Skip to main content
Log in

Recent progress in nanomaterial-based electrochemical and optical sensors for hypoxanthine and xanthine. A review

  • Review Article
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

This review (with 160 ref.) summarizes the progress that has been made in the methods for chemical or biochemical sensing of hypoxanthine and xanthine, which are produced as part of purine metabolism and are precursors of uric acid. An introduction discusses the importance of hypoxanthine and xanthine as analytes due to their significance in the clinical and food science, together with the conventional methods of analysis. A large section covers methods for the electrochemical hypoxanthine and xanthine sensing. It is divided into subsections according to the nanomaterials used including carbon nanomaterials, meal oxide nanoparticles, metal organic frameworks, conductive polymers, and bio-nanocomposites. A further large section covers optical methods for hypoxanthine and xanthine sensing, with subsections on nanomaterials including carbon nanomaterials, nanosheets, nanoclusters, nanoparticles, and their bio-nanocomposites. A concluding section summarizes the current status, addresses current challenges, and discusses future perspectives.

Schematic representation of the hypoxanthine and xanthine electrochemical and optical sensors incorporating various nanomaterials like graphene, carbon nanotubes (CNT), quantum dots (QD), nanoparticles and polymers, which are implemented in clinical and food analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Cao H, Pauff JM, Hille R (2010) Substrate orientation and catalytic specificity in the action of xanthine oxidase: the sequential hydroxylation of hypoxanthine to uric acid. J Biol Chem 285(36):28044–28053. https://doi.org/10.1074/jbc.M110.128561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Trager WF (2007) 5.05 - principles of drug metabolism 1: redox reactions. In: Taylor JB, Triggle DJ (eds) Comprehensive medicinal chemistry II. Elsevier, Oxford, pp 87–132. https://doi.org/10.1016/B0-08-045044-X/00119-X

    Chapter  Google Scholar 

  3. Chen C, Lü J-M, Yao Q (2016) Hyperuricemia-related diseases and xanthine oxidoreductase (XOR) inhibitors: An overview. Med Sci Monit 22:2501–2512. https://doi.org/10.12659/msm.899852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Battelli MG, Polito L, Bortolotti M, Bolognesi A (2016) Xanthine oxidoreductase-derived reactive species: physiological and pathological effects. Oxidative Med Cell Longev 2016:8. https://doi.org/10.1155/2016/3527579

    Article  CAS  Google Scholar 

  5. Murphy MP, Holmgren A, Larsson N-G, Halliwell B, Chang CJ, Kalyanaraman B, Rhee SG, Thornalley PJ, Partridge L, Gems D, Nyström T, Belousov V, Schumacker PT, Winterbourn CC (2011) Unraveling the biological roles of reactive oxygen species. Cell Metab 13(4):361–366. https://doi.org/10.1016/j.cmet.2011.03.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lawal AT, Adeloju SB (2012) Progress and recent advances in fabrication and utilization of hypoxanthine biosensors for meat and fish quality assessment: a review. Talanta 100:217–228. https://doi.org/10.1016/j.talanta.2012.07.085

    Article  CAS  PubMed  Google Scholar 

  7. Drulovic J, Dujmovic I, Stojsavljevic N, Mesaros S, Andjelkovic S, Miljkovic D, Peric V, Dragutinovic G, Marinkovic J, Levic Z, Mostarica Stojkovic M (2001) Uric acid levels in sera from patients with multiple sclerosis. J Neurol 248(2):121–126

    Article  CAS  Google Scholar 

  8. Schroder K, Tschopp J (2010) The Inflammasomes. Cell 140(6):821–832. https://doi.org/10.1016/j.cell.2010.01.040

    Article  CAS  PubMed  Google Scholar 

  9. Kushiyama A, Nakatsu Y, Matsunaga Y, Yamamotoya T, Mori K, Ueda K, Inoue Y, Sakoda H, Fujishiro M, Ono H, Asano T (2016) Role of uric acid metabolism-related inflammation in the pathogenesis of metabolic syndrome components such as atherosclerosis and nonalcoholic steatohepatitis. Mediat Inflamm 2016:8603164–8603164. https://doi.org/10.1155/2016/8603164

    Article  CAS  Google Scholar 

  10. Dussol B, Ceballos-Picot I, Aral B, Castera V, Philip N, Berland Y (2004) Kelley–Seegmiller syndrome due to a new variant of the hypoxanthine–guanine phosphoribosyltransferase (I136T) encoding gene (HPRT Marseille). J Inherit Metab Dis 27(4):543–545. https://doi.org/10.1023/B:BOLI.0000037399.72152.a9

    Article  CAS  PubMed  Google Scholar 

  11. Tohgi H, Abe T, Takahashi S, Kikuchi T (1993) The urate and xanthine concentrations in the cerebrospinal fluid in patients with vascular dementia of the Binswanger type, Alzheimer type dementia, and Parkinson's disease. J Neural Transm Park Dis Dement Sect 6(2):119–126. https://doi.org/10.1007/bf02261005

    Article  CAS  PubMed  Google Scholar 

  12. Omokawa A, Oguma M, Ueki S, Saga T, Hirokawa M (2018) Urine xanthine crystals in tumor lysis syndrome. Urology 120:e9–e10. https://doi.org/10.1016/j.urology.2018.07.009

    Article  PubMed  Google Scholar 

  13. Sahar FS, Steven CD (2015) Xanthinuria workup. Medscape. https://emedicine.medscape.com/article/984002-workup. Accessed 13 Oct 2015

  14. Zhao J, Liang Q, Luo G, Wang Y, Zuo Y, Jiang M, Yu G, Zhang T (2005) Purine metabolites in gout and asymptomatic hyperuricemia: analysis by HPLC–electrospray tandem mass spectrometry. Clin Chem 51(9):1742–1744. https://doi.org/10.1373/clinchem.2004.040261

    Article  CAS  PubMed  Google Scholar 

  15. Gudbjörnsson B, Zak A, Niklasson F, Hällgren R (1991) Hypoxanthine, xanthine, and urate in synovial fluid from patients with inflammatory arthritides. Ann Rheum Dis 50(10):669–672. https://doi.org/10.1136/ard.50.10.669

    Article  PubMed  PubMed Central  Google Scholar 

  16. Hira HS, Samal P, Kaur A, Kapoor S (2014) Plasma level of hypoxanthine/xanthine as markers of oxidative stress with different stages of obstructive sleep apnea syndrome. Ann Saudi Med 34(4):308–313. https://doi.org/10.5144/0256-4947.2014.308

    Article  PubMed  PubMed Central  Google Scholar 

  17. Laing I, Brown JK, Harkness RA (1988) Clinical and biochemical assessments of damage due to perinatal asphyxia: a double blind trial of a quantitative method. J Clin Pathol 41(3):247–252. https://doi.org/10.1136/jcp.41.3.247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Si Y, Park JW, Jung S, Hwang G-S, Goh E, Lee HJ (2018) Layer-by-layer electrochemical biosensors configuring xanthine oxidase and carbon nanotubes/graphene complexes for hypoxanthine and uric acid in human serum solutions. Biosens Bioelectron 121:265–271. https://doi.org/10.1016/j.bios.2018.08.074

    Article  CAS  PubMed  Google Scholar 

  19. Dervisevic M, Custiuc E, Çevik E, Şenel M (2015) Construction of novel xanthine biosensor by using polymeric mediator/MWCNT nanocomposite layer for fish freshness detection. Food Chem 181:277–283. https://doi.org/10.1016/j.foodchem.2015.02.104

    Article  CAS  PubMed  Google Scholar 

  20. Pereira PM, Vicente AF (2013) Meat nutritional composition and nutritive role in the human diet. Meat Sci 93(3):586–592. https://doi.org/10.1016/j.meatsci.2012.09.018

    Article  CAS  Google Scholar 

  21. Devi R, Narang J, Yadav S, Pundir CS (2012) Amperometric determination of xanthine in tea, coffee, and fish meat with graphite rod bound xanthine oxidase. J Anal Chem 67(3):273–277. https://doi.org/10.1134/s1061934812030045

    Article  CAS  Google Scholar 

  22. Stratton CJ (1980) The xanthines: coffee, cola, cocoa, and tea. BYU Studies 20(4):371–388

  23. Favrod-Coune T, Broers B (2015) Addiction to caffeine and other xanthines. In: el-Guebaly N, Carrà G, Galanter M (eds) Textbook of addiction treatment: international perspectives. Springer Milan, Milano, pp 437–453. https://doi.org/10.1007/978-88-470-5322-9_18

    Chapter  Google Scholar 

  24. Li G, Liu F, Hao J, Liu C (2015) Determination of purines in beer by HPLC using a simple and rapid sample pretreatment. J Am Soc Brew Chem 73(2):137–142. https://doi.org/10.1094/ASBCJ-2015-0409-01

    Article  CAS  Google Scholar 

  25. Fukuuchi T, Yasuda M, Inazawa K, Ota T, Yamaoka N, K-i M, Nakagomi K, Kaneko K (2013) A simple HPLC method for determining the purine content of beer and beer-like alcoholic beverages. Anal Sci 29(5):511–517. https://doi.org/10.2116/analsci.29.511

    Article  CAS  PubMed  Google Scholar 

  26. Kock R, Delvoux B, Greiling H (1993) A high-performance liquid chromatographic method for the determination of hypoxanthine, xanthine, uric acid and allantoin in serum. Eur J Clin Chem Clin Biochem 31(5):303–310

    CAS  PubMed  Google Scholar 

  27. Burdett TC, Desjardins CA, Logan R, McFarland NR, Chen X, Schwarzschild MA (2013) Efficient determination of purine metabolites in brain tissue and serum by high-performance liquid chromatography with electrochemical and UV detection. Biomed Chromatogr 27(1):122–129. https://doi.org/10.1002/bmc.2760

    Article  CAS  PubMed  Google Scholar 

  28. Cooper N, Khosravan R, Erdmann C, Fiene J, Lee JW (2006) Quantification of uric acid, xanthine and hypoxanthine in human serum by HPLC for pharmacodynamic studies. J Chromatogr B Anal Technol Biomed Life Sci 837(1–2):1–10. https://doi.org/10.1016/j.jchromb.2006.02.060

    Article  CAS  Google Scholar 

  29. Prker R, Snedden W, Watts RW (1969) The mass-spectrometirc identification of hypoxanthine and xanthine ('oxypurines') in skeletal musce from two patients with congenital xanthine oxidase deficiency (xanthinuria). Biochem J 115(1):103–108. https://doi.org/10.1042/bj1150103

    Article  CAS  PubMed  Google Scholar 

  30. Rashed MS, Saadallah AA, Rahbeeni Z, Eyaid W, Seidahmed MZ, Al-Shahwan S, Salih MA, Osman ME, Al-Amoudi M, Al-Ahaidib L, Jacob M (2005) Determination of urinary S-sulphocysteine, xanthine and hypoxanthine by liquid chromatography-electrospray tandem mass spectrometry. Biomed Chromatogr 19(3):223–230. https://doi.org/10.1002/bmc.439

    Article  CAS  PubMed  Google Scholar 

  31. Chen G, Chu Q, Zhang L, Ye J (2002) Separation of six purine bases by capillary electrophoresis with electrochemical detection. Anal Chim Acta 457(2):225–233. https://doi.org/10.1016/S0003-2670(02)00027-2

    Article  CAS  Google Scholar 

  32. Pagliarussi RS, Freitas LAP, Bastos JK (2002) A quantitative method for the analysis of xanthine alkaloids in Paullinia cupana (guarana) by capillary column gas chromatography. J Sep Sci 25(5–6):371–374. https://doi.org/10.1002/1615-9314(20020401)25:5/6<371::aid-jssc371>3.0.co;2-9

    Article  CAS  Google Scholar 

  33. Chalmers RA, Watts RWE (1968) An enzymatic spectrophotometric method for the determination of “oxypurines”(hypoxanthine plus xanthine) in urine and blood plasma. Analyst 93(1107):354–362. https://doi.org/10.1039/AN9689300354

    Article  CAS  PubMed  Google Scholar 

  34. Sahu PK, Ramisetti NR, Cecchi T, Swain S, Patro CS, Panda J (2018) An overview of experimental designs in HPLC method development and validation. J Pharm Biomed Anal 147:590–611. https://doi.org/10.1016/j.jpba.2017.05.006

    Article  CAS  PubMed  Google Scholar 

  35. Hecht ES, Oberg AL, Muddiman DC (2016) Optimizing mass spectrometry analyses: a tailored review on the utility of Design of Experiments. J Am Soc Mass Spectrom 27(5):767–785. https://doi.org/10.1007/s13361-016-1344-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Orlandini S, Gotti R, Furlanetto S (2014) Multivariate optimization of capillary electrophoresis methods: a critical review. J Pharm Biomed Anal 87:290–307. https://doi.org/10.1016/j.jpba.2013.04.014

    Article  CAS  PubMed  Google Scholar 

  37. Voeten RLC, Ventouri IK, Haselberg R, Somsen GW (2018) Capillary electrophoresis: trends and recent advances. Anal Chem 90(3):1464–1481. https://doi.org/10.1021/acs.analchem.8b00015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Raj MA, John SA (2013) Simultaneous determination of uric acid, xanthine, hypoxanthine and caffeine in human blood serum and urine samples using electrochemically reduced graphene oxide modified electrode. Anal Chim Acta 771:14–20. https://doi.org/10.1016/j.aca.2013.02.017

    Article  CAS  PubMed  Google Scholar 

  39. Zhu D, Guo D, Zhang L, Tan L, Pang H, Ma H, Zhai M (2019) Non-enzymatic xanthine sensor of heteropolyacids doped ferrocene and reduced graphene oxide via one-step electrodeposition combined with layer-by-layer self-assembly technology. Sensors Actuators B Chem 281:893–904. https://doi.org/10.1016/j.snb.2018.10.151

    Article  CAS  Google Scholar 

  40. Zhu D, Ma H, Pang H, Tan L, Jiao J, Chen T (2018) Facile fabrication of a non-enzymatic nanocomposite of heteropolyacids and CeO2@Pt alloy nanoparticles doped reduced graphene oxide and its application towards the simultaneous determination of xanthine and uric acid. Electrochim Acta 266:54–65. https://doi.org/10.1016/j.electacta.2018.01.185

    Article  CAS  Google Scholar 

  41. Tang X, Liu Y, Hou H, You T (2011) A nonenzymatic sensor for xanthine based on electrospun carbon nanofibers modified electrode. Talanta 83(5):1410–1414. https://doi.org/10.1016/j.talanta.2010.11.019

    Article  CAS  PubMed  Google Scholar 

  42. Villalonga R, Díez P, Eguílaz M, Martínez P, Pingarrón JM (2012) Supramolecular immobilization of xanthine oxidase on electropolymerized matrix of functionalized hybrid gold nanoparticles/single-walled carbon nanotubes for the preparation of electrochemical biosensors. ACS Appl Mater Interfaces 4(8):4312–4319. https://doi.org/10.1021/am300983u

    Article  CAS  PubMed  Google Scholar 

  43. Zhang L, Li S, Xin J, Ma H, Pang H, Tan L, Wang X (2019) A non-enzymatic voltammetric xanthine sensor based on the use of platinum nanoparticles loaded with a metal-organic framework of type MIL-101(Cr). Application to simultaneous detection of dopamine, uric acid, xanthine and hypoxanthine. Microchim Acta 186(1):9. https://doi.org/10.1007/s00604-018-3128-4

    Article  CAS  Google Scholar 

  44. Wen Y, Chang J, Xu L, Liao X, Bai L, Lan Y, Li M (2017) Simultaneous analysis of uric acid, xanthine and hypoxanthine using voltammetric sensor based on nanocomposite of palygorskite and nitrogen doped graphene. J Electroanal Chem 805:159–170. https://doi.org/10.1016/j.jelechem.2017.09.053

    Article  CAS  Google Scholar 

  45. Rahman MM, Marwani HM, Algethami FK, Asiri AM (2017) Xanthine sensor development based on ZnO–CNT, ZnO–CB, ZnO–GO and ZnO nanoparticles: an electrochemical approach. New J Chem 41(14):6262–6271. https://doi.org/10.1039/C7NJ00278E

    Article  CAS  Google Scholar 

  46. Ibrahim H, Temerk Y (2016) Sensitive electrochemical sensor for simultaneous determination of uric acid and xanthine in human biological fluids based on the nano-boron doped ceria modified glassy carbon paste electrode. J Electroanal Chem 780:176–186. https://doi.org/10.1016/j.jelechem.2016.09.016

    Article  CAS  Google Scholar 

  47. Zhang F, Wang Z, Zhang Y, Zheng Z, Wang C, Du Y, Ye W (2012) Simultaneous electrochemical determination of uric acid, xanthine and hypoxanthine based on poly(l-arginine)/graphene composite film modified electrode. Talanta 93:320–325. https://doi.org/10.1016/j.talanta.2012.02.041

    Article  CAS  PubMed  Google Scholar 

  48. Lavanya N, Sekar C, Murugan R, Ravi G (2016) An ultrasensitive electrochemical sensor for simultaneous determination of xanthine, hypoxanthine and uric acid based on Co doped CeO2 nanoparticles. Mater Sci Eng C 65:278–286. https://doi.org/10.1016/j.msec.2016.04.033

    Article  CAS  Google Scholar 

  49. Ibrahim H, Temerk Y (2016) A novel electrochemical sensor based on B doped CeO2 nanocubes modified glassy carbon microspheres paste electrode for individual and simultaneous determination of xanthine and hypoxanthine. Sensors Actuators B Chem 232:125–137. https://doi.org/10.1016/j.snb.2016.03.133

    Article  CAS  Google Scholar 

  50. Thangaraj R, Kumar AS (2012) Graphitized mesoporous carbon modified glassy carbon electrode for selective sensing of xanthine, hypoxanthine and uric acid. Anal Methods 4(7):2162–2171. https://doi.org/10.1039/C2AY25029B

    Article  CAS  Google Scholar 

  51. Xu G-B, Cui J-M, Liu H, Gao G-G, Qiu Y-F, Zhang S-M, Wu D-M (2015) Highly selective detection of cellular guanine and xanthine by polyoxometalate modified 3D graphene foam. Electrochim Acta 168:32–40. https://doi.org/10.1016/j.electacta.2015.03.222

    Article  CAS  Google Scholar 

  52. Yin D, Liu J, Bo X, Li M, Guo L (2017) Porphyrinic metal-organic framework/macroporous carbon composites for electrocatalytic applications. Electrochim Acta 247:41–49. https://doi.org/10.1016/j.electacta.2017.06.176

    Article  CAS  Google Scholar 

  53. Li X, Li C, Wu C, Wu K (2019) Strategy for highly sensitive electrochemical sensing: in situ coupling of a metal–organic framework with ball-mill-exfoliated graphene. Anal Chem 91(9):6043–6050. https://doi.org/10.1021/acs.analchem.9b00556

    Article  CAS  PubMed  Google Scholar 

  54. Luo A, Lian Q, An Z, Li Z, Guo Y, Zhang D, Xue Z, Zhou X, Lu X (2015) Simultaneous determination of uric acid, xanthine and hypoxanthine based on sulfonic groups functionalized nitrogen-doped graphene. J Electroanal Chem 756:22–29. https://doi.org/10.1016/j.jelechem.2015.08.008

    Article  CAS  Google Scholar 

  55. Thandavan K, Gandhi S, Sethuraman S, Rayappan JBB, Krishnan UM (2013) Development of electrochemical biosensor with nano-interface for xanthine sensing – a novel approach for fish freshness estimation. Food Chem 139(1):963–969. https://doi.org/10.1016/j.foodchem.2013.02.008

    Article  CAS  PubMed  Google Scholar 

  56. Devi R, Thakur M, Pundir CS (2011) Construction and application of an amperometric xanthine biosensor based on zinc oxide nanoparticles–polypyrrole composite film. Biosens Bioelectron 26(8):3420–3426. https://doi.org/10.1016/j.bios.2011.01.014

    Article  CAS  PubMed  Google Scholar 

  57. Dalkiran B, Kaçar C, Erden PE, Kiliç E (2014) Amperometric xanthine biosensors based on chitosan-Co3O4-multiwall carbon nanotube modified glassy carbon electrode. Sensors Actuators B Chem 200:83–91. https://doi.org/10.1016/j.snb.2014.04.025

    Article  CAS  Google Scholar 

  58. Dervisevic M, Dervisevic E, Çevik E, Şenel M (2017) Novel electrochemical xanthine biosensor based on chitosan–polypyrrole–gold nanoparticles hybrid bio-nanocomposite platform. J Food Drug Anal 25(3):510–519. https://doi.org/10.1016/j.jfda.2016.12.005

    Article  CAS  PubMed  Google Scholar 

  59. Dervisevic M, Dervisevic E, Azak H, Çevik E, Şenel M, Yildiz HB (2016) Novel amperometric xanthine biosensor based on xanthine oxidase immobilized on electrochemically polymerized 10-[4H-dithieno(3,2-b:2′,3′-d)pyrrole-4-yl]decane-1-amine film. Sensors Actuators B Chem 225:181–187. https://doi.org/10.1016/j.snb.2015.11.043

    Article  CAS  Google Scholar 

  60. Dervisevic M, Custiuc E, Çevik E, Durmus Z, Şenel M, Durmus A (2015) Electrochemical biosensor based on REGO/Fe3O4 bionanocomposite interface for xanthine detection in fish sample. Food Control 57:402–410. https://doi.org/10.1016/j.foodcont.2015.05.001

    Article  CAS  Google Scholar 

  61. Jain U, Narang J, Rani K, Burna S, Chauhan N (2015) Synthesis of cadmium oxide and carbon nanotube based nanocomposites and their use as a sensing interface for xanthine detection. RSC Adv 5(38):29675–29683. https://doi.org/10.1039/C5RA00050E

    Article  CAS  Google Scholar 

  62. Zhang L, Lei J, Zhang J, Ding L, Ju H (2012) Amperometric detection of hypoxanthine and xanthine by enzymatic amplification using a gold nanoparticles–carbon nanohorn hybrid as the carrier. Analyst 137(13):3126–3131. https://doi.org/10.1039/C2AN35284B

    Article  CAS  PubMed  Google Scholar 

  63. Devi R, Yadav S, Pundir CS (2012) Amperometric determination of xanthine in fish meat by zinc oxide nanoparticle/chitosan/multiwalled carbon nanotube/polyaniline composite film bound xanthine oxidase. Analyst 137(3):754–759. https://doi.org/10.1039/C1AN15838D

    Article  CAS  PubMed  Google Scholar 

  64. Sen S, Sarkar P (2015) A novel third-generation xanthine biosensor with enzyme modified glassy carbon electrode using electrodeposited MWCNT and nanogold polymer composite film. RSC Adv 5(116):95911–95925. https://doi.org/10.1039/C5RA18889J

    Article  CAS  Google Scholar 

  65. Yazdanparast S, Benvidi A, Abbasi S, Rezaeinasab M (2019) Enzyme-based ultrasensitive electrochemical biosensor using poly(l-aspartic acid)/MWCNT bio-nanocomposite for xanthine detection: a meat freshness marker. Microchem J 149:104000. https://doi.org/10.1016/j.microc.2019.104000

    Article  CAS  Google Scholar 

  66. Dervisevic M, Dervisevic E, Senel M, Cevik E, Abasiyanik FM (2017) Novel amperometric xanthine biosensors based on REGO-NP (Pt, Pd, and Au) bionanocomposite film. Food Anal Methods 10(5):1252–1263. https://doi.org/10.1007/s12161-016-0665-5

    Article  Google Scholar 

  67. Narang J, Malhotra N, Singhal C, Pundir CS (2017) Evaluation of freshness of fishes using MWCNT/TiO2 Nanobiocomposites based biosensor. Food Anal Methods 10(2):522–528. https://doi.org/10.1007/s12161-016-0594-3

    Article  Google Scholar 

  68. Anik U, Çubukçu M (2012) Application of bismuth(III)-entrapped XO biosensing system for xanthine determination in beverages. Food Anal Methods 5(4):716–722. https://doi.org/10.1007/s12161-011-9304-3

    Article  Google Scholar 

  69. Zhang X, Dong J, Qian X, Zhao C (2015) One-pot synthesis of an RGO/ZnO nanocomposite on zinc foil and its excellent performance for the nonenzymatic sensing of xanthine. Sensors Actuators B Chem 221:528–536. https://doi.org/10.1016/j.snb.2015.06.039

    Article  CAS  Google Scholar 

  70. Wang Z, Ma B, Shen C, Lai O-M, Tan C-P, Cheong L-Z (2019) Electrochemical biosensing of chilled seafood freshness by xanthine oxidase immobilized on copper-based metal–organic framework nanofiber film. Food Anal Methods. https://doi.org/10.1007/s12161-019-01513-8

    Article  Google Scholar 

  71. Ghanbari K, Nejabati F (2019) Construction of novel nonenzymatic xanthine biosensor based on reduced graphene oxide/polypyrrole/CdO nanocomposite for fish meat freshness detection. J Food Meas Charact 13(2):1411–1422. https://doi.org/10.1007/s11694-019-00057-z

    Article  Google Scholar 

  72. Saadaoui M, Sánchez A, Díez P, Raouafi N, Pingarrón JM, Villalonga R (2016) Amperometric xanthine biosensors using glassy carbon electrodes modified with electrografted porous silica nanomaterials loaded with xanthine oxidase. Microchim Acta 183(6):2023–2030. https://doi.org/10.1007/s00604-016-1840-5

    Article  CAS  Google Scholar 

  73. Torres AC, Ghica ME, Brett CM (2013) Design of a new hypoxanthine biosensor: xanthine oxidase modified carbon film and multi-walled carbon nanotube/carbon film electrodes. Anal Bioanal Chem 405(11):3813–3822. https://doi.org/10.1007/s00216-012-6631-1

    Article  CAS  PubMed  Google Scholar 

  74. Pundir CS, Devi R (2014) Biosensing methods for xanthine determination: a review. Enzym Microb Technol 57:55–62. https://doi.org/10.1016/j.enzmictec.2013.12.006

    Article  CAS  Google Scholar 

  75. Li Z, Wang L, Li Y, Feng Y, Feng W (2019) Carbon-based functional nanomaterials: preparation, properties and applications. Compos Sci Technol. https://doi.org/10.1016/j.compscitech.2019.04.028

    Article  CAS  Google Scholar 

  76. Morin J-F (2014) From rods to sheets in a flash. Nat Chem 6:463. https://doi.org/10.1038/nchem.1962

    Article  CAS  PubMed  Google Scholar 

  77. Dervisevic M, Çevik E, Durmuş Z, Şenel M (2016) Electrochemical sensing platforms based on the different carbon derivative incorporated interface. Mater Sci Eng C 58:790–798. https://doi.org/10.1016/j.msec.2015.09.052

    Article  CAS  Google Scholar 

  78. Baptista FR, Belhout SA, Giordani S, Quinn SJ (2015) Recent developments in carbon nanomaterial sensors. Chem Soc Rev 44(13):4433–4453. https://doi.org/10.1039/C4CS00379A

    Article  CAS  PubMed  Google Scholar 

  79. Cardenas-Benitez B, Djordjevic I, Hosseini S, Madou MJ, Martinez-Chapa SO (2018) Review—covalent functionalization of carbon nanomaterials for biosensor applications: An update. J Electrochem Soc 165(3):B103–B117. https://doi.org/10.1149/2.0381803jes

    Article  CAS  Google Scholar 

  80. Basiuk EV, Basiuk VA (2015) Solvent-free functionalization of carbon nanomaterials. In: Basiuk VA, Basiuk EV (eds) Green processes for nanotechnology: from inorganic to bioinspired nanomaterials. Springer International Publishing, Cham, pp 163–205. https://doi.org/10.1007/978-3-319-15461-9_6

    Chapter  Google Scholar 

  81. Zhu Y, Murali S, Cai W, Li X, Suk JW, Potts JR, Ruoff RS (2010) Graphene and graphene oxide: synthesis, properties, and applications. Adv Mater 22(35):3906–3924. https://doi.org/10.1002/adma.201001068

    Article  CAS  Google Scholar 

  82. Das SK, Kc CB, Ohkubo K, Yamada Y, Fukuzumi S, D'Souza F (2013) Decorating single layer graphene oxide with electron donor and acceptor molecules for the study of photoinduced electron transfer. Chem Commun 49(20):2013–2015. https://doi.org/10.1039/C3CC38898K

    Article  CAS  Google Scholar 

  83. Neklyudov VV, Khafizov NR, Sedov IA, Dimiev AM (2017) New insights into the solubility of graphene oxide in water and alcohols. Phys Chem Chem Phys 19(26):17000–17008. https://doi.org/10.1039/C7CP02303K

    Article  CAS  PubMed  Google Scholar 

  84. Kuila T, Bose S, Mishra AK, Khanra P, Kim NH, Lee JH (2012) Chemical functionalization of graphene and its applications. Prog Mater Sci 57(7):1061–1105. https://doi.org/10.1016/j.pmatsci.2012.03.002

    Article  CAS  Google Scholar 

  85. Van Eekelen M (1936) On the amount of ascorbic acid in blood and urine. The daily human requirements for ascorbic acid. Biochem J 30(12):2291–2298. https://doi.org/10.1042/bj0302291

    Article  PubMed  PubMed Central  Google Scholar 

  86. Janas D (2018) Towards monochiral carbon nanotubes: a review of progress in the sorting of single-walled carbon nanotubes. Mater Chem Front 2(1):36–63. https://doi.org/10.1039/C7QM00427C

    Article  CAS  Google Scholar 

  87. Hodge SA, Bayazit MK, Coleman KS, Shaffer MSP (2012) Unweaving the rainbow: a review of the relationship between single-walled carbon nanotube molecular structures and their chemical reactivity. Chem Soc Rev 41(12):4409–4429. https://doi.org/10.1039/C2CS15334C

    Article  CAS  PubMed  Google Scholar 

  88. Tasis D, Tagmatarchis N, Bianco A, Prato M (2006) Chemistry of carbon nanotubes. Chem Rev 106(3):1105–1136. https://doi.org/10.1021/cr050569o

    Article  CAS  PubMed  Google Scholar 

  89. Zhou Y, Fang Y, Ramasamy RP (2019) Non-covalent functionalization of carbon nanotubes for electrochemical biosensor development. Sensors 19(2):392. https://doi.org/10.3390/s19020392

    Article  CAS  Google Scholar 

  90. Dervisevic M, Dervisevic E, Şenel M (2018) Design of amperometric urea biosensor based on self-assembled monolayer of cystamine/PAMAM-grafted MWCNT/Urease. Sensors Actuators B Chem 254:93–101. https://doi.org/10.1016/j.snb.2017.06.161

    Article  CAS  Google Scholar 

  91. Dervisevic E, Dervisevic M, Nyangwebah JN, Şenel M (2017) Development of novel amperometric urea biosensor based on Fc-PAMAM and MWCNT bio-nanocomposite film. Sensors Actuators B Chem 246:920–926. https://doi.org/10.1016/j.snb.2017.02.122

    Article  CAS  Google Scholar 

  92. Arora B, Bhatia R, Attri P (2018) 28 - bionanocomposites: green materials for a sustainable future. In: Hussain CM, Mishra AK (eds) New Polymer Nanocomposites for Environmental Remediation. Elsevier, Amsterdam, pp 699–712. https://doi.org/10.1016/B978-0-12-811033-1.00027-5

    Chapter  Google Scholar 

  93. Numata K, Kaplan DL (2011) 20 - biologically derived scaffolds. In: Farrar D (ed) Advanced wound repair therapies. Woodhead Publishing, Sawston-Cambridge, pp 524–551. https://doi.org/10.1533/9780857093301.4.524

    Chapter  Google Scholar 

  94. Tiwari A, Tiwari A, Singh RP (2012) Bionanocomposite Matrices in Electrochemical Biosensors. In: Tiwari A, Ramalingam M, Kobayashi H, Turner APF (eds) Biomedical Materials and Diagnostic Devices. Scrivener Publishing, Beverly, pp 303–321 https://doi.org/10.1002/9781118523025.ch10

    Chapter  Google Scholar 

  95. Siqueira G, Bras J, Dufresne A (2010) Cellulosic bionanocomposites: a review of preparation, properties and applications. Polymers 2(4):728–765

    Article  CAS  Google Scholar 

  96. Azizi S, Ahmad MB, Hussein MZ, Ibrahim NA, Namvar F (2014) Preparation and properties of poly(vinyl alcohol)/chitosan blend bionanocomposites reinforced with cellulose nanocrystals/ZnO-ag multifunctional nanosized filler. Int J Nanomedicine 9:1909–1917. https://doi.org/10.2147/IJN.S60274

    Article  PubMed  PubMed Central  Google Scholar 

  97. Sanaeifar N, Rabiee M, Abdolrahim M, Tahriri M, Vashaee D, Tayebi L (2017) A novel electrochemical biosensor based on Fe3O4 nanoparticles-polyvinyl alcohol composite for sensitive detection of glucose. Anal Biochem 519:19–26. https://doi.org/10.1016/j.ab.2016.12.006

    Article  CAS  PubMed  Google Scholar 

  98. Unal B, Yalcinkaya EE, Gumustas S, Sonmez B, Ozkan M, Balcan M, Demirkol DO, Timur S (2017) Polyglycolide–montmorillonite as a novel nanocomposite platform for biosensing applications. New J Chem 41(17):9371–9379. https://doi.org/10.1039/C7NJ01751K

    Article  CAS  Google Scholar 

  99. Katz E, Willner I, Wang J (2004) Electroanalytical and bioelectroanalytical systems based on metal and semiconductor nanoparticles. Electroanalysis 16(1–2):19–44. https://doi.org/10.1002/elan.200302930

    Article  CAS  Google Scholar 

  100. George JM, Antony A, Mathew B (2018) Metal oxide nanoparticles in electrochemical sensing and biosensing: a review. Microchim Acta 185(7):358. https://doi.org/10.1007/s00604-018-2894-3

    Article  CAS  Google Scholar 

  101. Li Y, Tan B, Wu Y (2008) Mesoporous Co3O4 nanowire arrays for lithium ion batteries with high capacity and rate capability. Nano Lett 8(1):265–270. https://doi.org/10.1021/nl0725906

    Article  CAS  PubMed  Google Scholar 

  102. Kreno LE, Leong K, Farha OK, Allendorf M, Van Duyne RP, Hupp JT (2012) Metal–organic framework materials as chemical sensors. Chem Rev 112(2):1105–1125. https://doi.org/10.1021/cr200324t

    Article  CAS  PubMed  Google Scholar 

  103. Furukawa H, Cordova KE, O’Keeffe M, Yaghi OM (2013) The chemistry and applications of metal-organic frameworks. Science 341(6149):1230444. https://doi.org/10.1126/science.1230444

    Article  CAS  PubMed  Google Scholar 

  104. Xu Y, Li Q, Xue H, Pang H (2018) Metal-organic frameworks for direct electrochemical applications. Coord Chem Rev 376:292–318. https://doi.org/10.1016/j.ccr.2018.08.010

    Article  CAS  Google Scholar 

  105. Fang X, Zong B, Mao S (2018) Metal–organic framework-based sensors for environmental contaminant sensing. Nano-Micro Lett 10(4):64. https://doi.org/10.1007/s40820-018-0218-0

    Article  CAS  Google Scholar 

  106. Sadki S, Schottland P, Brodie N, Sabouraud G (2000) The mechanisms of pyrrole electropolymerization. Chem Soc Rev 29(5):283–293. https://doi.org/10.1039/A807124A

    Article  Google Scholar 

  107. Teng Y, Liu F, Kan X (2017) Voltammetric dopamine sensor based on three-dimensional electrosynthesized molecularly imprinted polymers and polypyrrole nanowires. Microchim Acta 184(8):2515–2522. https://doi.org/10.1007/s00604-017-2243-y

    Article  CAS  Google Scholar 

  108. Beluomini MA, da Silva JL, Stradiotto NR (2018) Amperometric determination of myo-inositol by using a glassy carbon electrode modified with molecularly imprinted polypyrrole, reduced graphene oxide and nickel nanoparticles. Microchim Acta 185(3):170. https://doi.org/10.1007/s00604-018-2710-0

    Article  CAS  Google Scholar 

  109. Dervisevic M, Senel M, Sagir T, Isik S (2017) Highly sensitive detection of cancer cells with an electrochemical cytosensor based on boronic acid functional polythiophene. Biosens Bioelectron 90:6–12. https://doi.org/10.1016/j.bios.2016.10.100

    Article  CAS  PubMed  Google Scholar 

  110. Li Y, Yin S, Lu Y, Zhou H, Jiang H, Niu N, Huang H, Zhang L, Lo KK-W, Yu C (2017) Choline sensing based on in situ polymerization of aniline on the surface of upconverting nanoparticles. J Mater Chem B 5(38):7861–7865. https://doi.org/10.1039/C7TB01589E

    Article  CAS  Google Scholar 

  111. Kozlovskaja S, Baltrūnas G, Malinauskas A (2009) Response of hydrogen peroxide, ascorbic acid, and paracetamol at a platinum electrode coated with microfilms of polyaniline. Microchim Acta 166(3):229–234. https://doi.org/10.1007/s00604-009-0185-8

    Article  CAS  Google Scholar 

  112. Dervisevic M, Dervisevic E, Senel M, Cevik E, Yildiz HB, Camurlu P (2017) Construction of ferrocene modified conducting polymer based amperometric urea biosensor. Enzym Microb Technol 102:53–59. https://doi.org/10.1016/j.enzmictec.2017.04.002

    Article  CAS  Google Scholar 

  113. Dervisevic M, Çevik E, Şenel M, Nergiz C, Abasiyanik MF (2016) Amperometric cholesterol biosensor based on reconstituted cholesterol oxidase on boronic acid functional conducting polymers. J Electroanal Chem 776:18–24. https://doi.org/10.1016/j.jelechem.2016.06.033

    Article  CAS  Google Scholar 

  114. Greenlee L, Handler P (1964) Xanthine oxidase. VI. Influence of pH on substrate specificity. J Biol Chem 239:1090–1095

    CAS  PubMed  Google Scholar 

  115. Krenitsky TA, Neil SM, Elion GB, Hitchings GH (1972) A comparison of the specificities of xanthine oxidase and aldehyde oxidase. Arch Biochem Biophys 150(2):585–599. https://doi.org/10.1016/0003-9861(72)90078-1

    Article  CAS  PubMed  Google Scholar 

  116. Shi W, Fan H, Ai S, Zhu L (2015) Pd nanoparticles supported on nitrogen, sulfur-doped three-dimensional hierarchical nanostructures as peroxidase-like catalysts for colorimetric detection of xanthine. RSC Adv 5(41):32183–32190. https://doi.org/10.1039/C5RA02312B

    Article  CAS  Google Scholar 

  117. Qiao F, Wang J, Ai S, Li L (2015) As a new peroxidase mimetics: the synthesis of selenium doped graphitic carbon nitride nanosheets and applications on colorimetric detection of H2O2 and xanthine. Sensors Actuators B Chem 216:418–427. https://doi.org/10.1016/j.snb.2015.04.074

    Article  CAS  Google Scholar 

  118. Li Z, Liu X, Liang X-H, Zhong J, Guo L, Fu F (2019) Colorimetric determination of xanthine in urine based on peroxidase-like activity of WO3 nanosheets. Talanta 204:278–284. https://doi.org/10.1016/j.talanta.2019.06.003

    Article  CAS  PubMed  Google Scholar 

  119. Li N, Than A, Wang X, Xu S, Sun L, Duan H, Xu C, Chen P (2016) Ultrasensitive profiling of metabolites using tyramine-functionalized graphene quantum dots. ACS Nano 10(3):3622–3629. https://doi.org/10.1021/acsnano.5b08103

    Article  CAS  PubMed  Google Scholar 

  120. Cui M, Zhou J, Zhao Y, Song Q (2017) Facile synthesis of iridium nanoparticles with superior peroxidase-like activity for colorimetric determination of H2O2 and xanthine. Sensors Actuators B Chem 243:203–210. https://doi.org/10.1016/j.snb.2016.11.145

    Article  CAS  Google Scholar 

  121. Patil SB, Dheeman DS, Al-Rawhani MA, Velugotla S, Nagy B, Cheah BC, Grant JP, Accarino C, Barrett MP, Cumming DRS (2018) An integrated portable system for single chip simultaneous measurement of multiple disease associated metabolites. Biosens Bioelectron 122:88–94. https://doi.org/10.1016/j.bios.2018.09.013

    Article  CAS  PubMed  Google Scholar 

  122. Zhao Y, Liu H, Jiang Y, Song S, Zhao Y, Zhang C, Xin J, Yang B, Lin Q (2018) Detection of various biomarkers and enzymes via a nanocluster-based fluorescence turn-on sensing platform. Anal Chem 90(24):14578–14585. https://doi.org/10.1021/acs.analchem.8b04691

    Article  CAS  PubMed  Google Scholar 

  123. Ma Y, Cen Y, Sohail M, Xu G, Wei F, Shi M, Xu X, Song Y, Ma Y, Hu Q (2017) A ratiometric fluorescence universal platform based on N, Cu codoped carbon dots to detect metabolites participating in H2O2-generation reactions. ACS Appl Mater Interfaces 9(38):33011–33019. https://doi.org/10.1021/acsami.7b10548

    Article  CAS  PubMed  Google Scholar 

  124. Carrillo-Carrión C, Armenta S, Simonet BM, Valcárcel M, Lendl B (2011) Determination of pyrimidine and purine bases by reversed-phase capillary liquid chromatography with at-line surface-enhanced Raman spectroscopic detection employing a novel SERS substrate based on ZnS/CdSe silver–quantum dots. Anal Chem 83(24):9391–9398. https://doi.org/10.1021/ac201821q

    Article  CAS  PubMed  Google Scholar 

  125. Pu W, Zhao H, Wu L, Zhao X (2015) A colorimetric method for the determination of xanthine based on the aggregation of gold nanoparticles. Microchim Acta 182(1):395–400. https://doi.org/10.1007/s00604-014-1342-2

    Article  CAS  Google Scholar 

  126. Yan Z, Niu Q, Mou M, Wu Y, Liu X, Liao S (2017) A novel colorimetric method based on copper nanoclusters with intrinsic peroxidase-like for detecting xanthine in serum samples. J Nanopart Res 19(7):235. https://doi.org/10.1007/s11051-017-3904-9

    Article  CAS  Google Scholar 

  127. Salinas-Castillo A, Pastor I, Mallavia R, Mateo CR (2008) Immobilization of a trienzymatic system in a sol–gel matrix: a new fluorescent biosensor for xanthine. Biosens Bioelectron 24(4):1053–1056. https://doi.org/10.1016/j.bios.2008.07.052

    Article  CAS  Google Scholar 

  128. Hu S, Yan J, Huang X, Guo L, Lin Z, Luo F, Qiu B, Wong K-Y, Chen G (2018) A sensing platform for hypoxanthine detection based on amino-functionalized metal organic framework nanosheet with peroxidase mimic and fluorescence properties. Sensors Actuators B Chem 267:312–319. https://doi.org/10.1016/j.snb.2018.04.055

    Article  CAS  Google Scholar 

  129. Zhang Z, Kwok RTK, Yu Y, Tang BZ, Ng KM (2018) Aggregation-induced emission luminogen-based fluorescence detection of hypoxanthine: a probe for biomedical diagnosis of energy metabolism-related conditions. J Mater Chem B 6(28):4575–4578. https://doi.org/10.1039/C8TB00803E

    Article  CAS  Google Scholar 

  130. Menon S, Girish Kumar K (2017) A fluorescent biosensor for the determination of xanthine in tea and coffee via enzymatically generated uric acid. LWT 86:8–13. https://doi.org/10.1016/j.lwt.2017.07.031

    Article  CAS  Google Scholar 

  131. Chen Z, Lin Y, Ma X, Guo L, Qiu B, Chen G, Lin Z (2017) Multicolor biosensor for fish freshness assessment with the naked eye. Sensors Actuators B Chem 252:201–208. https://doi.org/10.1016/j.snb.2017.06.007

    Article  CAS  Google Scholar 

  132. Cai S, Xiao W, Duan H, Liang X, Wang C, Yang R, Li Y (2018) Single-layer Rh nanosheets with ultrahigh peroxidase-like activity for colorimetric biosensing. Nano Res 11(12):6304–6315. https://doi.org/10.1007/s12274-018-2154-1

    Article  CAS  Google Scholar 

  133. Xue G, Yu W, Yutong L, Qiang Z, Xiuying L, Yiwei T, Jianrong L (2019) Construction of a novel xanthine biosensor using zinc oxide (ZnO) and the biotemplate method for detection of fish freshness. Anal Methods 11(8):1021–1026. https://doi.org/10.1039/C8AY02554A

    Article  CAS  Google Scholar 

  134. Kant R, Tabassum R, Gupta BD (2018) Xanthine oxidase functionalized Ta2O5 nanostructures as a novel scaffold for highly sensitive SPR based fiber optic xanthine sensor. Biosens Bioelectron 99:637–645. https://doi.org/10.1016/j.bios.2017.08.040

    Article  CAS  PubMed  Google Scholar 

  135. Ligler FS (2008) Fluorescence-based optical biosensors. In: Pavesi L, Fauchet PM (eds) Biophotonics. Springer Berlin Heidelberg, Berlin, Heidelberg, pp 199–215. https://doi.org/10.1007/978-3-540-76782-4_11

    Chapter  Google Scholar 

  136. Jung HS, Verwilst P, Kim WY, Kim JS (2016) Fluorescent and colorimetric sensors for the detection of humidity or water content. Chem Soc Rev 45(5):1242–1256. https://doi.org/10.1039/C5CS00494B

    Article  CAS  PubMed  Google Scholar 

  137. Wegner KD, Hildebrandt N (2015) Quantum dots: bright and versatile in vitro and in vivo fluorescence imaging biosensors. Chem Soc Rev 44(14):4792–4834. https://doi.org/10.1039/C4CS00532E

    Article  CAS  PubMed  Google Scholar 

  138. Han M, Gao X, Su JZ, Nie S (2001) Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules. Nat Biotechnol 19(7):631–635. https://doi.org/10.1038/90228

    Article  CAS  PubMed  Google Scholar 

  139. Altintas Z, Davis F, Scheller FW (2018) Applications of quantum dots in biosensors and diagnostics. In: Altintas Z (ed) Biosensors and nanotechnology. Wiley, New York, pp 185–199. https://doi.org/10.1002/9781119065036.ch9

    Chapter  Google Scholar 

  140. Sun H, Wu L, Wei W, Qu X (2013) Recent advances in graphene quantum dots for sensing. Mater Today 16(11):433–442. https://doi.org/10.1016/j.mattod.2013.10.020

    Article  CAS  Google Scholar 

  141. Xu H, Li Q, Wang L, He Y, Shi J, Tang B, Fan C (2014) Nanoscale optical probes for cellular imaging. Chem Soc Rev 43(8):2650–2661. https://doi.org/10.1039/C3CS60309A

    Article  CAS  PubMed  Google Scholar 

  142. Li L, Wu G, Yang G, Peng J, Zhao J, Zhu J-J (2013) Focusing on luminescent graphene quantum dots: current status and future perspectives. Nanoscale 5(10):4015–4039. https://doi.org/10.1039/C3NR33849E

    Article  CAS  PubMed  Google Scholar 

  143. Sk MA, Ananthanarayanan A, Huang L, Lim KH, Chen P (2014) Revealing the tunable photoluminescence properties of graphene quantum dots. J Mater Chem C 2(34):6954–6960. https://doi.org/10.1039/C4TC01191K

    Article  CAS  Google Scholar 

  144. Sun H, Zhao A, Gao N, Li K, Ren J, Qu X (2015) Deciphering a nanocarbon-based artificial peroxidase: chemical identification of the catalytically active and substrate-binding sites on graphene quantum dots. Angew Chem Int Ed 54(24):7176–7180. https://doi.org/10.1002/anie.201500626

    Article  CAS  Google Scholar 

  145. Park KM, Shin YM, Joung YK, Shin H, Park KD (2010) In situ forming hydrogels based on tyramine conjugated 4-arm-PPO-PEO via enzymatic oxidative reaction. Biomacromolecules 11(3):706–712. https://doi.org/10.1021/bm9012875

    Article  CAS  PubMed  Google Scholar 

  146. Barbariga M, Curnis F, Andolfo A, Zanardi A, Lazzaro M, Conti A, Magnani G, Volonte MA, Ferrari L, Comi G, Corti A, Alessio M (2015) Ceruloplasmin functional changes in Parkinson's disease-cerebrospinal fluid. Mol Neurodegener 10:59. https://doi.org/10.1186/s13024-015-0055-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Yuen JW, Benzie IF (2003) Hydrogen peroxide in urine as a potential biomarker of whole body oxidative stress. Free Radic Res 37(11):1209–1213

    Article  CAS  Google Scholar 

  148. Forman HJ, Bernardo A, Davies KJA (2016) What is the concentration of hydrogen peroxide in blood and plasma? Arch Biochem Biophys 603:48–53. https://doi.org/10.1016/j.abb.2016.05.005

    Article  CAS  PubMed  Google Scholar 

  149. Xu X, Ray R, Gu Y, Ploehn HJ, Gearheart L, Raker K, Scrivens WA (2004) Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. J Am Chem Soc 126(40):12736–12737. https://doi.org/10.1021/ja040082h

    Article  CAS  PubMed  Google Scholar 

  150. Jhonsi MA (2018) Carbon quantum dots for bioimaging. In: Ghamsari MS (ed) State of the Art in Nano-bioimaging. IntechOpen, London, pp 35–53 https://doi.org/10.5772/intechopen.72723

    Google Scholar 

  151. Harish Kumar K, Venkatesh N, Bhowmik H, Kuila A (2018) Metallic Nanoparticle: A Review. Biomed J Sci Technol Res 4(2):11. https://doi.org/10.26717/BJSTR.2018.04.001011

    Article  Google Scholar 

  152. Chawla S (2016) Nanoparticles and fluorescence. In: Aliofkhazraei M (ed) Handbook of nanoparticles. Springer International Publishing, Cham, pp 961–983. https://doi.org/10.1007/978-3-319-15338-4_43

    Chapter  Google Scholar 

  153. Chen P-C, Roy P, Chen L-Y, Ravindranath R, Chang H-T (2014) Gold and silver nanomaterial-based optical sensing systems. Part Part Syst Charact 31(9):917–942. https://doi.org/10.1002/ppsc.201400043

    Article  CAS  Google Scholar 

  154. Ghosh SK, Pal T (2007) Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: from theory to applications. Chem Rev 107(11):4797–4862. https://doi.org/10.1021/cr0680282

    Article  CAS  PubMed  Google Scholar 

  155. Khlebtsov B, Tuchina E, Tuchin V, Khlebtsov N (2015) Multifunctional au nanoclusters for targeted bioimaging and enhanced photodynamic inactivation of Staphylococcus aureus. RSC Adv 5(76):61639–61649. https://doi.org/10.1039/C5RA11713E

    Article  CAS  Google Scholar 

  156. Dou X, Yuan X, Yu Y, Luo Z, Yao Q, Leong DT, Xie J (2014) Lighting up thiolated Au@Ag nanoclusters via aggregation-induced emission. Nanoscale 6(1):157–161. https://doi.org/10.1039/C3NR04490D

    Article  CAS  PubMed  Google Scholar 

  157. Zhang P, Yang XX, Wang Y, Zhao NW, Xiong ZH, Huang CZ (2014) Rapid synthesis of highly luminescent and stable Au20 nanoclusters for active tumor-targeted imaging in vitro and in vivo. Nanoscale 6(4):2261–2269. https://doi.org/10.1039/C3NR05269A

    Article  CAS  PubMed  Google Scholar 

  158. Ruiyi L, Huiying W, Xiaoyan Z, Xiaoqing L, Xiulan S, Zaijun L (2016) d-Penicillamine and bovine serum albumin co-stabilized copper nanoclusters with remarkably enhanced fluorescence intensity and photostability for ultrasensitive detection of Ag+. New J Chem 40(1):732–739. https://doi.org/10.1039/C5NJ02615F

    Article  CAS  Google Scholar 

  159. Ping J, Fan Z, Sindoro M, Ying Y, Zhang H (2017) Recent advances in sensing applications of two-dimensional transition metal dichalcogenide nanosheets and their composites. Adv Funct Mater 27(19):1605817. https://doi.org/10.1002/adfm.201605817

    Article  CAS  Google Scholar 

  160. Choleva TG, Gatselou VA, Tsogas GZ, Giokas DL (2017) Intrinsic peroxidase-like activity of rhodium nanoparticles, and their application to the colorimetric determination of hydrogen peroxide and glucose. Microchim Acta 185(1):22. https://doi.org/10.1007/s00604-017-2582-8

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Muamer Dervisevic or Mehmet Şenel.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dervisevic, M., Dervisevic, E. & Şenel, M. Recent progress in nanomaterial-based electrochemical and optical sensors for hypoxanthine and xanthine. A review. Microchim Acta 186, 749 (2019). https://doi.org/10.1007/s00604-019-3842-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-019-3842-6

Keywords

Navigation