved the detection of chloramphenicol (CAP) with a remarkably low limit of detection of 0.0138 ng mL−1 and the peak DPV currents at 0.18 V (vs. Ag/AgCl) were used for calibration. Furthermore, this aptasensor exhibited high selectivity and reproducibility.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in this published article and its supplementary file.

References

  1. Wang M, Hu M, Liu J et al (2019) Covalent organic framework-based electrochemical aptasensors for the ultrasensitive detection of antibiotics. Biosens Bioelectron 132:8–16

    Article  CAS  PubMed  Google Scholar 

  2. Zhao YL, Chen Q, Lv J et al (2022) Specific sensing of antibiotics with metal-organic frameworks based dual sensor system. Nano Res 15:6430–6437

    Article  CAS  Google Scholar 

  3. Wang X, Liu C, Wang M et al (2022) A selective fluorescence turn-on sensing coordination polymer for antibiotic aztreonam. Chem Commun 58:4667–4670

    Article  CAS  Google Scholar 

  4. Sharma R, Akshath US, Raghavarao K et al (2019) Fluorescent aptaswitch for chloramphenicol detection – quantification enabled by immobilization of aptamer. Sens Actuators B 290:110–117

  5. Ma P, Guo H, Duan N et al (2021) Label free structure-switching fluorescence polarization detection of chloramphenicol with truncated aptamer. Talanta 230:122349–122349

    Article  CAS  PubMed  Google Scholar 

  6. Kong CT, Chan LC, Ma SK et al (2000) Effects of antioxidants and a caspase inhibitor on chloramphenicol-induced toxicity of human bone marrow and HL-60 cells. Hum Exp Toxicol 19:503–510

    Article  CAS  PubMed  Google Scholar 

  7. Chen XY, Hao SB, Zong B et al (2019) Ultraselective antibiotic sensing with complementary strand DNA assisted aptamer/MoS2 field-effect transistors. Biosens Bioelectron 145:111711

    Article  CAS  PubMed  Google Scholar 

  8. Cardoso AR, Tavares A, Sales M (2018) In-situ generated molecularly imprinted material for chloramphenicol electrochemical sensing in waters down to the nanomolar level. Sens Actuators B 256:420–428

  9. Sakthivel M, Chen SM, Ho KC et al (2018) Synthesis and characterization of samarium-substituted molybdenum diselenide and its graphene oxide nanohybrid for enhancing the selective sensing of chloramphenicol in a milk sample. ACS Appl Mater Interfaces 10:29712–29723

    Article  CAS  PubMed  Google Scholar 

  10. Xie YY, Huang Y, Tang DY et al (2018) A competitive colorimetric chloramphenicol assay based on the non-cross-linking deaggregation of gold nanoparticles coated with a polyadenine-modified aptamer. Microchim Acta 185:534

    Article  Google Scholar 

  11. Yan JM, Li PG, Xiao HN et al (2018) The signal amplification in electrochemical detection of chloramphenicol using sulfonated polyaniline-chitosan composite as redox capacitor. Electroanalysis 30:2085–2093

    Article  Google Scholar 

  12. Wang K, Liu CY, Zhu BC (2023) Recent advances in small-molecule fluorescent probes for diagnosis of cancer cells/tissues. Coord Chem Rev 15:214946

    Article  Google Scholar 

  13. Pan Y, Fei DW, Liu PH et al (2021) Surface-Enhanced raman scattering–based lateral flow immunoassay for the detection of chloramphenicol antibiotics using Au@Ag nanoparticles. Food Anal Method 14:2642–2650

    Article  Google Scholar 

  14. Xiao DF, Jie ZS, Ma ZY et al (2020) Fabrication of homogeneous waffle-like silver composite substrate for Raman determination of trace chloramphenicol. Microchim Acta 187:593–593

    Article  CAS  Google Scholar 

  15. Zhang HL, Liu S, Yu A et al (2017) Amperometric aptasensing of chloramphenicol at a glassy carbon electrode modified with a nanocomposite consisting of graphene and silver nanoparticles. Microchim Acta 184:1445–1451

    Article  Google Scholar 

  16. Jo H, Gu H, Jeon W et al (2015) Electrochemical aptasensor of cardiac troponin I for the early diagnosis of acute myocardial infarction. Anal Chem 87:9869–9875

    Article  CAS  PubMed  Google Scholar 

  17. Zhou Y, Qian Y, Zhang DA et al (2018) Detection and removal of antibiotic tetracycline in water with a highly stable luminescent MOF. Sens Actuators B 262:137–143

  18. Fu R, Hu S, Wu X (2017) Rapid and sensitive detection of nitroaromatic explosives by using new 3D lanthanide phosphonates. J Mater Chem A 5:1952–1956

    Article  CAS  Google Scholar 

  19. Zeng G, Xing S, Wang X et al (2016) 3d–4f metal–organic framework with dual luminescent centers that efficiently discriminates the isomer and homologues of small organic molecules. Inorg Chem 55:1089–1095

    Article  CAS  PubMed  Google Scholar 

  20. Han ZY, Zhang H, Li HK et al (2021) Ingenious construction of an electrochemical aptasensor based on a Au@COF/GO-NH2 composite with excellent detection performance. J Mater Chem C 9:4576–4582

    Article  CAS  Google Scholar 

  21. Biswas S, Chen YL, Wang Y et al (2020) Ultrasmall Au(0) inserted hollow PCN-222 MOF for the high-sensitive detection of estradiol. Anal Chem 92:4566–4572

    Article  CAS  PubMed  Google Scholar 

  22. Kreno LE, Leong K, Farha OK et al (2012) Metal-organic framework materials as chemical sensors. Chem Rev 112:1105–1125

    Article  CAS  PubMed  Google Scholar 

  23. Xu Z, Meng QY, Cao Q et al (2019) Selective sensing of copper ions by mesoporous porphyrinic metal–organic framework nanoovals. Anal Chem 92:2201–2206

    Article  Google Scholar 

  24. Shang HY, Xu H, Liu Q et al (2019) PdCu alloy nanosheets-constructed 3D flowers: new highly sensitive materials for H2S detection. Sens Actuators B 289:260–268

  25. Biswas S, Naskar H, Pradhan S et al (2019) Sm2O3 nanorod-modified graphite paste electrode for trace level voltammetric determination of acetaminophen and ciprofloxacin. New J Chem 44:1921–1930

    Article  Google Scholar 

  26. He T, Chen S, Ni B et al (2018) Zirconium–porphyrin-based metal–organic framework hollow nanotubes for immobilization of noble-metal single atoms. Angew Chem Int Ed 57:3493–3498

    Article  CAS  Google Scholar 

  27. Liu KP, Zhang JJ, Wang CM, Zhu JJ (2011) Graphene-assisted dual amplification strategy for the fabrication of sensitive amperometric immunosensor. Biosens Bioelectron 26:3627–3632

    Article  CAS  PubMed  Google Scholar 

  28. Liu QY, Yang YT, Zhu RR et al (2015) NiO nanoparticles modified with 5,10,15,20-tetrakis(4-carboxylpheyl)-porphyin: promising peroxidase peroxidase mimetics for H2O2 and glucose detection. Biosens Bioelectron 64:147–153

    Article  CAS  PubMed  Google Scholar 

  29. Ahrenholtz RS, Epley CC, Morris JA (2014) Solvothermal preparation of an electrocatalytic metalloporphyrin MOF thin film and its redox hopping charge-transfer mechanism. J Am Chem Soc 136:2464–2472

    Article  CAS  PubMed  Google Scholar 

  30. Wang XX, Yang T, Li X et al (2011) Three-step electrodeposition synthesis of self-doped polyaniline nanofiber-supported flower-like Au microspheres for high-performance biosensing of DNA hybridization recognition. Biosens Bioelectron 26:2953–2959

    Article  CAS  PubMed  Google Scholar 

  31. Chinese Health Ministry, National food safety standard, determination of chloramphenicol residues in milk by liquid, GB 29688–2013

  32. Sharma R, Akshath US, Bhatt P et al (2019) Fluorescent aptaswitch for chloramphenicol detection–Quantification enabled by immobilization of aptamer. Sens Actuators B 209:110–117

Download references

Acknowledgements

The authors gratefully acknowledge the financial support of this work by the National Natural Science Foundation of China (Grant No. 22008011 and 22108170), Project of Yulin Science and Technology Bureau (Grant No. CXY-2020-023), Shaanxi Province Postdoctoral Science Foundation (No. 2018BSHGZZHQYXMZZ27), National College Student’s Innovation and Entrepreneurship Training Program (No. S202210710261).

Author information

Authors and Affiliations

Authors

Contributions

Jiang Li: Formal analysis, Writing—review & editing, Writing—original draft. Lingli Qu: Methodology, Formal analysis, Investigation. Huitong Li: Methodology, Investigation. Lu Zhao: Validation, Formal analysis. Tongdan Chen, Jiaying Liu and Yuting Gao: Visualization, Resources. Hongzhi Pan: Review & editing.

Corresponding authors

Correspondence to Jiang Li or Hongzhi Pan.

Ethics declarations

Competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 139 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Qu, L., Li, H. et al. An electrochemical aptasensor for the detection of chloramphenicol based on ultra-small Au-inserted hollow PCN-222 MOF. Microchim Acta 190, 366 (2023). https://doi.org/10.1007/s00604-023-05949-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-023-05949-y

Keywords

Navigation