Skip to main content
Log in

Electrochemical aptasensor based on Mo2C/Mo2N and gold nanoparticles for determination of chlorpyrifos

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Two-dimensional Mo2C/Mo2N composites were synthesized by high temperature ball milling and used as support materials for fabricating a chlorpyrifos (CPF) aptasensor. Gold nanoparticles (Au NPs) were electrodeposited on the surface of a Mo2C/Mo2N-modified electrode to connect with the ferrocene (Fc) probe via Au–S bonds. The Fc probe can hybridize with the aptamer probe to form a double-stranded structure. The addition of CPF made the double strands melt and the Fc probe approached the surface of the electrode, thereby resulting in amplification of the electrochemical response. The current response of the aptasensor for detecting CPF in solutions linearly varied from 0 to 400 ng mL−1 (with a maximum at 0.98 V vs. Ag/AgCl). The Au NPs/Mo2C/Mo2N composites exhibited satisfactory electrochemical behavior due to their excellent electrical conductivity and large surface area. This ultrasensitive aptasensor showed a low limit of detection of 0.036 ng mL−1. It was applied to determine CPF in real samples with acceptable recoveries from 94.7 to 116.7%, and the relative standard deviation was from 2.57 to 7.08%.

Graphical abstract

Schematic diagram of the manufacturing process of the aptasensor. Electrochemical aptasensor based on Mo2C/Mo2N/Au NP composites show excellent performance in detecting CPF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Eddleston M, Buckley NA, Eyer P, Dawson AH (2008) Management of acute organophosphorus pesticide poisoning. Lancet 371(9612):597–607. https://doi.org/10.1016/s0140-6736(07)61202-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Carvalho FP (2017) Pesticides, environment, and food safety. Food and Energy Security 6(2):48–60. https://doi.org/10.1002/fes3.108

    Article  Google Scholar 

  3. Lewis K, Tzilivakis J, Warner D, Green A (2016) An international database for pesticide risk assessments and management. Hum Ecol Risk Assess 22(4):1050–1064. https://doi.org/10.1080/10807039.2015.1133242

    Article  CAS  Google Scholar 

  4. Zhou J, Zou X, Song S, Chen G (2018) Quantum dots applied to methodology on detection of pesticide and veterinary drug residues. J Agric Food Chem 66(6):1307–1319. https://doi.org/10.1021/acs.jafc.7b05119

    Article  CAS  PubMed  Google Scholar 

  5. Wang P, Dai W, Ge L, Yan M, Ge S, Yu J (2013) Visible light photoelectrochemical sensor based on au nanoparticles and molecularly imprinted poly(o-phenylenediamine)-modified TiO2 nanotubes for specific and sensitive detection chlorpyrifos. Analyst 138(3):939–945. https://doi.org/10.1039/c2an36266j

    Article  CAS  PubMed  Google Scholar 

  6. He L, Luo X, Xie H, Wang C, Jiang X, Lu K (2009) Ionic liquid-based dispersive liquid-liquid microextraction followed high-performance liquid chromatography for the determination of organophosphorus pesticides in water sample. Anal Chim Acta 655(1):52–59. https://doi.org/10.1016/j.aca.2009.09.044

    Article  CAS  PubMed  Google Scholar 

  7. Sinha SN, Pal RR, Dewan A, Mansuri MM, Saiyed HN (2006) Effect of dissociation energy on ion formation and sensitivity of an analytical method for determination of chlorpyrifos in human blood, using gas chromatography–mass spectrometer (GC–MS in MS/MS). Int J Mass Spectrom 253(1):48–57. https://doi.org/10.1016/j.ijms.2006.02.020

    Article  CAS  Google Scholar 

  8. Jeanty G, Ghommidh C, Marty J (2001) Automated detection of chlorpyrifos and its metabolites by a continuous flow system-based enzyme sensor. Anal Chim Acta 436(1):119–128. https://doi.org/10.1016/S0003-2670(01)00898-4

    Article  CAS  Google Scholar 

  9. Li X, Zhang W, Wu X, Sun C, Chen M, Zeng Q (2012) Mucoepidermoid carcinoma of the lung: common findings and unusual appearances on CT. Clin Imaging 36(1):8–13. https://doi.org/10.1016/j.clinimag.2011.03.003

    Article  CAS  PubMed  Google Scholar 

  10. Li S, Liang W, Zheng F, Lin X, Cai J (2014) Ascorbic acid surface modified TiO2-thin layers as a fully integrated analysis system for visual simultaneous detection of organophosphorus pesticides. Nanoscale 6(23):14254–14261. https://doi.org/10.1039/C4NR04430D

    Article  CAS  PubMed  Google Scholar 

  11. Akyuz D, Keles T, Biyiklioglu Z, Koca A (2017) Electrochemical pesticide sensors based on electropolymerized metallophthalocyanines. J Electroanal Chem 804:53–63. https://doi.org/10.1016/j.jelechem.2017.09.044

    Article  CAS  Google Scholar 

  12. Famulok M, Hartig JS, Mayer G (2007) Functional aptamers and aptazymes in biotechnology, diagnostics, and therapy. Chem Rev 107(9):3715–3743. https://doi.org/10.1021/cr0306743

    Article  CAS  PubMed  Google Scholar 

  13. Zhu L, Liu Y, Yang P, Liu B (2015) Label-free Aptasensor based on electrodeposition of gold nanoparticles on graphene and its application in the quantification of adenosine triphosphate. Electrochim Acta 172:88–93. https://doi.org/10.1016/j.electacta.2015.04.100

    Article  CAS  Google Scholar 

  14. Jiao Y, Jia H, Guo Y, Zhang H, Wang Z, Sun X, Zhao J (2016) An ultrasensitive aptasensor for chlorpyrifos based on ordered mesoporous carbon/ferrocene hybrid multiwalled carbon nanotubes. RSC Adv 6(63):58541–58548. https://doi.org/10.1039/c6ra07735h

    Article  CAS  Google Scholar 

  15. Xu G, Huo D, Hou C, Zhao Y, Bao J, Yang M, Fa H (2018) A regenerative and selective electrochemical aptasensor based on copper oxide nanoflowers-single walled carbon nanotubes nanocomposite for chlorpyrifos detection. Talanta 178:1046–1052. https://doi.org/10.1016/j.talanta.2017.08.086

    Article  CAS  PubMed  Google Scholar 

  16. Jiao Y, Hou W, Fu J, Guo Y, Sun X, Wang X, Zhao J (2017) A nanostructured electrochemical aptasensor for highly sensitive detection of chlorpyrifos. Sensors Actuators B Chem 243:1164–1170. https://doi.org/10.1016/j.snb.2016.12.106

    Article  CAS  Google Scholar 

  17. Roushani M, Nezhadali A, Jalilian Z (2018) An electrochemical chlorpyrifos aptasensor based on the use of a glassy carbon electrode modified with an electropolymerized aptamer-imprinted polymer and gold nanorods. Microchim Acta 185(12):551. https://doi.org/10.1007/s00604-018-3083-0

    Article  CAS  Google Scholar 

  18. Rohaizad N, Mayorga-Martinez CC, Sofer Z, Pumera M (2017) 1T-phase transition metal dichalcogenides (MoS2, MoSe2, WS2, and WSe2) with fast heterogeneous electron transfer: application on second-generation enzyme-based biosensor. ACS Appl Mater Interfaces 9(46):40697–40706. https://doi.org/10.1021/acsami.7b13090

    Article  CAS  PubMed  Google Scholar 

  19. Arunbalaji S, Vasudevan R, Arivanandhan M, Alsalme A, Alghamdi A, Jayavel R (2020) CuO/MoS2 nanocomposites for rapid and high sensitive non-enzymatic glucose sensors. Ceram Int 46(10):16879–16885. https://doi.org/10.1016/j.ceramint.2020.03.265

    Article  CAS  Google Scholar 

  20. Dong Y, Zhou M, Zhang L (2019) 3D multiporous Co,N co-doped MoO2/MoC nanorods hybrids as improved electrode materials for highly sensitive simultaneous determination of acetaminophen and 4-aminophenol. Electrochim Acta 302:56–64. https://doi.org/10.1016/j.electacta.2019.02.006

    Article  CAS  Google Scholar 

  21. Xiao T, Huang J, Wang D, Meng T, Yang X (2020) Au and Au-based nanomaterials: synthesis and recent progress in electrochemical sensor applications. Talanta 206:120210–120210. https://doi.org/10.1016/j.talanta.2019.120210

    Article  CAS  PubMed  Google Scholar 

  22. Vilian ATE, Dinesh B, Kang SM, Krishnan UM, Huh YS, Han YK (2019) Recent advances in molybdenum disulfide-based electrode materials for electroanalytical applications. Mikrochim Acta 186(3):203. https://doi.org/10.1007/s00604-019-3287-y

    Article  CAS  PubMed  Google Scholar 

  23. Razavipanah I, Rounaghi GH, Deiminiat B, Damirchi S, Abnous K, Izadyar M, Khavani M (2019) A new electrochemical aptasensor based on MWCNT-SiO2@au core-shell nanocomposite for ultrasensitive detection of bisphenol a. Microchem J 146:1054–1063. https://doi.org/10.1016/j.microc.2019.02.018

    Article  CAS  Google Scholar 

  24. Zhu C, Liu D, Chen Z, Li L, You T (2019) An ultra-sensitive aptasensor based on carbon nanohorns/gold nanoparticles composites for impedimetric detection of carbendazim at picogram levels. J Colloid Interface Sci 546:92–100. https://doi.org/10.1016/j.jcis.2019.03.035

    Article  CAS  PubMed  Google Scholar 

  25. McGovern MS, Garnett EC, Rice C, Masel RI, Wieckowski A (2003) Effects of Nafion as a binding agent for unsupported nanoparticle catalysts. J Power Sources 115(1):35–39. https://doi.org/10.1016/s0378-7753(02)00623-7

    Article  CAS  Google Scholar 

  26. Sun X, Zhu Y, Wang X (2012) Amperometric immunosensor based on deposited gold nanocrystals/4,4′-thiobisbenzenethiol for determination of carbofuran. Food Control 28(1):184–191. https://doi.org/10.1016/j.foodcont.2012.04.027

    Article  CAS  Google Scholar 

  27. Desimoni E, Brunetti B (2013) Presenting analytical performances of electrochemical sensors. Some suggestions. Electroanalysis 25(7):1645–1651. https://doi.org/10.1002/elan.201300150

    Article  CAS  Google Scholar 

  28. Li Y, Gan Z, Li Y, Liu Q, Bao J, Dai Z, Han M (2010) Immobilization of acetylcholinesterase on one-dimensional gold nanoparticles for detection of organophosphorous insecticides. Science China Chem 53(4):820–825. https://doi.org/10.1007/s11426-010-0105-0

    Article  CAS  Google Scholar 

  29. Manisankar P, Viswanathan S, Pusphalatha AM, Rani C (2005) Electrochemical studies and square wave stripping voltammetry of five common pesticides on poly 3,4-ethylenedioxythiophene modified wall-jet electrode. Anal Chim Acta 528(2):157–163. https://doi.org/10.1016/j.aca.2004.08.027

    Article  CAS  Google Scholar 

  30. Uygun ZO, Dilgin Y (2013) A novel impedimetric sensor based on molecularly imprinted polypyrrole modified pencil graphite electrode for trace level determination of chlorpyrifos. Sensors Actuators B Chem 188:78–84. https://doi.org/10.1016/j.snb.2013.06.075

    Article  CAS  Google Scholar 

  31. Wang K, Liu Q, Dai L, Yan J, Ju C, Qiu B, Wu X (2011) A highly sensitive and rapid organophosphate biosensor based on enhancement of CdS-decorated graphene nanocomposite. Anal Chim Acta 695(1–2):84–88. https://doi.org/10.1016/j.aca.2011.03.042

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Program for Key Research and Development Plan in Shaanxi Province (No. 2019SF-243), the Innovation Capability Support Program of Shaanxi Province (No. 2020TD-022), and the Strategic Priority Research Program of Chinese Academy of Sciences (XDB40000000).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huayu Huang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOC 6334 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, Z., Liu, X., Li, Y. et al. Electrochemical aptasensor based on Mo2C/Mo2N and gold nanoparticles for determination of chlorpyrifos. Microchim Acta 188, 170 (2021). https://doi.org/10.1007/s00604-021-04830-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-021-04830-0

Keywords

Navigation