Skip to main content

Advertisement

Log in

Rock and Gas Outbursts in Copper Mines: Use of Brazilian Tests to Evaluate the Work of Disintegration of Rock Resulting from Stresses Produced by Gas Present in its Porous Structure

  • Original Paper
  • Published:
Rock Mechanics and Rock Engineering Aims and scope Submit manuscript

Abstract

Rock and gas outbursts occur most frequently in coal mining. Gas-induced geodynamic events in dolomite are a new and unexplored phenomenon. In the last time, two outbursts of gas and dolomite have occurred in the Legnica-Głogów Copper Region in southwestern Poland, which is one of the world’s largest copper ore mining regions. Gas-induced geodynamic events are dependent on the co-occurrence of two factors: rock porosity, and the presence of gas under significant pressure in the pores and crevices of the rock. This paper presents a condensed energy balance for the phenomenon of outbursts of dolomites and gases. The quantity of energy depends on the type of transformation taking place during decompression. The work produced enables first the disintegration of the rock, and then its transportation along the mine working space. This paper has focused on the estimation of the energy required to disintegrate the rock. It has been estimated that 0.38 MJ is needed for the size reduction of 1 m3 of ejected mass.

Highlights

  • In the case of a dolomite outburst, the energy is accumulated primarily in the form of compressed gas present in the porous structure of the rock and causes the rock to disintegrate and its transport along the mine working space.

  • Gas decompression during a gas-induced geodynamic phenomena can be between isothermal and adiabatic.

  • Existing disintegration theories: Rittinger’s, Kick’s and Bond’s are based consists chiefly of crushing, compression or abrasion, caused by the action of external factors.

  • Author's theory of disintegration of research on tensile stress and is based on Brazilian tests.

  • The disintegration of 1 m3 of rock requires the production of energy of approximately 0.38 MJ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Abbreviations

\(d [m]\) :

Is the edge of a smaller cube

\(D [m]\) :

Is the edge of the large cube

\({d}_{z} [mm]\) :

Is equivalent diameters

\({d}_{80} \left[\mu m\right]\) :

Is the grain size representing 80% of the population in the product

\({D}_{80} [\mu m]\) :

Is the grain size representing 80% of population in the initial material

\(E [MPa]\) :

Is Young's modulus

\(\kappa [-]\) :

Is the adiabatic index

\(n [-]\) :

Is the number of newly formed cubes with edge \(d\)

\({p}_{i} [{m}^{2}]\) :

Is the mean surface area of a single grain in the i-th class

\({P}_{max} [kN]\) :

Is value of the loading force at the moment of failure of the sample

\({p}_{p} [{m}^{2}]\) :

Is the newly formed surface area of the sample in the Brazilian test

\({p}_{r1} [\frac{{m}^{2}}{{m}^{3}}]\) :

Is the total surface area of grains of size 1–20 mm formed from the disintegration of 1 m3 of rock

\({p}_{0} [MPa]\) :

Is the pore pressure in the rock seam

\({p}_{1} [MPa]\) :

Is the atmospheric pressure in the mine working space

\({p}_{1c} [{m}^{2}]\) :

Is new surface area formed from 1 m3 of rock

\({R}_{r} [MPa]\) :

Is tensile strength

\(S [{m}^{2}]\) :

Is the newly formed surface area

\({u}_{i} [{m}^{3}]\) :

Is the volume contribution of the i-th grain size class in 1 m3 according to the grain size distribution

\({V}_{i} [{m}^{3}]\) :

Is the mean volume of a single grain in the i-th class

\({V}_{0} [{m}^{3}]\) :

Is the volume of gas at pressure \({p}_{0}\)

\(W [\frac{MJ}{{m}^{3}}]\) :

Is the work done by the gas in the course of its decompression

\({W}_{a} [\frac{MJ}{{m}^{3}}]\) :

Is the work done by the gas in adiabatic transformation

\({W}_{b} [J]\) :

Is the work done to destroy the sample in the Brazilian test

\({W}_{B} [\frac{kWh}{Mg}]\) :

Is the work done in disintegrating the rock according to Bond’s theory

\({W}_{D} [\frac{J}{{m}^{3}}]\) :

Is the work required to be done by the gas to disintegrate 1 m3 of rock

\({W}_{i} [\frac{MJ}{{m}^{3}}]\) :

Is the work done by the gas in isothermal transformation

\({W}_{I} [\frac{kWh}{Mg}]\) :

Is the unit work (Bond’s work index)

\({W}_{j} [\frac{J}{{m}^{2}}]\) :

Is the unit work

\({W}_{K} [\frac{MJ}{{m}^{3}}]\) :

Is the work done in disintegrating the rock according to Kick’s theory

\({W}_{R} [J]\) :

Is the work done in disintegrating the rock according to Rittinger’s theory

\({W}_{T}[\frac{MJ}{{m}^{3}}]\) :

Is the work of transportation of the rock

\(\sigma\) :

Is compressive stress [MPa]

References

  • ASTM D3967-08 (2016) Standard Test Method for splitting Tensile Strength of Intact Rock Core Specimens, ASTM Standards, USA

  • Aliabadian Z, Zhao G-F, Russell AR (2019) Failure, crack initiation and the tensile strength of transversely isotropic rock using the Brazilian test. Int J Rock Mech Min Sci 122:104073

    Article  Google Scholar 

  • Austin LG (1973) A commentary on the Kick, Bond and Rittinger laws of grinding. Powder Technol 7(6):315–317

    Article  Google Scholar 

  • Black DJ (2019) Review of coal and gas outburst in Australian underground coal mines. Int J Min Sci Technol 29(6):815–824

    Article  Google Scholar 

  • Bond FC (1952) The third theory of comminution. Trans AIME 193:484–494

    Google Scholar 

  • Butt SD, Frempong PK, Mukherjee C, Upshamm J (2006) Characterization of the permeability and acoustic properties of an outburst-prone sandstone. J Appl Geophys 58:1–12

    Article  Google Scholar 

  • Claesson J, Bohloli B (2002) Brazilian test: stress field and tensile strength of anisotropic rocks using an analytical solution. Int J Rock Mech Min Sci 39:991–1004

    Article  Google Scholar 

  • Cyrul T (1993) Prediction of rock and gas outburst occurrence. Eng Geol 33(3):241–250

    Article  Google Scholar 

  • Feliks J, Filipowicz A (2009) Zastosowanie teorii rozdrabniania do doboru mocy w kruszarce węgla Inżynieria i aparatura chemiczna. WIMiR AGH 4:42–43

    Google Scholar 

  • Foszcz D, Gawenda T, Krawczykowski D (2006) Porównanie rzeczywistego i wyznaczonego teoretycznie zużycia energii dla młyna kulowego. Górnictwo i geoinżynieria, 2006, rok 30, zeszyt 3/1, p79–90

  • Gil H, Świdziński A (1988) Wyrzuty gazów i skał, Politechnika Śląska. Skrypty Uczelniane, Nr 1366, Wyd. II Gliwice

  • Gontarz J, Podgórski J (2014) Wyznaczanie wytrzymałości na rozciąganie betonu i skał metodą “brazylijską” w konfrontacji z zastosowanym kryterium zniszczenia materiału. Budownictwo i Architektura 13(2):191–200

    Article  Google Scholar 

  • Hedlund FH (2012) The extreme carbon dioxide outburst at the Menzengraben potash mine 7 July 1953. Saf Sci 50:537–553

    Article  Google Scholar 

  • Hedlund FH (2013) Past explosive outbursts of entrapped carbon dioxide in salt mines provide a new perspective on the hazards of carbon dioxide. In: The 4th International Conference on Risk Analysis and Crisis Response (RACR2013) August 27–29, 2013, Istanbul, Turkey

  • Jaeger JC, Cook NGW, Zimmerman RW (2007) Fundamentals of Rock Mechanics. 4th edition, Blackwell Publishing, Malden-Oxford-Carlton, USA-UK-Australia, 2007, 475, pp 158–160

  • Kick F (1885) Das Gesetz der Proportionalen Widerstande und Seine Anwendung. Arthur Felix, Leipzig

    Google Scholar 

  • Kozieł K, Topolnicki J, Skoczylas N (2021) The intensity of heat exchange between rock and flowing gas in terms of gas-geodynamic phenomena. Entropy 23(5):556. https://doi.org/10.3390/e23050556

    Article  Google Scholar 

  • Kozieł K, Skoczylas N, Soroko K, Gola S (2020) Gas and dolomite outbursts in ore mines—analysis of the phenomenon and the energy balance. Energies 13(11)

  • Kudasik M, Skoczylas N (2017) Analyzer for measuring gas contained in the pore space of rocks. Meas Sci Technol 28(10):105901

    Article  Google Scholar 

  • Kudasik M, Skoczylas N (2018) Balancing the amount and composition of gas contained in the pore space of cupriferous rocks. Environ Earth Sci 77:135

    Article  Google Scholar 

  • Kudasik M, Pajdak A, Skoczylas N (2018) The validation process of the method of balancing gas contained in the pore space of rocks via rock comminution. Arch Min Sci 63(4):989–1005

    Google Scholar 

  • Lama RD, Vutukuri V (1978) Handbook on Mechanical Properties of Rocks. Testing Techniques and Results – Vol. II. Trans Tech Publications, Clausthal, Germany, 1978, 481, pp 51–54

  • Lama RD, Bodziony J (1998) Management of outburst in underground coal mines. Int J Coal Geol 35(1–4):83–115

    Article  Google Scholar 

  • Litwiniszyn J (1986) Remarks concerning sudden rock-and-gas mass outbursts. Min Sci Technol 3(4):243–253

    Article  Google Scholar 

  • Moran MJ, Shapiro HN, Boettner DD, Bailey MB (2018) Fundamentals of engineering thermodynamics. Wiley, Eighth Edition.

  • Naziemiec Z, Saramak D (2012) The energy-consumption analysis in mineral aggregates crushing processes. Prace Naukowe Instytutu Gornictwa Politechniki Wroclawskiej 134(41):209–220

    Google Scholar 

  • Pajdak A, Kudasik M (2017) Structural and textural characteristic of selected copper-bearing rocks as one of the elements aiding in the assessment of gasogeodynamic hazard. Studia Geotechnica Et Mechanica 39(2):51–59

    Article  Google Scholar 

  • Paterson M, Wong T-f (2005) Experimental Rock Deformation—The Brittle Field. 2nd edition, Springer-Verlag, Berlin – Heidelberg, Germany, 2005, 347 p. 45–57.

  • Rittinger PR (1867) Lehrbuch der Aufbereitungskunde. Ernst and Korn, Berlin

    Google Scholar 

  • Skoczylas N (2012) Laboratory study of the phenomenon of methane and coal outburst. Int J Rock Mech Min Sci 55:102–107

    Article  Google Scholar 

  • Skoczylas N (2014) Estimating gas and rock outburst risk on the basis of knowledge and experience—the expert system based on fuzzy logic. Arch Min Sci 59(1):41–52

    Google Scholar 

  • Thomas A, Filippov LO (1999) Fractures, fractals and breakage energy of mineral particles. Int J Min Process 57(4):285–301

    Article  Google Scholar 

  • Topolnicki J, Wierzbicki M (2016) Transport sedymentacyjny mas powyrzutowych. Prace Instytutu Mechaniki Górotworu PAN, Tom 18(3):67–73

    Google Scholar 

  • Topolnicki J, Wierzbicki M, Skoczylas N (2004) Wyrzuty skalno-gazowe w świetle badań laboratoryjnych i pomiarów kopalnianych. Arch Min Sci 49:99–116

    Google Scholar 

  • Trybalski K, Krawczykowski D (2006) Modelowanie przemysłowego procesu mielenia rudy z wykorzystaniem energetycznych wskaźników oceny. Górnictwo i geoinżynieria, 2006, rok 30, zeszyt 3/1, p. 327–346

  • Tumidajski T, Kasińska-Pilut E, Gawenda T, Naziemiec Z, Pilut R (2010) Badania energochłonności procesu mielenia oraz podatności na rozdrabnianie składników litologicznych polskich rud miedzi. Gospodarka Surowcami Mineralnymi 26(1):61–72

    Google Scholar 

  • Turkiewicz W, Gajosiński S, Nowysz M, Kondratowicz G, Fidos A (2010) Analiza i bieżąca profilaktyka prowadzenia robót górniczych w warunkach możliwości wystąpienia zagrożenia gazowego i zjawisk gazodynamicznych w rejonach udostępnienia złoża rud miedzi, Etap I, Cuprum, Wrocław

  • Wang L, Lu Z, Chen D, Liu Q, Chu P, Shu L, Ullah B (2020) Wen: Safe strategy for coal and gas outburst prevention in deep-and-thick coal seams using a soft rock protective layer mining, Saf Sci 129

  • Warren-Monday J (2016) Gases in Evaporites: Part 1 – Rockbursts and gassy outbursts. Salty Matt

  • Wierzbicki M, Młynarczuk M (2013) Structural aspects of gas and dolomite outburst in Rudna copper mine, Poland. Int J Rock Mech Min Sci 57:113–118

    Article  Google Scholar 

  • Wu S, Ma J, Cheng Y, Xu M, Huang X (2018) Numerical analysis of the flattened Brazilian test: failure process, recommended geometric parameters and loading conditions. Eng Fract Mech 204:288–305

    Article  Google Scholar 

  • WUG (2019) Ocena stanu bezpieczeństwa pracy, ratownictwa górniczego oraz bezpieczeństwa powszechnego w związku z działalnością górniczo-geologiczną w 2019 roku

Download references

Acknowledgements

The work was financed as part of the statutory research of the Strata Mechanics Research Institute of the Polish Academy of Sciences. The research was supported by scientific exchange within the Polish–Czech project CAS-PAN ID PAN-20-22.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norbert Skoczylas.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kozieł, K., Nowakowski, A., Sitek, L. et al. Rock and Gas Outbursts in Copper Mines: Use of Brazilian Tests to Evaluate the Work of Disintegration of Rock Resulting from Stresses Produced by Gas Present in its Porous Structure. Rock Mech Rock Eng 55, 6209–6225 (2022). https://doi.org/10.1007/s00603-022-02955-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00603-022-02955-z

Keywords

Navigation