Skip to main content
Log in

A thermostable and inhibitor resistant β-glucosidase from Rasamsonia emersonii for efficient hydrolysis of lignocellulosics biomass

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

The present study reports a highly thermostable β-glucosidase (GH3) from Rasamsonia emersonii that was heterologously expressed in Pichia pastoris. Extracellular β-glucosidase was purified to homogeneity using single step affinity chromatography with molecular weight of ~ 110 kDa. Intriguingly, the purified enzyme displayed high tolerance to inhibitors mainly acetic acid, formic acid, ferulic acid, vanillin and 5-hydroxymethyl furfural at concentrations exceeding those present in acid steam pretreated rice straw slurry used for hydrolysis and subsequent fermentation in 2G ethanol plants. Characteristics of purified β-glucosidase revealed the optimal activity at 80 °C, pH 5.0 and displayed high thermostability over broad range of temperature 50–70 °C with maximum half-life of ~ 60 h at 50 °C, pH 5.0. The putative transglycosylation activity of β-glucosidase was appreciably enhanced in the presence of methanol as an acceptor. Using the transglycosylation ability of β-glucosidase, the generated low cost mixed glucose disaccharides resulted in the increased induction of R. emersonii cellulase under submerged fermentation. Scaling up the recombinant protein production at fermenter level using temporal feeding approach resulted in maximal β-glucosidase titres of 134,660 units/L. Furthermore, a developed custom made enzyme cocktail consisting of cellulase from R. emersonii mutant M36 supplemented with recombinant β-glucosidase resulted in significantly enhanced hydrolysis of pretreated rice straw slurry from IOCL industries (India). Our results suggest multi-faceted β-glucosidase from R. emersonii can overcome obstacles mainly high cost associated enzyme production, inhibitors that impair the sugar yields and thermal inactivation of enzyme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

All data generated and analyzed during this study are included in this article and its supplementary information files.

References

  1. Mankar AR, Pandey A, Modak A, Pant KK (2021) Pretreatment of lignocellulosic biomass: A review on recent advances. Bioresour Technol 334:125235. https://doi.org/10.1016/j.biortech.2021.125235

    Article  CAS  PubMed  Google Scholar 

  2. Igarashi K, Uchihashi T, Koivula A, Wada M, Kimura S, Okamoto T, Penttilä M, Ando T, Samejima M (2011) Traffic jams reduce hydrolytic efficiency of cellulase on cellulose surface. Science (80- ) 333:1279–1282. https://doi.org/10.1126/science.1208386

  3. Barbosa FC, Kendrick E, Brenelli LB, Arruda HS, Pastore GM, Rabelo SC, Damasio A, Franco TT, Leak D, Goldbeck R (2020) Optimization of cello-oligosaccharides production by enzymatic hydrolysis of hydrothermally pretreated sugarcane straw using cellulolytic and oxidative enzymes. Biomass Bioenerg 141:105697. https://doi.org/10.1016/j.biombioe.2020.105697

    Article  CAS  Google Scholar 

  4. Reis CER, Libardi Junior N, Bento HBS, Carvalho AKF, d., Vandenberghe LP de S, Soccol CR, Aminabhavi TM, Chandel AK, (2023) Process strategies to reduce cellulase enzyme loading for renewable sugar production in biorefineries. Chem Eng J 451:138690. https://doi.org/10.1016/J.CEJ.2022.138690

    Article  CAS  Google Scholar 

  5. Konar S, Sinha SK, Datta S, Ghorai PK (2019) Probing the Effect of Glucose on the Activity and Stability of β-Glucosidase: An All-Atom Molecular Dynamics Simulation Investigation. ACS Omega 4:11189–11196. https://doi.org/10.1021/acsomega.9b00509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lambertz C, Garvey M, Klinger J, Heesel D, Klose H, Fischer R, Commandeur U (2014) Challenges and advances in the heterologous expression of cellulolytic enzymes: a review. Biotechnol Biofuels 7:1–15. https://doi.org/10.1186/s13068-014-0135-5

    Article  CAS  Google Scholar 

  7. Yang Z, Zhang Z (2018) Engineering strategies for enhanced production of protein and bio-products in Pichia pastoris: a review. Biotechnol Adv 36:182–195. https://doi.org/10.1016/j.biotechadv.2017.11.002

    Article  CAS  PubMed  Google Scholar 

  8. Liu WC, Gong T, Wang QH, Liang X, Chen JJ, Zhu P (2016) Scaling-up Fermentation of Pichia pastoris to demonstration-scale using new methanol-feeding strategy and increased air pressure instead of pure oxygen supplement. Sci Rep 6:18439. https://doi.org/10.1038/srep18439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Singhania RR, Patel AK, Pandey A, Ganansounou E (2017) Genetic modification: A tool for enhancing beta-glucosidase production for biofuel application. Bioresour Technol 245:1352–1361. https://doi.org/10.1016/j.biortech.2017.05.126

    Article  CAS  PubMed  Google Scholar 

  10. Yan S, Xu Y, Yu X-W (2021) From induction to secretion: a complicated route for cellulase production in Trichoderma reesei. Bioresour Bioprocess 8:1–15. https://doi.org/10.1186/s40643-021-00461-8

    Article  CAS  Google Scholar 

  11. Xia Y, Yang L, Xia L (2018) High-level production of a fungal β-glucosidase with application potentials in the cost-effective production of Trichoderma reesei cellulase. Process Biochem 70:55–60. https://doi.org/10.1016/j.procbio.2018.03.031

    Article  CAS  Google Scholar 

  12. Singhania RR, Patel AK, Saini R, Pandey A (2016) Industrial Enzymes: β-glucosidases. In: Pandey A, Negi S, Soccol CR (eds) Current Developments in Biotechnology and Bioengineering: Production. Elsevier, Isolation and Purification of Industrial Products, pp 103–125

    Google Scholar 

  13. Raheja Y, Kaur B, Falco M, Tsang A, Chadha BS (2020) Secretome analysis of Talaromyces emersonii reveals distinct CAZymes profile and enhanced cellulase production through response surface methodology. Ind Crops Prod 152:112554. https://doi.org/10.1016/j.indcrop.2020.112554

    Article  CAS  Google Scholar 

  14. Perkins JB, Kumar M, Frederique M, Zijl K Van, Adrianus Wilhelmus, Hermanus Vollebregt PS (2011) US20120114797A1 - Talaromyces strains and enzyme compositions. U.S. Patent Application No. 13/381, 871 - Google Patents. https://patents.google.com/patent/US20120114797A1/en. Accessed 15 Oct 2021

  15. Liu L, Han R, Yu N, Zhang W, Xing L, Xie D, Peng D (2018) A method for extracting high-quality total RNA from plant rich in polysaccharides and polyphenols using Dendrobium huoshanense. PLoS ONE 13:e0196592. https://doi.org/10.1371/JOURNAL.PONE.0196592

    Article  PubMed  PubMed Central  Google Scholar 

  16. Kim KH, Brown KM, Harris PV, Langston JA, Cherry JR (2007) A proteomics strategy to discover β-glucosidases from Aspergillus fumigatus with two-dimensional page in-gel activity assay and tandem mass spectrometry. J Proteome Res 6:4749–4757. https://doi.org/10.1021/pr070355i

    Article  CAS  PubMed  Google Scholar 

  17. Basotra N, Dhiman SS, Agrawal D, Sani RK, Tsang A, Chadha BS (2019) Characterization of a novel Lytic Polysaccharide Monooxygenase from Malbranchea cinnamomea exhibiting dual catalytic behavior. Carbohydr Res 478:46–53. https://doi.org/10.1016/J.CARRES.2019.04.006

    Article  CAS  PubMed  Google Scholar 

  18. Mellitzer A, Weis R, Glieder A, Flicker K (2012) Expression of lignocellulolytic enzymes in Pichia pastoris. Microb Cell Fact 11:1–11. https://doi.org/10.1186/1475-2859-11-61

    Article  CAS  Google Scholar 

  19. Jin X, Meng N, Xia LM (2011) Expression of an endo-β-1,4-glucanase gene from orpinomyces PC-2 in Pichia pastoris. Int J Mol Sci 12:3366–3380. https://doi.org/10.3390/ijms12053366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Parry NJ, Beever DE, Owen E, Vandenberghe I, Van Beeumen J, Bhat MK (2001) Biochemical characterization and mechanism of action of a thermostable β-glucosidase purified from Thermoascus aurantiacus. Biochem J 353:117–127. https://doi.org/10.1042/bj3530117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kaur J, Chadha BS, Kumar BA, Kaur GS, Saini HS (2007) Purification and characterization of β-glucosidase from Melanocarpus sp. MTCC 3922. Electron J Biotechnol 10:260–270. https://doi.org/10.2225/vol10-issue2-fulltext-4

    Article  CAS  Google Scholar 

  22. Kaur B, Sharma M, Soni R, Oberoi HS, Chadha BS (2013) Proteome-based profiling of hypercellulase-producing strains developed through interspecific protoplast fusion between Aspergillus nidulans and aspergillus tubingensis. Appl Biochem Biotechnol 169:393–407. https://doi.org/10.1007/s12010-012-9985-0

    Article  CAS  PubMed  Google Scholar 

  23. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275. https://doi.org/10.1016/s0021-9258(19)52451-6

    Article  CAS  PubMed  Google Scholar 

  24. Wonganu B, Pootanakit K, Boonyapakron K, Champreda V, Tanapongpipat S, Eurwilaichitr L (2008) Cloning, expression and characterization of a thermotolerant endoglucanase from Syncephalastrum racemosum (BCC18080) in Pichia pastoris. Protein Expr Purif 58:78–86. https://doi.org/10.1016/j.pep.2007.10.022

    Article  CAS  PubMed  Google Scholar 

  25. Agrawal D, Basotra N, Balan V, Tsang A, Chadha BS (2020) Discovery and expression of thermostable lpmos from thermophilic fungi for producing efficient lignocellulolytic enzyme cocktails. Appl Biochem Biotechnol 191:463–481. https://doi.org/10.1007/s12010-019-03198-5

    Article  CAS  PubMed  Google Scholar 

  26. Agrawal D, Tsang A, Chadha BS (2021) Economizing the lignocellulosic hydrolysis process using heterologously expressed auxiliary enzymes feruloyl esterase D (CE1) and β-xylosidase (GH43) derived from thermophilic fungi Scytalidium thermophilum. Bioresour Technol 339:125603. https://doi.org/10.1016/j.biortech.2021.125603

    Article  CAS  PubMed  Google Scholar 

  27. Oriente A, Tramontina R, De Andrades D, Henn C, Silva JLC, Simão RCG, Maller A, De Polizeli MLTM, Kadowaki MK (2015) Characterization of a novel Aspergillus niger beta-glucosidase tolerant to saccharification of lignocellulosic biomass products and fermentation inhibitors. Chem Pap 69:1050–1057. https://doi.org/10.1515/chempap-2015-0111

    Article  CAS  Google Scholar 

  28. Ariaeenejad S, Nooshi-Nedamani S, Rahban M, Kavousi K, Pirbalooti AG, Mirghaderi SS, Mohammadi M, Mirzaei M, Salekdeh GH (2020) A Novel High Glucose-Tolerant β-Glucosidase: Targeted Computational Approach for Metagenomic Screening. Front Bioeng Biotechnol 8:813. https://doi.org/10.3389/fbioe.2020.00813

    Article  PubMed  PubMed Central  Google Scholar 

  29. Karnaouri A, Topakas E, Paschos T, Taouki I, Christakopoulos P (2013) Cloning, expression and characterization of an ethanol tolerant GH3 β-glucosidase from Myceliophthora thermophila. PeerJ 2013:e46. https://doi.org/10.7717/peerj.46

    Article  Google Scholar 

  30. Mayer C, Jakeman DL, Mah M, Karjala G, Gal L, Warren RAJ, Withers SG (2001) Directed evolution of new glycosynthases from agrobacterium β-glucosidase: A general screen to detect enzymes for oligosaccharide synthesis. Chem Biol 8:437–443. https://doi.org/10.1016/S1074-5521(01)00022-9

    Article  CAS  PubMed  Google Scholar 

  31. Li Y, Liu C, Bai F, Zhao X (2016) Overproduction of cellulase by Trichoderma reesei RUT C30 through batch-feeding of synthesized low-cost sugar mixture. Bioresour Technol 216:503–510. https://doi.org/10.1016/j.biortech.2016.05.108

    Article  CAS  PubMed  Google Scholar 

  32. Raheja Y, Singh V, Kaur B, Basotra N, Di Falco M, Tsang A, Singh Chadha B (2022) Combination of system biology and classical approaches for developing biorefinery relevant lignocellulolytic Rasamsonia emersonii strain. Bioresour Technol 351. https://doi.org/10.1016/j.biortech.2022.127039

  33. Jacobson MP, Pincus DL, Rapp CS, Day TJF, Honig B, Shaw DE, Friesner RA (2004) A Hierarchical Approach to All-Atom Protein Loop Prediction. Proteins Struct Funct Genet 55:. https://doi.org/10.1002/prot.10613

  34. Mohammadi S, Tarrahimofrad H, Arjmand S, Zamani J, Haghbeen K, Aminzadeh S (2022) Expression, characterization, and activity optimization of a novel cellulase from the thermophilic bacteria Cohnella sp. A01. Sci Reports 2022 121 12:1–21. https://doi.org/10.1038/s41598-022-14651-7

  35. Liu W, Xiang H, Zhang T, Pang X, Su J, Liu H, Ma B, Yu L (2020) Development of a New High-Cell Density Fermentation Strategy for Enhanced Production of a Fungus β-Glucosidase in Pichia pastoris. Front Microbiol 11:1988. https://doi.org/10.3389/fmicb.2020.01988

    Article  PubMed  PubMed Central  Google Scholar 

  36. Østby H, Hansen LD, Horn SJ, Eijsink VGH, Várnai A (2020) Enzymatic processing of lignocellulosic biomass: principles, recent advances and perspectives. J Ind Microbiol Biotechnol 47:623–657. https://doi.org/10.1007/S10295-020-02301-8

    Article  PubMed  Google Scholar 

  37. Badieyan S, Bevan DR, Zhang C (2012) Probing the active site chemistry of β-glucosidases along the hydrolysis reaction pathway. Biochemistry 51:8907–8918. https://doi.org/10.1021/bi300675x

    Article  CAS  PubMed  Google Scholar 

  38. Huang Q, Wang K, Li H, Yi S, Zhao X (2020) Enhancing cellulosic ethanol production through coevolution of multiple enzymatic characteristics of β-glucosidase from Penicillium oxalicum 16. Appl Microbiol Biotechnol 104:8299–8308. https://doi.org/10.1007/s00253-020-10858-8

    Article  CAS  PubMed  Google Scholar 

  39. Ramani G, Meera B, Vanitha C, Rajendhran J, Gunasekaran P (2015) Molecular cloning and expression of thermostable glucose-tolerant β-glucosidase of Penicillium funiculosum NCL1 in Pichia pastoris and its characterization. J Ind Microbiol Biotechnol 42:553–565. https://doi.org/10.1007/s10295-014-1549-6

    Article  CAS  PubMed  Google Scholar 

  40. Zhao J, Guo C, Tian C, Ma Y (2015) Heterologous Expression and Characterization of a GH3 β-Glucosidase from Thermophilic Fungi Myceliophthora thermophila in Pichia pastoris. Appl Biochem Biotechnol 177:511–527. https://doi.org/10.1007/s12010-015-1759-z

    Article  CAS  PubMed  Google Scholar 

  41. Meng Y, Zhao M, Yang M, Zhang Q, Hao J, Meng Y (2014) Production and characterization of recombinant glucose oxidase from Aspergillus niger expressed in Pichia pastoris. Lett Appl Microbiol 58:393–400. https://doi.org/10.1111/lam.12202

    Article  CAS  PubMed  Google Scholar 

  42. Li YH, Zhang XY, Zhang F, Peng LC, Zhang DB, Kondo A, Bai FW, Zhao XQ (2018) Optimization of cellulolytic enzyme components through engineering Trichoderma reesei and on-site fermentation using the soluble inducer for cellulosic ethanol production from corn stover. Biotechnol Biofuels 11:1–14. https://doi.org/10.1186/s13068-018-1048-5

    Article  CAS  Google Scholar 

  43. Méndez-Líter JA, De Eugenio LI, Prieto A, Martínez MJ (2018) The β-glucosidase secreted by Talaromyces amestolkiae under carbon starvation: A versatile catalyst for biofuel production from plant and algal biomass. Biotechnol Biofuels 11:1–14. https://doi.org/10.1186/s13068-018-1125-9

    Article  CAS  Google Scholar 

  44. Méndez-Líter JA, Nieto-Domínguez M, Fernández De Toro B, González Santana A, Prieto A, Asensio JL, Cañada FJ, De Eugenio LI, Martínez MJ (2020) A glucotolerant β-glucosidase from the fungus Talaromyces amestolkiae and its conversion into a glycosynthase for glycosylation of phenolic compounds. Microb Cell Fact 19:1–13

    Article  Google Scholar 

  45. Kar B, Verma P, Patel GK, Sharma AK (2017) Molecular cloning, characterization and in silico analysis of a thermostable β-glucosidase enzyme from Putranjiva roxburghii with a significant activity for cellobiose. Phytochemistry 140:. https://doi.org/10.1016/j.phytochem.2017.04.021

  46. Shi X, Zhao L, Pei J, Ge L, Wan P, Wang Z, Xiao W (2018) Highly enhancing the characteristics of immobilized thermostable β-glucosidase by Zn2+. Process Biochem 66:89–96. https://doi.org/10.1016/j.procbio.2018.01.004

    Article  CAS  Google Scholar 

  47. Yan F, ying, Xia W, Zhang X xu, Chen S, Nie X zheng, Qian L chun, (2016) Characterization of β-glucosidase from Aspergillus terreus and its application in the hydrolysis of soybean isoflavones. J Zhejiang Univ Sci B 17:455. https://doi.org/10.1631/jzus.B1500317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. de Alves L, F, Meleiro LP, Silva RN, Westmann CA, Guazzaroni ME, (2018) Novel ethanol- and 5-hydroxymethyl furfural-stimulated β-glucosidase retrieved from a brazilian secondary atlantic forest soil metagenome. Front Microbiol 9:1–17. https://doi.org/10.3389/fmicb.2018.02556

    Article  CAS  Google Scholar 

  49. Li H, Yi S, Bell EW, Huang Q, Zhao X (2020) Recombinant Penicillium oxalicum 16 β-Glucosidase 1 Displays Comprehensive Inhibitory Resistance to Several Lignocellulose Pretreatment Products, Ethanol, and Salt. Appl Biochem Biotechnol 191:772–784. https://doi.org/10.1007/s12010-019-03183-y

    Article  CAS  PubMed  Google Scholar 

  50. Mhlongo SI, den Haan R, Viljoen-Bloom M, van Zyl WH (2015) Lignocellulosic hydrolysate inhibitors selectively inhibit/deactivate cellulase performance. Enzyme Microb Technol 81:16–22. https://doi.org/10.1016/j.enzmictec.2015.07.005

    Article  CAS  PubMed  Google Scholar 

  51. Li Y, Qi B, Wan Y (2014) Inhibitory effect of vanillin on cellulase activity in hydrolysis of cellulosic biomass. Bioresour Technol 167:. https://doi.org/10.1016/j.biortech.2014.06.035

  52. Ximenes E, Kim Y, Mosier N, Dien B, Ladisch M (2011) Deactivation of cellulases by phenols. Enzyme Microb Technol 48:54–60. https://doi.org/10.1016/j.enzmictec.2010.09.006

    Article  CAS  PubMed  Google Scholar 

  53. Kim Y, Ximenes E, Mosier NS, Ladisch MR (2011) Soluble inhibitors/deactivators of cellulase enzymes from lignocellulosic biomass. Enzyme Microb Technol 48:408–415. https://doi.org/10.1016/j.enzmictec.2011.01.007

    Article  CAS  PubMed  Google Scholar 

  54. Butler SJ, Birgersson S, Wiemann M, Arcos-Hernandez M, Stålbrand H (2022) Transglycosylation by β-mannanase TrMan5A variants and enzyme synergy for synthesis of allyl glycosides from galactomannan. Process Biochem 112:154–166. https://doi.org/10.1016/j.procbio.2021.11.028

    Article  CAS  Google Scholar 

  55. Horibata Y, Higashi H, Ito M (2001) Transglycosylation and reverse hydrolysis reactions of endoglycoceramidase from the jellyfish, Cyanea nozakii. j biochem 130(2):263–268

    Article  CAS  PubMed  Google Scholar 

  56. Wiemann M, Axell E, Stålbrand H (2022) A comparison of the transglycosylation capacity between the guar gh27 aga27a and bacteroides gh36 bo gal36a α-galactosidases. Appl Sci 12(10):5123

    Article  CAS  Google Scholar 

  57. Gopalan V, Vander Jagt DJ, Libell DP, Glew RH (1992) Transglucosylation as a probe of the mechanism of action of mammalian cytosolic beta-glucosidase. J Biol Chem 267(14):9629–9638

    Article  CAS  PubMed  Google Scholar 

  58. Pennec A, Daniellou R, Loyer P, Nugier-Chauvin C, Ferrières V (2015) Araf51 with improved transglycosylation activities: One engineered biocatalyst for one specific acceptor. Carbohydr res 402:50–55

    Article  CAS  PubMed  Google Scholar 

  59. Liu WC, Inwood S, Gong T, Sharma A, Yu LY, Zhu P (2019) Fed-batch high-cell-density fermentation strategies for Pichia pastoris growth and production. Crit Rev Biotechnol 39:258–271. https://doi.org/10.1080/07388551.2018.1554620

    Article  CAS  PubMed  Google Scholar 

  60. Tolner B, Smith L, Begent RHJ, Chester KA (2006) Production of recombinant protein in Pichia pastoris by fermentation. Nat Protoc 1:1006–1021. https://doi.org/10.1038/nprot.2006.126

    Article  CAS  PubMed  Google Scholar 

  61. Hong J, Tamaki H, Kumagai H (2007) Cloning and functional expression of thermostable β-glucosidase gene from Thermoascus aurantiacus. Appl Microbiol Biotechnol 73:1331–1339. https://doi.org/10.1007/s00253-006-0618-9

    Article  CAS  PubMed  Google Scholar 

  62. Tang Z, Liu S, Jing H, Sun R, Liu M, Chen H, Wu Q, Han X (2014) Cloning and expression of A. oryzae β-glucosidase in Pichia pastoris. Mol Biol Rep 41:7567–7573. https://doi.org/10.1007/s11033-014-3644-1

    Article  CAS  PubMed  Google Scholar 

  63. Santos CA, Zanphorlin LM, Crucello A, Tonoli CCC, Ruller R, Horta MAC, Murakami MT, De Souza AP (2016) Crystal structure and biochemical characterization of the recombinant ThBgl, a GH1 Β-glucosidase overexpressed in Trichoderma harzianum under biomass degradation conditions. Biotechnol Biofuels 9:1–11. https://doi.org/10.1186/s13068-016-0487-0

    Article  CAS  Google Scholar 

  64. Monteiro LMO, Vici AC, Pinheiro MP, Heinen PR, de Oliveira AHC, Ward RJ, Prade RA, Buckeridge MS and Polizeli MDLTDM (2020). A highly glucose tolerant ß-glucosidase from Malbranchea pulchella (mp bg3) enables cellulose saccharification. Scientific reports, 10(1):p.6998. https://doi.org/10.1038/s41598-020-63972-y

Download references

Funding

Research grant from funding agency Department of Biotechnology with project “Novel concepts for developing efficient cellulolytic cocktail for hydrolysis of bio-refinery relevant pretreated lignocellulosics” [BT/PR31115/PBD/26/766/2019] and the pretreated lignocellulosics materials supplied by IOCL are duly acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

YR involved in conceptualization, performed experiments, analyzed data, and wrote the manuscript. VS was involved in methodology and data analysis. GS contributed analytical tools and review the manuscript. AT performed data curation and validation. BSC involved in conceptualization, project administration, resources, supervision, Writing-review & editing. All authors read and approved the manuscript.

Corresponding author

Correspondence to Bhupinder Singh Chadha.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 824 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raheja, Y., Singh, V., Sharma, G. et al. A thermostable and inhibitor resistant β-glucosidase from Rasamsonia emersonii for efficient hydrolysis of lignocellulosics biomass. Bioprocess Biosyst Eng 47, 567–582 (2024). https://doi.org/10.1007/s00449-024-02988-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-024-02988-4

Keywords

Navigation