Skip to main content
Log in

A chiral porous organic polymer COP-1 used as stationary phase for HPLC enantioseparation under normal-phase and reversed-phase conditions

  • Original Paper
  • Published:
Microchimica Acta Aims and scope

Abstract

A spherical chiral porous organic polymer (POPs) COP-1 is synthesized by the Friedel–Crafts alkylation reaction of Boc-3-(4-biphenyl)-L-alanine (BBLA) and 4,4′-bis(chloromethyl)-1,1′-biphenyl (BCMBP), which was used as a novel chiral stationary phase (CSPs) for mixed-mode high-performance liquid chromatography (HPLC) enantioseparation. The racemic compounds were resolved in normal-phase liquid chromatography (NPLC) using n-hexane/isopropanol as mobile phase and reversed-phase liquid chromatography (RPLC) using methanol/water as mobile phase. The COP-1-packed column exhibited excellent separation performance toward various racemic compounds including alcohols, amines, ketones, esters, epoxy compounds, organic acids, and amino acids in NPLC and RPLC modes. The effects of analyte mass and column temperature on the separation efficiency of racemic compounds were investigated. In addition, the chiral resolution ability of the COP-1-packed column not only can be complementary in RPLC/NPLC modes but also exhibit a good chiral recognition complementarity with Chiralpak AD-H column and chiral porous organic cage (POC) NC1-R column. The relative standard deviations (RSD) (n = 5) of the retention time, resolution value, and peak area by repeated separation of 1-(4-chiorophenyl)ethanol are all below 3.0%. The COP-1 column shows high column efficiency (e.g., 17,320 plates m−1 for 1-(4-chlorophenyl)ethanol on COP-1 column in NPLC), high enantioselectivity, and good reproducibility toward various racemates. This work demonstrates that chiral POPs microspheres are promising chiral materials for HPLC enantioseparation.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Mon M, Lloret F, Ferrando-Soria J, Marti-Gastaldo C, Armentano D, Pardo E (2016) Selective and efficient removal of mercury from aqueous media with the highly flexible arms of a BioMOF. Angew Chem Int Ed 55:11167–11172. https://doi.org/10.1002/anie.201606015

    Article  CAS  Google Scholar 

  2. Guo P, Yuan BY, Yu YY, Zhang JH, Wang BJ, Xie SM, Yuan LM (2021) Chiral covalent organic framework core-shell composite CTpBD@SiO2 used as stationary phase for HPLC enantioseparation. Microchim Acta 188(9):1–10. https://doi.org/10.1007/s00604-021-04954-3

    Article  CAS  Google Scholar 

  3. Gu C, Huang N, Chen YC, Zhang HH, Zhang ST, Li FH, Ma YG, Jiang DL (2016) Porous organic polymer films with tunable work functions and selective hole and electron flows for energy conversions. Angew Chem Int Ed 55(9):3049–3053. https://doi.org/10.1002/anie.201510723

    Article  CAS  Google Scholar 

  4. Tan LX, Tan BE (2017) Hypercrosslinked porous polymer materials: design, synthesis, and applications. Chem Soc Rev 46(11):3322–3356. https://doi.org/10.1039/C6CS00851H

    Article  CAS  PubMed  Google Scholar 

  5. Qian X, Wang B, Zhu ZQ, Sun HX, Ren F, Mu P, Ma CH, Liang WD, Li A (2017) Novel N-rich porous organic polymers with extremely high uptake for capture and reversible storage of volatile iodine. J Hazard Mater 338:224–232. https://doi.org/10.1016/j.jhazmat.2017.05.041

    Article  CAS  PubMed  Google Scholar 

  6. Cui YY, He XQ, Yang CX, Yan XP (2021) Application of microporous organic networks in separation science. TrAC Trend Anal Chem 139:116268. https://doi.org/10.1016/j.trac.2021.116268

    Article  CAS  Google Scholar 

  7. Wang XP, Zhao XD, Dong WB, Zhang XH, Xiang YG, Huang QY, Chen H (2019) Integrating amino groups within conjugated microporous polymers by versatile thiol-yne coupling for light-driven hydrogen evolution. J Mater Chem A 7(27):16277–16284. https://doi.org/10.1039/C9TA04018H

    Article  CAS  Google Scholar 

  8. Li X, Cui YY, Yang CX (2021) Covalent coupling fabrication of microporous organic network bonded capillary columns for gas chromatographic separation. Talanta 224:121914. https://doi.org/10.1016/j.talanta.2020.121914

    Article  CAS  PubMed  Google Scholar 

  9. Zhang YB, Luo QX, Lu MH, Luo D, Liu ZD, Liu ZT (2019) Controllable and scalable synthesis of hollow-structured porous aromatic polymer for selective adsorption and separation of HMF from reaction mixture of fructose dehydration. Chem Eng J 358:467–479. https://doi.org/10.1016/j.cej.2018.10.029

    Article  CAS  Google Scholar 

  10. Ravi S, Ahn WS (2018) Facile synthesis of a mesoporous organic polymer grafted with 2-aminoethanethiol for Hg2+ removal. Micropor Mesopor Mat 271:59–67. https://doi.org/10.1016/j.micromeso.2018.05.038

    Article  CAS  Google Scholar 

  11. Li JQ, Xiao ZC, Wang WJ, Zhang SH, Wu QH, Wang C, Wang Z (2020) Rational integration of porous organic polymer and multiwall carbon nanotube for the microextraction of polycyclic aromatic hydrocarbons. Microchim Acta 187(5):1–8. https://doi.org/10.1007/s00604-020-04261-3

    Article  CAS  Google Scholar 

  12. Yamashita H, Mori K, Kuwahara Y, Kamegawa T, Wen M, Verma P, Che M (2018) Single-site and nano-confined photocatalysts designed in porous materials for environmental uses and solar fuels. Chem Soc Rev 47(22):8072–8096. https://doi.org/10.1039/C8CS00341F

    Article  CAS  PubMed  Google Scholar 

  13. Zhang T, Xing GL, Chen WB, Chen L (2020) Porous organic polymers: a promising platform for efficient photocatalysis. Mat Chem Front 4(2):332–353. https://doi.org/10.1039/C9QM00633H

    Article  CAS  Google Scholar 

  14. Wang CA, Li YW, Han YF, Zhang JP, Wu RT, He GF (2017) The “bottom-up” construction of chiral porous organic polymers for heterogeneous asymmetric organocatalysis: MacMillan catalyst built-in nanoporous organic frameworks. Polym Chem 8(36):5561–5569. https://doi.org/10.1039/C7PY01127J

    Article  CAS  Google Scholar 

  15. Cui YY, Yang CX, Yan XP (2020) Thiol-yne click post-modification for the synthesis of chiral microporous organic networks for chiral gas chromatography. ACS Appl Mate Interfaces 12(4):4954–4961. https://doi.org/10.1021/acsami.9b22023

    Article  CAS  Google Scholar 

  16. Kou WT, Yang CX, Yan XP (2018) Post-synthetic modification of metal-organic frameworks for chiral gas chromatography. J Mater Chem A 6(37):17861–17866. https://doi.org/10.1039/C8TA06804F

    Article  CAS  Google Scholar 

  17. Kim MH, Choi J, Ko KC, Cho K, Park JH, Lee SM, Kim HJ, Ko YJ, Lee JY, Son SU (2018) Network-controlled unique reactivities of carbonyl groups in hollow and microporous organic polymer. Chem Commun 54:5134–5137. https://doi.org/10.1039/C8CC02788A

    Article  CAS  Google Scholar 

  18. Navarro-Sánchez J, Argente-García AI, Moliner-Martínez Y, Roca-Sanjuán D, Antypov D, Campíns-Falcó P, Rosseinsky MJ, Marti-Gastaldo C (2017) Peptide metal-organic frameworks for enantioselective separation of chiral drugs. J Am Chem Soc 139(12):4294–4297. https://doi.org/10.1021/jacs.7b00280

    Article  CAS  PubMed  Google Scholar 

  19. Tan HL, Chen QB, Chen TT, Liu HL (2019) Effects of rigid conjugated groups: toward improving enantioseparation performances of chiral porous organic polymers. ACS Appl Mater Interfaces 11(40):37156–37162. https://doi.org/10.1021/acsami.9b14144

    Article  CAS  PubMed  Google Scholar 

  20. Wu ZQ, Li TL, Ding Y, Hu AG (2020) Synthesis of chiral porous organic polymers through nucleophilic substitution for chiral separation. ACS Appl Polym Mater 2(12):5414–5422. https://doi.org/10.1021/acsapm.0c00750

    Article  CAS  Google Scholar 

  21. Kewley A, Stephenson A, Chen LJ, Briggs ME, Hasell T, Cooper AI (2015) Porous organic cages for gas chromatography separations. Chem Mater 27(9):3207–3210. https://doi.org/10.1021/acs.chemmater.5b01112

    Article  CAS  Google Scholar 

  22. Bai JW, Zhang WP, Ma XF, Chen LQ, Liu LJ, Zhang CH (2020) Synthesis of novel hyper-cross-linked chiral porous polymers and their applications in enantioselective adsorption of amino acids. Micropor Mesopor Mat 294:109892. https://doi.org/10.1016/j.micromeso.2019.109892

    Article  CAS  Google Scholar 

  23. Dong JQ, Liu Y, Cui Y (2014) Chiral porous organic frameworks for asymmetric heterogeneous catalysis and gas chromatographic separation. Chem Commun 50(95):14949–14952. https://doi.org/10.1039/C4CC07648F

    Article  CAS  Google Scholar 

  24. Lu CM, Liu SQ, Xu JQ, Ding YJ, Ouyang GF (2016) Exploitation of a microporous organic polymer as a stationary phase for capillary gas chromatography. Anal Chimi Acta 902:205–211. https://doi.org/10.1016/j.aca.2015.10.034

    Article  CAS  Google Scholar 

  25. He Y, Shi T, Qi M (2021) A novel triptycene-terminated polymer used as the gas chromatographic stationary phase towards organic acidic/basic analytes and isomers. Chin Chem Lett 32(11):3372–3376. https://doi.org/10.1016/j.cclet.2021.04.009

    Article  CAS  Google Scholar 

  26. Fan FB, Pan JJ, Li YJ, Wang LC, Wang SA, Liang XJ, Guo Y (2020) A novel double polymer modified hydrophobic/hydrophilic stationary phase for liquid chromatography. Chin Chem Lett 31(3):746–750. https://doi.org/10.1016/j.cclet.2019

    Article  CAS  Google Scholar 

  27. Zhou XH, Li XL, Cao AJ, Qiao LJ, Yu AJ, Zhang SS, Wu YJ (2015) Development of N-ferrocenyl (benzoyl) amino-acid esters stationary phase for high performance liquid chromatography. Talanta 144:1044–1051

  28. Zhou H, Chen J, Li H, Quan KJ, Zhang YS, Qiu HD (2020) Imidazolium ionic liquid-enhanced poly (quinine)-modified silica as a new multi-mode chromatographic stationary phase for separation of achiral and chiral compounds. Talanta 211:120743. https://doi.org/10.1016/j.talanta.2020.120743

    Article  CAS  PubMed  Google Scholar 

  29. Wang Y, Chen JK, Xiong LX, Wang BJ, Xie SM, Zhang JH, Yuan LM (2022) Preparation of novel chiral stationary phases based on the chiral porous organic cage by thiol-ene click chemistry for enantioseparation in HPLC. Anal Chem 94(12):4961–4969. https://doi.org/10.1021/acs.analchem.1c03626

    Article  CAS  PubMed  Google Scholar 

  30. Fan C, Chen J, Li H, Quan KJ, Qiu HD (2022) Preparation and evaluation of two silica-based hydrophilic-hydrophobic and acid-base balanced stationary phases via in-situ surface polymerization. J Chromatogr A 1667:462912. https://doi.org/10.1016/j.chroma.2022.462912

    Article  CAS  PubMed  Google Scholar 

  31. Zhang K, Cai SL, Yan YL, He ZH, Lin HM, Huang XL, Zheng SR, Fan J, Zhang WG (2017) Construction of a hydrazone-linked chiral covalent organic framework-silica composite as the stationary phase for high performance liquid chromatography. J Chromatogr A 1519:100–109. https://doi.org/10.1016/j.chroma.2017.09.007

    Article  CAS  PubMed  Google Scholar 

  32. Yu YY, Xu NY, Zhang JH, Wang BJ, Xie SM, Yuan LM (2020) Chiral metal-organic framework D-His-ZIF-8@SiO2 core-hell microspheres used for HPLC enantioseparations. ACS Appl Mater Interfaces 12(14):16903–16911. https://doi.org/10.1021/acsami.0c01023

    Article  CAS  PubMed  Google Scholar 

  33. Han X, Huang JJ, Yuan C, Liu Y, Cui Y (2018) Chiral 3D covalent organic frameworks for high performance liquid chromatographic enantioseparation. J Am Chem Soc 140(3):892–895. https://doi.org/10.1021/jacs.7b12110

    Article  CAS  PubMed  Google Scholar 

  34. Zhang M, Pu ZJ, Chen XL, Gong XL, Zhu AX, Yuan LM (2013) Chiral recognition of a 3D chiral nanoporous metal-organic framework. Chem Commun 49(45):5201–5203. https://doi.org/10.1039/C3CC41966E

    Article  CAS  Google Scholar 

  35. Chen YL, Lu ZC, Li GK, Hu YL (2020) β-Cyclodextrin porous polymers with three-dimensional chiral channels for separation of polar racemates. J Chromatogr A 1626:461341. https://doi.org/10.1016/j.chroma.2020.461341

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work is supported by the National Natural Science Foundation of China (Nos. 21964021, 21765025, and 22064020).

Author information

Authors and Affiliations

Authors

Contributions

All authors have approved the final version of the manuscript.

Corresponding authors

Correspondence to Jun-Hui Zhang or Sheng-Ming Xie.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 39.8 MB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, YP., Chen, JK., Guo, P. et al. A chiral porous organic polymer COP-1 used as stationary phase for HPLC enantioseparation under normal-phase and reversed-phase conditions. Microchim Acta 189, 360 (2022). https://doi.org/10.1007/s00604-022-05448-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-022-05448-6

Keywords

Navigation