Skip to main content
Log in

Rational integration of porous organic polymer and multiwall carbon nanotube for the microextraction of polycyclic aromatic hydrocarbons

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

By integration of benzene-constructed porous organic polymer (KBF) and multiwalled carbon nanotube (MWCNT), a MWCNT-KBF hybrid material was constructed through in situ knitting benzene with formaldehyde dimethyl acetal in the presence of MWCNTs to form a network. MWCNT-KBF was then adopted as a novel solid-phase microextraction (SPME) fiber coating. Coupled to gas chromatography-flame ionization detection, the MWCNT-KBF–assisted SPME method showed large enhancement factors (483–2066), low limits of detection (0.04–0.12 μg L−1), good linearity (0.13–50 μg L−1), and acceptable reproducibility (4.2–10.2%) for the determination of polycyclic aromatic hydrocarbons (PAHs). The method recoveries of seven PAHs were in the range 80.1–116.3%, with relative standard deviations (RSDs) ranging from 3.5 to 11.9%. The SPME method was successfully applied to the determination of PAHs in river, pond, rain, and waste water, providing a good alternative for monitoring trace level of PAHs in environmental water.

Schematic representation of the rational integration of porous organic polymer (KBF) and multiwalled carbon nanotube (MWCNT) to form a MWCNT-KBF hybrid material through in situ knitting benzene with formaldehyde dimethyl acetal at the presence of MWCNT

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Arthur CL, Pawliszyn J (1990) Solid phase microextraction with thermal desorption using fused silica optical fibers. Anal Chem 62:2145–2148

    Article  CAS  Google Scholar 

  2. Ouyang G, Vuckovic D, Pawliszyn J (2011) Nondestructive sampling of living systems using in vivo solid-phase microextraction. Chem Rev 111:2784–2814

    Article  CAS  Google Scholar 

  3. Zhang S, Yang Q, Wang C, Luo X, Kim J, Wang Z, Yamauchi Y (2018) Porous organic frameworks: advanced materials in analytical chemistry. Adv Sci 5:1801116

    Article  Google Scholar 

  4. Lashgari M, Yamini Y (2019) An overview of the most common lab-made coating materials in solid phase microextraction. Talanta 191:283–306

    Article  CAS  Google Scholar 

  5. Wang W, Li Z, Zhang S, Yang X, Zang X, Wang C, Wang Z (2019) Triazine-based porous organic framework as adsorbent for solid-phase microextraction of some organochlorine pesticides. J Chromatogr A 1602:83–90

    Article  CAS  Google Scholar 

  6. Zhang S, Du Z, Li G (2011) Layer-by-layer fabrication of chemical-bonded graphene coating for solid-phase microextraction. Anal Chem 83:7531–7541

  7. Yu H, Ho TD, Anderson JL (2013) Ionic liquid and polymeric ionic liquid coatings in solid-phase microextraction. TrAC Trend Anal Chem 45:219–232

  8. Yu LQ, Yan XP (2013) Covalent bonding of zeolitic imidazolate framework-90 to functionalized silica fibers for solid-phase microextraction. Chem Commun 49:2142–2144

    Article  CAS  Google Scholar 

  9. Ghasemi E, Sillanpaa M (2014) Optimization of headspace solid phase microextraction based on nano-structured ZnO combined with gas chromatography-mass spectrometry for preconcentration and determination of ultra-traces of chlorobenzenes in environmental samples. Talanta 130:322–327

    Article  CAS  Google Scholar 

  10. Haikal RR, Soliman AB, Amin M, Karakalos SG, Hassan YS, Elmansi AM, Hafez IH, Berber MR, Hassanien A, Alkordi MH (2017) Synergism of carbon nanotubes and porous-organic polymers (POPs) in CO2 fixation: one-pot approach for bottom-up assembly of tunable heterogeneous catalyst. Appl Catal B-Environ 207:347–357

    Article  CAS  Google Scholar 

  11. Miranda A, Barekar N, McKay BJ (2019) MWCNTs and their use in Al-MMCs for ultra-high thermal conductivity applications: a review. J Alloys Compd 774:820–840

    Article  CAS  Google Scholar 

  12. Cai Y, Jiang G, Liu J, Zhou Q (2003) Multiwalled carbon nanotubes as a solid-phase extraction adsorbent for the determination of bisphenol a, 4-n-nonylphenol, and 4-tert-octylphenol. Anal Chem 75:2517–2521

    Article  CAS  Google Scholar 

  13. Tuzen M, Saygi KO, Soylak M (2008) Solid phase extraction of heavy metal ions in environmental samples on multiwalled carbon nanotubes. J Hazard Mater 152:632–639

    Article  CAS  Google Scholar 

  14. Wang JX, Jiang DQ, Gu ZY, Yan XP (2006) Multiwalled carbon nanotubes coated fibers for solid-phase microextraction of polybrominated diphenyl ethers in water and milk samples before gas chromatography with electron-capture detection. J Chromatogr A 1137:8–14

    Article  CAS  Google Scholar 

  15. Liu H, Li J, Liu X, Jiang S (2009) A novel multiwalled carbon nanotubes bonded fused-silica fiber for solid phase microextraction–gas chromatographic analysis of phenols in water samples. Talanta 78:929–935

    Article  CAS  Google Scholar 

  16. Sarafraz-Yazdi A, Rounaghi G, Razavipanah I, Vatani H, Amiri A (2014) New polypyrrole-carbon nanotubes-silicon dioxide solid-phase microextraction fiber for the preconcentration and determination of benzene, toluene, ethylbenzene, and o-xylene using gas liquid chromatography. J Sep Sci 37:2605–2612

    Article  CAS  Google Scholar 

  17. Yang Y, Chen J, Shi YP (2012) Determination of diethylstilbestrol in milk using carbon nanotube-reinforced hollow fiber solid-phase microextraction combined with high-performance liquid chromatography. Talanta 97:222–228

    Article  CAS  Google Scholar 

  18. Wu D, Xu F, Sun B, Fu R, He H, Matyjaszewski K (2012) Design and preparation of porous polymers. Chem Rev 112:3959–4015

    Article  CAS  Google Scholar 

  19. Kaur P, Hupp JT, Nguyen ST (2011) Porous organic polymers in catalysis: opportunities and challenges. ACS Catal 1:819–835

    Article  CAS  Google Scholar 

  20. Zhang Y, Riduan SN (2012) Functional porous organic polymers for heterogeneous catalysis. Chem Soc Rev 41:2083–2094

    Article  CAS  Google Scholar 

  21. Dawson R, Stöckel E, Holst JR, Adams DJ, Cooper AI (2011) Microporous organic polymers for carbon dioxide capture. Energy Environ Sci 4:4239–4245

    Article  CAS  Google Scholar 

  22. Modak A, Nandi M, Mondal J, Bhaumik A (2012) Porphyrin based porous organic polymers: novel synthetic strategy and exceptionally high CO2 adsorption capacity. Chem Commun 48:248–250

    Article  CAS  Google Scholar 

  23. Xiao Z, Kong D, Liang J, Wang B, Iqbal R, Yang Q-H, Zhi L (2017) Structure controllable carbon matrix derived from benzene-constructed porous organic polymers for high-performance Li-S batteries. Carbon 116:633–639

    Article  CAS  Google Scholar 

  24. Yang X, Wang J, Wang W, Zhang S, Wang C, Zhou J, Wang Z (2019) Solid phase microextraction of polycyclic aromatic hydrocarbons by using an etched stainless-steel fiber coated with a covalent organic framework. Microchim Acta 186:145

    Article  Google Scholar 

  25. Rasolzadeh F, Hashemi P (2019) Magnetic fiber headspace solid-phase microextraction coupled to GC-MS for the extraction and quantitation of polycyclic aromatic hydrocarbons. Microchim Acta 186:432

    Article  Google Scholar 

  26. Gutiérrez-Serpa A, Schorn-García D, Jiménez-Moreno F, Jiménez-Abizanda AI, Pino V (2019) Braid solid-phase microextraction of polycyclic aromatic hydrocarbons by using fibers coated with silver-based nanomaterials in combination with HPLC with fluorometric detection. Microchim Acta 186:311

    Article  Google Scholar 

  27. Wang W, Wang W, Zhang S, Li Z, Wang C, Wang Z (2018) Hyper-crosslinked polymer nanoparticles as the solid-phase microextraction fiber coating for the extraction of organochlorines. J Chromatogr A 1556:47–54

    Article  CAS  Google Scholar 

  28. Wang W, Li Z, Wang W, Zhang L, Zhang S, Wang C, Wang Z (2017) Microextraction of polycyclic aromatic hydrocarbons by using a stainless steel fiber coated with nanoparticles made from a porous aromatic framework. Microchim Acta 185:20

    Article  Google Scholar 

  29. Yang S, Zhang X, Mi H, Ye X (2008) Pd nanoparticles supported on functionalized multi-walled carbon nanotubes (MWCNTs) and electrooxidation for formic acid. J Power Sources 175:26–32

    Article  CAS  Google Scholar 

  30. Beiranvand M, Ghiasvand A (2020) Design and optimization of the VA-TV-SPME method for ultrasensitive determination of the PAHs in polluted water. Talanta 212:120809

    Article  CAS  Google Scholar 

  31. Zuazagoitia D, Millán E, Garcia R (2007) A screening method for polycyclic aromatic hydrocarbons determination in water by headspace SPME with GC-FID. Chromatographia 66:773–777

    Article  CAS  Google Scholar 

  32. Gutierrez-Serpa A, Napolitano-Tabares PI, Pino V, Jimenez-Moreno F, Jimenez-Abizanda AI (2018) Silver nanoparticles supported onto a stainless steel wire for direct-immersion solid-phase microextraction of polycyclic aromatic hydrocarbons prior to their determination by GC-FID. Microchim Acta 185:341

    Article  Google Scholar 

  33. Liu H, Wang X, Fan H, Dang S (2019) Durable molybdenum oxide coated solid-phase microextraction fiber for highly selective and efficient extraction of polycyclic aromatic hydrocarbons in water. J Sep Sci 42:1878–1885

    Article  CAS  Google Scholar 

  34. Xu L, Feng J, Liang X, Li J, Jiang S (2012) C18 functionalized graphene oxide as a novel coating for solid-phase microextraction. J Sep Sci 35:1531–1537

    Article  CAS  Google Scholar 

  35. Harati F, Ghiasvand A, Dalvand K, Haddad PR (2020) Fused-silica capillary internally modified with nanostructured octadecyl silica for dynamic in-tube solid-phase microextraction of polycyclic aromatic hydrocarbons from aqueous media. Microchem J 155:104672

    Article  CAS  Google Scholar 

Download references

Funding

The authors are grateful to the financial support from the National Natural Science Foundation of China (31571925 and 31671930), the Science and Technology Foundation of Hebei Agricultural University (ZD201703), the Youth Top-Notch Talent Foundation of Hebei Provincial Universities (BJ2018024), the Natural Science Foundation of Hebei Province (B2017204025 and C2017204019), and Returned Overseas Scholars Foundation of Hebei Province (CL201713).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shuaihua Zhang or Qiuhua Wu.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 252 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Xiao, Z., Wang, W. et al. Rational integration of porous organic polymer and multiwall carbon nanotube for the microextraction of polycyclic aromatic hydrocarbons. Microchim Acta 187, 284 (2020). https://doi.org/10.1007/s00604-020-04261-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-020-04261-3

Keywords

Navigation