Skip to main content
Log in

DYNAMIC FRACTURE OF GAS-BEARING COAL SEAM DURING ZONAL DISINTEGRATION

  • ROCK FAILURE
  • Published:
Journal of Mining Science Aims and scope

Abstract

The study focuses on the theory of zonal disintegration in gas-bearing coal seams and on gas-dynamic phenomena in underground structures. The concept of unstable geomechanical behavior of coal seams is conditioned by instability of deformation during micro-cracking and macro-cracking. In the zone of disintegration in a gas-bearing coal seam, occluded methane releases from coal substance. As a result of increasing pressure of free methane, a zone of damaged coal and gas appears deep in the coal seam and can induce such gas-dynamic events as blower, sloughing and outbursting. The obtained values and relations of geomechanical and gas-dynamic parameters agree with the actual practice data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

REFERENCES

  1. Shemyakin, E.I., Fisenko, G.L., Kurlenya, M.V., Oparin, V.N., Reva, V.V., Glushikhin, F.P., Rozenbaum, M.A., Tropp, E.A., and Kuznetsov, Yu.S., Phenomenon of Zonal Disintegration of Rocks around Underground Excavations, DAN SSSR, 1986, vol. 289, no. 5, pp. 1088–1094.

  2. Oparin, V.N., Tapsiev, A.P., Rozenbaum, M.A., Reva, V.N., Badtiev, B.P., Tropp, E.A., and Chanyshev, A.I., Zonal’naya dezintegratsiya gornykh porod i ustoichivost’ podzemnykh vyrabotok (Zonal Disintegration of Rocks and Stability of Underground Openings), Novosibirsk: SO RAN, 2008.

  3. Guzev, M.A. and Makarov, V.V., Deformirovanie i razrushenie sil’no szhatykh porod vokrug vyrabotok (Deformation and Fracture of Surrounding Rocks under High Compression around Underground Excavations), Vladivostok: Dal’nauka, 2007.

  4. Xu-Guang Chen, Qiang-Yong Zhang, Yuan Chyng Wang, Shu-Cai Li, and Han-Peng Wang, In Situ Observation and Model Test on Zonal Disintegration in Deep Tunnels, J. Test. Eval., 2013, vol. 41, no. 6, pp. 1–11.

  5. Adams, G.R. and Jager, A.J., Petroscopic Observation of Rock Fracturing ahead of Stop Face in Deep-Level Gold Mines, J. S. Afr. Inst. Min. Metall., 1980, vol. 80, no. 6, pp. 204–209.

  6. Makarov, V.V., Guzev, M.A., Odintsev, V.N., and Ksendzenko, L.S., Periodical Zonal Character of Damage near the Openings in Highly-Stressed Rock Mass Conditions, J. Rock Mech. Geotech. Eng., 2016, vol. 8, no. 2, pp. 164–169.

  7. Malyshev, Yu.N., Trubetskoy, K.N., and Airuni, A.T.,Fundamental’no-prikladnye metody resheniya problemy metana ugol’nykh plastov (Basic and Applied Methods for Handling the Methane Problem of Coal Seams), Moscow: Akad. gorn. nauk, 2000.

  8. Polevshchikov, G.Ya. and Kiryaeva, T.A., Gas-Dynamic Consequences of Coal-and-Methane Geomaterial Dissociation in Underground Mining,KuzGTU, 2008, no. 4 (68), pp. 6–9.

  9. Polevshchikov, G.Ya. and Plaksin, M.S., Gas-Dynamic Activity of Coal Seams and Zonal Disintegration in Rock Mass during Development Heading, Deep-Level Geomechanics and Geodynamics during Mineral Mining: Int. Confr. Proceedings, Novosibirsk: IGD SO RAN, 2012.

  10. Polevshchikov, G.Ya., Kozyreva, E.N., Shinkevich, M.V., and Leont’ev, E.V., Induced Structuring of Rock Mass under Coal Mining,Gornyi Zhurnal, 2017, no. 4, pp. 19–23.

  11. Guzev, M.A. and Paroshin, A.A., Non-Euclidean Model of the Zonal Disintegration of Rocks around an Underground Working, J. Applied Mechanics and Technical Physics, 2001, vol. 42, no. 1, pp. 131–139.

  12. Reuter, M. Krach, K, Kissling, U, and Veksler, Yu., Zonal Disintegration of Rocks around Breakage Headings, Journal of Mining Science, 2015, vol. 41, no. 2, pp. 237–242.

  13. Kaido, I.I., Development Heading Protection by Pillars in Zonal Disintegration of Rocks, GIAB, 2010, no. 6, pp. 211–217.

  14. Odintesv, V.N., Otryvnoe razrushenie massiva skal’nykh porod (Tensile Fracture of Hard Rock Masses), Moscow: IPKON RAN, 1996.

  15. Xu-Guang Chen, Yuan Chyng Wang, Qiang-Yong Zhang, Shu-Cai Li, and Erling Nordlund, Analogical Model Test and Theoretical Analysis on Zonal Disintegration Based on Filed Monitoring in Deep Tunnel,Eur. J. Env. Civ. Eng., 2013, vol. 17, pp. 33–52.

  16. Qingteng Tang, Wenbing Xie, Xingkai Wang, Zhili Su, and Jinhai Xu, Numerical Study on Zonal Disintegration of Deep Rock Mass Using Three-Dimensional Bonded Block Model, Adv. Civ. Eng., 2019, Article ID 3589417.

  17. Zhou, X. and Qian, Q., Zonal Disintegration Mechanism of the Microcrack-Weakened Surrounding Rock Mass in Deep Circular Tunnel,Journal of Mining Science, 2013, vol. 49, no. 2, pp. 210–219.

  18. Wu Hao, Guo Zhi-Kun, Fang Qin, and Liu Jin-Chun, Mechanism of Zonal Disintegration Phenomenon in Enclosing Rock Mass around Deep Tunnels,J. Cent. South Univ. Technol., 2009, vol. 16, pp. 303–311.

  19. Wang, X., Pan, Y., and Wu, X., A Continuum Grain-Interface-Matrix Model for Slabbing and Zonal Disintegration of the Circular Tunnel Surrounding Rock, J. Min. Sci., 2013, vol. 49, no. 2, pp. 220–232.

  20. Nikitin, L.V. and Odintsev, V.N. A Dilatancy Model of Tensile Macrocracks in Compressed Rock, Fatigue Fract. Eng. Mater. Struct., 1999, vol. 22, no. 11, pp. 1003–1009.

  21. Ksendzenko, L.S. and Losev, A.S., Optimization of Periodicity Parameter Calculation in the Model of Zonal Fracture of Rock Mass,Gorn. Nauki Tekhnol., 2016, no. 2, pp. 43–47.

  22. Khomenko, O.E., Energy-Based Method of Investigation of Zonal Disintegration in Rock Mass, Nauch. Vestn. NGU, 2012, no. 4, pp. 44–54.

  23. Kovalenko, Yu.F., Sidorin, Yu.V., and Ustinov, K.B., Deformation of a Coal Seam with a System of Isolated Gas-Filled Fissures,Journal of Mining Science, 2012, vol. 48, no. 1, pp. 27–38.

  24. Nikitin, L.V. and Odintsev, V.N, Tensile Fracture Mechanics of High-Compressed Gas-Bearing Rocks, Izv. AN SSR. Mekh. Tverd. Tela, 1988, no. 6, pp. 135–144.

  25. Brooks, Z., Fracture Process Zone: Microstructure and Nanomechanics in Quasi-Brittle Materials, Thesis (Ph. D), Massachusetts Institute of Technology, 2013.

  26. Odintsev, V.N., Sudden Outburst of Coal and Gas—Failure of Natural Coal as a Solution of Methane in a Solid Substance, Journal of Mining Science, 1997, vol. 33, no. 6, pp. 508–516.

  27. Alexeev, A.D., Vasilenko, T.A., Gumennik, K.V., Kalugina, N.A., and Fel’dman, E.P., Diffusion–Filtration Model of Methane Escape from a Coal Seam, Technical Physics, vol. 52, no. 4, pp. 456–465.

  28. Khristianovich, S.A. and Kovalenko, Yu.F., Measurement of Gas Pressure in Coal Seams, Journal of Mining Science, 1988, vol. 24, no. 3, pp. 181–199.

  29. Odintsev, V.N. and Shipovskii, I.E., Simulating Explosive Effect on Gas-Dynamic State of Outburst-Hazardous Coal Band, Journal of Mining Science, 2019, vol. 55, no. 4, pp. 556–566.

  30. Bol’shinskii, M.I., Lysikov, B.A., and Kaplyukhin, A.A.,Gazodinamicheskie yavleniya v shakhtakh (Gas-Dynamic Phenomena in Mines), Sevastopol: Veber, 2003.

  31. Kuznetsov, S.V. and Trofimov, V.A., Mechanisms of Piper Gas Emissions from Coal Seams, Journal of Mining Science, 2004, vol. 40, no. 4, pp. 339–344.

  32. Kravchenko, V.I., Otzhim uglya pri razrabotke pologopadayushchikh plastov Donbassa (Sloughing in Mining of Gently Dipping Coal Seams in Donbass), Moscow–Kharkov: Ugletekhizdat, 1951.

  33. Kuznetsov, S.V. and Trofimov, V.A., Fracture Wave in Coal Seam in the Edge Area under Sudden Sloughing, Vzryvnoe delo, 2014, no. 111 (68), pp. 32–48.

  34. Trofimov, V.V and Filippov, Yu.A., Dynamics of Sudden Sloughing in Coal Seam in the Edge Areas, Triggernye effekty v geosistemakh (Trigger Effects in Geostystems), Moscow: GEOS, 2015, pp. 235–242.

  35. Trofimov, V.A., Coal and Gas Outburst. Coal and Gas Outbreak in Mined-Out Void, GIAB, 2011, Special Issue S 1, pp. 391–405.

  36. Polevshchikov, G.Ya., Dynamic Self-Fracture Conditions in Gas-Bearing Materials, GIAB, 1999, no. 1, pp. 221–223.

  37. Fan Chaojun, Li Sheng, Luo Mingkun, Du Wenzhang, Yang Zhenhua Fan Chaojun, Li Sheng, Luo Mingkun, Du Wenzhang, Yang Zhenhua, Coal and Gas Outburst Dynamic System, Int. J. Min. Sci. Technol., 2017, vol. 27, pp. 49–55.

  38. Bulat, A.F. and Dyrda, V.I., Some Problems Connected with Gas-Dynamic Phenomena in Coal in the Context of Nonlinear Nonequilibrium Thermodynamics, Geotekhn. Mekhanika, 2013, no. 108, pp. 3–31.

  39. Guzev, M.A., Odintsev, V.N., and Makarov, V.V., Principles of Geomechanics of Highly Stressed Rock and Rock Massifs,Tunneling Underground Space Technol., 2018, vol. 81, pp. 506–511.

  40. Seryakov, V.M., Mathematical Modeling of Stress–Strain State in Rock Mass during Mining with Backfill, Journal of Mining Science, 2014, vol. 50, no. 5, pp. 847–854.

  41. Trubetskoy, K.N., Ruban, A.D., Viktorov, S.D., Malinnikova, O.N., Odintsev, V.N., Kochanov, A.N., and Uchaev, D.V., Fractal Structure Damage of Coal and Their Predisposition to Gas-Dynamic Fracturing,DAN, 2010, vol. 431, no. 6, pp. 818–821.

  42. Ruban, A.D. and Shchadov, M.I. (Eds.), Podgotovka i razrabotka vysokogazonosnykh plastov (Preparation and Development of Coal Seams with High Gas Content), Moscow: Gornaya kniga, 2010.

  43. Klishin, V.I., Kokoulin, D.I., Kubanychbek, B., and Durnin, M.K., Softening of Coal Seams as a Method of Methane Release Stimulation,Ugol’, 2010, no. 4 (1008), pp. 40–43.

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. N. Odintsev or V. V. Makarov.

Additional information

Translated from Fiziko-Tekhnicheskie Problemy Razrabotki Poleznykh Iskopaemykh, 2020, No. 6, pp. 61–77. https://doi.org/10.15372/FTPRPI20200606.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Odintsev, V.N., Makarov, V.V. DYNAMIC FRACTURE OF GAS-BEARING COAL SEAM DURING ZONAL DISINTEGRATION. J Min Sci 56, 932–946 (2020). https://doi.org/10.1134/S106273912006006X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106273912006006X

Keywords

Navigation