Skip to main content
Log in

Chiral covalent organic framework-monolith as stationary phase for high-performance liquid chromatographic enantioseparation of selected amino acids

  • Paper in Forefront
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The separation of amino acid (AA) enantiomers shows significance for chemistry, food, and biology, but remains challenging due to their similar properties. A promising nanoporous chiral covalent organic framework (COF) as a stationary phase for high-performance liquid chromatography (HPLC) suffers from the irregularity and widely distributed particle size of the chiral COF. Herein, we show the facile preparation of a chiral COF-monolith as a stationary phase for HPLC enantiomeric separation of AAs via orthogonal experiments. The CTzDa-monolith is prepared by the incorporation of the model chiral COF named CTzDa into the porous poly(ethylene dimethacrylate-co-methacrylate) monolith and reveals great permeability and mechanical stability. The corresponding CTzDa-monolithic column gives better chiral HPLC separation of AAs than the commercial Poroshell 120 chiral-T column. Thermal dynamic analysis and molecular docking calculations imply the involvement of stereoscopic hydrogen, π-π, and van der Waals interactions between the CTzDa and AAs during HPLC enantioseparation. The facile incorporation of the chiral COF into the porous monolith will promote the potential of a chiral COF as a stationary phase for HPLC.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Blaskovich MA. Unusual amino acids in medicinal chemistry. J Med Chem. 2016;59:10807–36.

    Article  CAS  Google Scholar 

  2. Meister A. Biochemistry of the amino acids. Second ed. London: Academic Press; 2012.

    Google Scholar 

  3. Zhao CJ, Schieber A, Gänzle MG. Formation of taste-active amino acids, amino acid derivatives and peptides in food fermentations–a review. Food Res Int. 2016;89:39–47.

    Article  CAS  Google Scholar 

  4. Bastings JJ, van Eijk HM, Olde Damink SW, Rensen SS. D-amino acids in health and disease: a focus on cancer. Nutrients. 2019;11:2205.

    Article  CAS  Google Scholar 

  5. Sardella R, Lisanti A, Marinozzi M, Ianni F, Natalini B, Blanch GP, et al. Combined monodimensional chromatographic approaches to monitor the presence of D-amino acids in cheese. Food Control. 2013;34:478–87.

    Article  CAS  Google Scholar 

  6. Rocco A, Aturki Z, Fanali S. Chiral separations in food analysis. TrAC, Trends Anal Chem. 2013;52:206–25.

    Article  CAS  Google Scholar 

  7. Herrero M, Ibáñez E, Martín-Álvarez PJ, Cifuentes A. Analysis of chiral amino acids in conventional and transgenic maize. Anal Chem. 2007;79:5071–7.

    Article  CAS  Google Scholar 

  8. Lammerhofer M. Chiral recognition by enantioselective liquid chromatography: mechanisms and modern chiral stationary phases. J Chromatogr A. 2010;1217:814–56.

    Article  Google Scholar 

  9. Okamoto Y, Ikai T. Chiral HPLC for efficient resolution of enantiomers. Chem Soc Rev. 2008;37:2593–608.

    Article  CAS  Google Scholar 

  10. Knežević A, Novak J, Vinković V. New brush-type chiral stationary phases for enantioseparation of pharmaceutical drugs. Molecules. 2019;24:823.

    Article  Google Scholar 

  11. Fernandes C, Tiritan ME, Pinto M. Small molecules as chromatographic tools for HPLC enantiomeric resolution: Pirkle-type chiral stationary phases evolution. Chromatographia. 2013;76:871–97.

    Article  CAS  Google Scholar 

  12. Yao X, Zheng H, Zhang Y, Ma X, Xiao Y, Wang Y. Engineering thiol–ene click chemistry for the fabrication of novel structurally well-defined multifunctional cyclodextrin separation materials for enhanced enantioseparation. Anal Chem. 2016;88:4955–64.

    Article  CAS  Google Scholar 

  13. Wang Y, Zhuo S, Hou J, Li W, Ji Y. Construction of β-Cyclodextrin covalent organic framework-modified chiral stationary phase for chiral separation. ACS Appl Mater interfaces. 2019;11:48363–9.

    Article  CAS  Google Scholar 

  14. Cui YY, Yang CX, Yan XP. Thiol-yne click post-modification for the synthesis of chiral microporous organic networks for chiral gas chromatography. ACS Appl Mater interfaces. 2020;12:4954–61.

    Article  CAS  Google Scholar 

  15. Corella-Ochoa MN, Tapia JB, Rubin HN, Lillo V, González-Cobos J, Núñez-Rico JL, et al. Homochiral metal–organic frameworks for enantioselective separations in liquid chromatography. J Am Chem Soc. 2019;141:14306–16.

    Article  CAS  Google Scholar 

  16. Navarro-Sánchez J, Argente-García AI, Moliner-Martínez Y, Roca-Sanjuán D, Antypov D, Campíns-Falcó P, et al. Peptide metal–organic frameworks for enantioselective separation of chiral drugs. J Am Chem Soc. 2017;139:4294–7.

    Article  Google Scholar 

  17. Cote AP, Benin AI, Ockwig NW, O'Keeffe M, Matzger AJ, Yaghi OM. Porous, crystalline, covalent organic frameworks. Science. 2005;310:1166–70.

    Article  CAS  Google Scholar 

  18. Waller PJ, Gandara F, Yaghi OM. Chemistry of covalent organic frameworks. Acc Chem Res. 2015;48:3053–63.

    Article  CAS  Google Scholar 

  19. Huang N, Wang P, Jiang D. Covalent organic frameworks: a materials platform for structural and functional designs. Nat Rev Mater. 2016;1:16068.

    Article  CAS  Google Scholar 

  20. Qian HL, Meng FL, Yang CX, Yan XP. Irreversible amide-linked covalent organic framework for selective and ultrafast gold recovery. Angew Chem Int Ed. 2020;59:17607–13.

    Article  CAS  Google Scholar 

  21. Han X, Yuan C, Hou B, Liu L, Li H, Liu Y, et al. Chiral covalent organic frameworks: design, synthesis and property. Chem Soc Rev. 2020:6248–72.

  22. Qian HL, Yang CX, Yan XP. Bottom-up synthesis of chiral covalent organic frameworks and their bound capillaries for chiral separation. Nat Commun. 2016;7:12104.

    Article  CAS  Google Scholar 

  23. Han X, Huang J, Yuan C, Liu Y, Cui Y. Chiral 3D covalent organic frameworks for high performance liquid chromatographic enantioseparation. J Am Chem Soc. 2018;140:892–5.

    Article  CAS  Google Scholar 

  24. Zhang S, Zheng Y, An H, Aguila B, Yang CX, Dong Y, et al. Covalent organic frameworks with chirality enriched by biomolecules for efficient chiral separation. Angew Chem Int Ed. 2018;57:16754–9.

    Article  CAS  Google Scholar 

  25. Liu LH, Yang CX, Yan XP. Methacrylate-bonded covalent-organic framework monolithic columns for high performance liquid chromatography. J Chromatogr A. 2017;1479:137–44.

    Article  CAS  Google Scholar 

  26. Jandera P. Advances in the development of organic polymer monolithic columns and their applications in food analysis—a review. J Chromatogr A. 2013;1313:37–53.

    Article  CAS  Google Scholar 

  27. Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, et al. AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem. 2009;30:2785–91.

    Article  CAS  Google Scholar 

  28. Chen ML, Li LM, Yuan BF, Ma Q, Feng YQ. Preparation and characterization of methacrylate-based monolith for capillary hydrophilic interaction chromatography. J Chromatogr A. 2012;1230:54–60.

    Article  CAS  Google Scholar 

  29. Liu F, Qian HL, Yang C, Yan XP. Room-temperature preparation of a chiral covalent organic framework for the selective adsorption of amino acid enantiomers. RSC Advances. 2020;10:15383–6.

    Article  Google Scholar 

  30. Sheng Z, Xie S. Pan C Probability theory and mathematical statistics. 3rd Version ed. Hangzhou: Zhejiang University Press; 2001.

    Google Scholar 

  31. Lin R, Diao X, Ma T, Tang S, Chen L, Liu D. Optimized microporous layer for improving polymer exchange membrane fuel cell performance using orthogonal test design. Appl Energ. 2019;254:113714.

    Article  CAS  Google Scholar 

  32. van Deemter JJ, Zuiderweg FJ, Klinkenberg A. Longitudinal diffusion and resistance to mass transfer as causes of nonideality in chromatography. Chem Eng Sci. 1956;5:271–89.

    Article  Google Scholar 

  33. Zhang H, Ou J, Liu Z, Wang H, Wei Y, Zou H. Preparation of hybrid monolithic columns via “one-pot” photoinitiated thiol–acrylate polymerization for retention-independent performance in capillary liquid chromatography. Anal chem. 2015;87:8789–97.

    Article  CAS  Google Scholar 

  34. Küsters E, Loux V, Schmid E, Floersheim P. Enantiomeric separation of chiral sulphoxides: screening of cellulose-based sorbents with particular reference to cellulose tribenzoate. J Chromatogr A. 1994;666:421–32.

    Article  Google Scholar 

  35. Wang T, Wang J, Zhang C, Yang Z, Dai X, Cheng M, et al. Metal-organic framework MIL-101(Cr) as a sorbent of porous membrane-protected micro-solid-phase extraction for the analysis of six phthalate esters from drinking water: a combination of experimental and computational study. Analyst. 2015;140:5308–16.

    Article  CAS  Google Scholar 

  36. Ma M, Du Y, Zhang L, Gan J, Yang J. β-Cyclodextrin covalent organic framework–modified organic polymer monolith as a stationary phase for combined hydrophilic and hydrophobic aqueous capillary electrochromatographic separation of small molecules. Microchimi Acta. 2020;187:1–11.

    Article  Google Scholar 

Download references

Funding

The authors are grateful for the support from the National Natural Science Foundation of China (No. 21804055, 21775056, 22076066), the Natural Science Foundation of Jiangsu Province (No. BK20180585), the Fundamental Research Funds for the Central Universities (No. JUSRP221002), the National First-class Discipline Program of Food Science and Technology (No. JUFSTR20180301), and the Program of “Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hai-Long Qian.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Published in the topical collection featuring Promising Early-Career (Bio)Analytical Researchers with guest editors Antje J. Baeumner, María C. Moreno-Bondi, Sabine Szunerits, and Qiuquan Wang.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 3483 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qian, HL., Liu, F., Liu, X. et al. Chiral covalent organic framework-monolith as stationary phase for high-performance liquid chromatographic enantioseparation of selected amino acids. Anal Bioanal Chem 414, 5255–5262 (2022). https://doi.org/10.1007/s00216-021-03574-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-021-03574-3

Keywords

Navigation