Skip to main content
Log in

Fluorometric aptamer based assay for ochratoxin A based on the use of exonuclease III

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

This study describes an aptamer based assay for the mycotoxin ochratoxin A (OTA). The method is based on the use of an OTA-specific aptamer, exonuclease (Exo) III, SYBR Gold as a fluorescent probe, and a complementary strand that specifically combines with the aptamer. In the presence of OTA, the aptamer and OTA hybridize, thereby resulting in the formation of ssDNA, which is not digested by Exo III. Intense fluorescence is observed after addition of SYBR Gold (best measured at excitation/emission wavelengths of 495/540 nm). Fluorescence increases linearly with the log of the OTA concentration in the range from 8 to 1000 ng·mL−1. The detection limit is 4.7 ng·mL−1. The assay was applied to the determination of OTA in diluted [2%(v/v)] red wine, and recoveries and RSDs ranged between 93.5% and 113.8%, and between 3.2% and 5.7%, respectively.

In the presence of ochratoxin A (OTA), specific combinations of aptamer and OTA may occur and result in DNA double strands being untied, which avoids being digested by Exo III. Intense fluorescence is observed after SYBR Gold addition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Zhang C, Tang J, Huang L, Li Y, Tang D (2017) In-situ amplified voltammetric immunoassay for ochratoxin a by coupling a platinum nanocatalyst based enhancement to a redox cycling process promoted by an enzyme mimic. Microchim Acta 184(7):2445–2453

    Article  CAS  Google Scholar 

  2. Jodra A, Hervas M, Angel Lopez M, Escarpa A (2015) Disposable electrochemical magneto immunosensor for simultaneous simplified calibration and determination of Ochratoxin a in coffee samples. Sensor Actuators B Chem 221:777–783

    Article  CAS  Google Scholar 

  3. Wang B, Wu Y, Chen Y, Weng B, Xu L, Li C (2016) A highly sensitive aptasensor for OTA detection based on hybridization chain reaction and fluorescent perylene probe. Biosens Bioelectron 81:125–130

    Article  CAS  PubMed  Google Scholar 

  4. Guo ZJ, Ren JT, Wang JH, Wang EK (2011) Single-walled carbon nanotubes based quenching of free FAM-aptamer for selective determination of ochratoxin a. Talanta 85(5):2517–2521

    Article  CAS  PubMed  Google Scholar 

  5. Monaci L, Palmisano F (2004) Determination of ochratoxin a in foods: state-of-the-art and analytical challenges. Anal Bioanal Chem 378(1):96–103

    Article  CAS  PubMed  Google Scholar 

  6. Pittet A, Royer D (2002) Rapid, low cost thin-layer chromatographic screening method for the detection of ochratoxin a in green coffee at a control level of 10 mu g/kg. J Agric Food Chem 50(2):243–247

    Article  CAS  PubMed  Google Scholar 

  7. Flajs D, Domijan AM, Ivic D, Cvjetkovic B, Peraica M (2009) ELISA and HPLC analysis of ochratoxin a in red wines of Croatia. Food Control 20(6):590–592

    Article  CAS  Google Scholar 

  8. Zhu WY, Ren C, Nie Y, Xu Y (2016) Quantification of ochratoxin a in Chinese liquors by a new solid-phase extraction clean-up combined with HPLC-FLD method. Food Control 64:37–44

    Article  CAS  Google Scholar 

  9. Dai S, Wu S, Duan N, Chen J, Zheng Z, Wang Z (2017) An ultrasensitive aptasensor for Ochratoxin a using hexagonal core/shell upconversion nanoparticles as luminophores. Biosens Bioelectron 91(Supplement C):538–544

    Article  CAS  PubMed  Google Scholar 

  10. Wu J, Zhu Y, Xue F, Mei Z, Yao L, Wang X, Zheng L, Liu J, Liu G, Peng C, Chen W (2014) Recent trends in SELEX technique and its application to food safety monitoring. Microchim Acta 181(5–6):479–491

    Article  CAS  Google Scholar 

  11. Abnous K, Danesh NM, Alibolandi M, Ramezani M, Taghdisi SM (2017) Amperometric aptasensor for ochratoxin a based on the use of a gold electrode modified with aptamer, complementary DNA, SWCNTs and the redox marker methylene blue. Microchim Acta 184(4):1151–1159

    Article  CAS  Google Scholar 

  12. Cetin AE, Coskun AF, Galarreta BC, Huang M, Herman D, Ozcan A, Altug H (2014) Handheld high-throughput plasmonic biosensor using computational on-chip imaging. Light-Sci Appl 3:e122

    Article  CAS  Google Scholar 

  13. Taghdisi SM, Danesh NM, Nameghi MA, Ramezani M, Abnous K (2016) A label-free fluorescent aptasensor for selective and sensitive detection of streptomycin in milk and blood serum. Food Chem 203:145–149

    Article  CAS  PubMed  Google Scholar 

  14. Roushani M, Shahdost-fard F (2015) A novel ultrasensitive aptasensor based on silver nanoparticles measured via enhanced voltammetric response of electrochemical reduction of riboflavin as redox probe for cocaine detection. Sensors Actuators B Chem 207:764–771

    Article  CAS  Google Scholar 

  15. Zhang D, Ma F, Zhang Q, C-y Z (2017) Highly sensitive detection of epidermal growth factor receptor in lung cancer cells by aptamer-based target−/probe-mediated cyclic signal amplification. Chem Commun 53(83):11496–11499

    Article  CAS  Google Scholar 

  16. Li N, Tittl A, Yue S, Giessen H, Song C, Ding B, Liu N (2014) DNA-assembled bimetallic plasmonic nanosensors. Light-Sci Appl 3:e226

    Article  Google Scholar 

  17. Liu K-C, Zhang Z-Y, Shan C-X, Feng Z-Q, Li J-S, Song C-L, Bao Y-N, Qi X-H, Dong B (2016) A flexible and superhydrophobic upconversion-luminescence membrane as an ultrasensitive fluorescence sensor for single droplet detection. Light-Sci Appl 5:e16136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lv L, Li D, Liu R, Cui C, Guo Z (2017) Label-free aptasensor for ochratoxin a detection using SYBR gold as a probe. Sensors Actuators B Chem 246:647–652

    Article  CAS  Google Scholar 

  19. Zheng DM, Zou RX, Lou XH (2012) Label-free fluorescent detection of ions, proteins, and small molecules using structure-switching aptamers, SYBR gold, and exonuclease I. Anal Chem 84(8):3554–3560

    Article  CAS  PubMed  Google Scholar 

  20. Vellaisamy K, Li G, Ko C-N, Zhong H-J, Fatima S, Kwan H-Y, Wong C-Y, Kwong W-J, Tan W, Leung C-H, Ma D-L (2018) Cell imaging of dopamine receptor using agonist labeling iridium(III) complex. Chem Sci 9(5):1119–1125

    Article  CAS  PubMed  Google Scholar 

  21. Pino NW, Davis J III, Yu Z, Chan J (2017) NitroxylFluor: a thiol-based fluorescent probe for live-cell imaging of Nitroxyl. J Am Chem Soc 139(51):18476–18479

    Article  CAS  PubMed  Google Scholar 

  22. Liu C, Yang C, Lu L, Wang W, Tan W, Leung C-H, Ma D-L (2017) Luminescent iridium(III) complexes as COX-2-specific imaging agents in cancer cells. Chem Commun 53(19):2822–2825

    Article  CAS  Google Scholar 

  23. Lincoln R, Greene LE, Zhang W, Louisia S, Cosa G (2017) Mitochondria alkylation and cellular trafficking mapped with a lipophilic BODIPY-Acrolein Fluorogenic probe. J Am Chem Soc 139(45):16273–16281

    Article  CAS  PubMed  Google Scholar 

  24. Lu L, Wang M, Liu L-J, Leung C-H, Ma D-L (2015) Label-free luminescent switch-on probe for Ochratoxin a detection using a G-Quadruplex-selective iridium(III) complex. ACS Appl Mater Interfaces 7(15):8313–8318

    Article  CAS  PubMed  Google Scholar 

  25. Lin S, Gao W, Tian Z, Yang C, Lu L, Mergny J-L, Leung C-H, Ma D-L (2015) Luminescence switch-on detection of protein tyrosine kinase-7 using a G-quadruplex-selective probe. Chem Sci 6(7):4284–4290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Yu Q, Gao PL, Zhang KY, Tong X, Yang HR, Liu SJ, Du J, Zhao Q, Huang W (2017) Luminescent gold nanocluster-based sensing platform for accurate H2S detection in vitro and in vivo with improved anti-interference. Light-Sci Appl 6:e17107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ahmed R, Yetisen AK, Yun SH, Butt H (2017) Color-selective holographic retroreflector array for sensing applications. Light-Sci Appl 6:e16214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lutsyk P, Arif R, Hruby J, Bukivskyi A, Vinijchuk O, Shandura M, Yakubovskyi V, Kovtun Y, Rance GA, Fay M, Piryatinski Y, Kachkovsky O, Verbitsky A, Rozhin A (2016) A sensing mechanism for the detection of carbon nanotubes using selective photoluminescent probes based on ionic complexes with organic dyes. Light-Sci Appl 5:e16028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Xu J, Li W, Shen P, Li Y, Li Y, Deng Y, Zheng Q, Liu Y, Ding Z, Li J, Zheng T (2017) Microfluidic fabrication of photonic encoding magnetized silica microspheres for aptamer-based enrichment of Ochratoxin a. Microchim Acta 184(10):3755–3763

    Article  CAS  Google Scholar 

  30. Mahdi M, Mansour B, Afshin M (2016) Competitive immunoassay for Ochratoxin a based on FRET from quantum dot-labeled antibody to rhodamine-coated magnetic silica nanoparticles. Microchim Acta 183(12):3093–3099

    Article  CAS  Google Scholar 

  31. Dai S, Wu S, Duan N, Wang Z (2016) A luminescence resonance energy transfer based aptasensor for the mycotoxin Ochratoxin a using upconversion nanoparticles and gold nanorods. Microchim Acta 183(6):1909–1916

    Article  CAS  Google Scholar 

  32. Wu H, Liu R, Kang X, Liang C, Lv L, Guo Z (2018) Fluorometric aptamer assay for ochratoxin a based on the use of single walled carbon nanohorns and exonuclease III-aided amplification. Microchim Acta 185(1)

  33. Lv X, Zhang Y, Liu G, Du L, Wang S (2017) Aptamer-based fluorescent detection of ochratoxin a by quenching of gold nanoparticles. RSC Adv 7(27):16290–16294

    Article  CAS  Google Scholar 

  34. Lv Z, Chen A, Liu J, Guan Z, Zhou Y, Xu S, Yang S, Li C (2014) A simple and sensitive approach for Ochratoxin a detection using a label-free fluorescent Aptasensor. PLoS One 9(1):e85968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 31460423 and 31360384), the department of Sciences & Technology of Jilin Province (20160520047JH) and the department of education of Jilin Province (2016252).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhijun Guo.

Ethics declarations

The author(s) declare that they have no competing interests.

Electronic supplementary material

ESM 1

(DOC 179 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, R., Wu, H., Lv, L. et al. Fluorometric aptamer based assay for ochratoxin A based on the use of exonuclease III. Microchim Acta 185, 254 (2018). https://doi.org/10.1007/s00604-018-2786-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-018-2786-6

Keywords

Navigation