Skip to main content
Log in

Cold-adapted enzymes: mechanisms, engineering and biotechnological application

  • Critical Review
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Most cold-adapted enzymes display high catalytic activity at low temperatures (20–25 °C) and can still maintain more than 40–50% of their maximum activity at lower temperatures (0–10 °C) but are inactivated after a moderate increase in temperature. The activity of some cold-adapted enzymes increases significantly in the presence of high salt concentrations and metal ions. Interestingly, we also observed that some cold-adapted enzymes have a wide range of optimum temperatures, exhibiting not only maximum activity under low-temperature conditions but also the ability to maintain high enzyme activity under high-temperature conditions, which is a novel feature of cold-adapted enzymes. This unique property of cold-adapted enzymes is generally attractive for biotechnological and industrial applications because these enzymes can reduce energy consumption and the chance of microbial contamination, thereby lowering the production costs and maintaining the flavor, taste and quality of foods. How high catalytic activity is maintained at low temperatures remains unknown. The relationship between the structure of cold-adapted enzymes and their activity, flexibility and stability is complex, and thus far, a unified explanation has not been provided. Herein, we systematically review the sources, catalytic characteristics and cold adaptation of enzymes from four enzymes categories systematically and discuss how these properties may be exploited in biotechnology. A thorough understanding of the properties, catalytic mechanisms, and engineering of cold-adapted enzymes is critical for future biotechnological applications in the detergent industry and food and beverage industries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The datasets used or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Yang G, Mozzicafreddo M, Ballarini P, Pucciarelli S, Miceli C (2021) An in-silico comparative study of lipases from the Antarctic psychrophilic ciliate Euplotes focardii and the mesophilic congeneric species Euplotes crassus: insight into molecular cold-adaptation. Mar Drugs 19(2):67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Siddiqui KS (2015) Some like it hot, some like it cold: Temperature dependent biotechnological applications and improvements in extremophilic enzymes. Biotechnol Adv 33(8):1912–1922

    Article  CAS  Google Scholar 

  3. Duarte AWF, Dos Santos JA, Vianna MV, Vieira JMF, Mallagutti VH, Inforsato FJ, Wentzel LCP, Lario LD, Rodrigues A, Pagnocca FC, Pessoa Junior A, Duraes Sette L (2018) Cold-adapted enzymes produced by fungi from terrestrial and marine Antarctic environments. Crit Rev Biotechnol 38(4):600–619

    Article  CAS  PubMed  Google Scholar 

  4. Dhaulaniya AS, Balan B, Kumar M, Agrawal PK, Singh DK (2019) Cold survival strategies for bacteria, recent advancement and potential industrial applications. Arch Microbiol 201(1):1–16

    Article  CAS  PubMed  Google Scholar 

  5. Jaafar NR, Mahadi NM, Mackeen MM, Illias RM, Murad AMA, Abu Bakar FD (2021) Structural and functional characterisation of a cold-active yet heat-tolerant dehydroquinase from Glaciozyma antarctica PI12. J Biotechnol 329:118–127

    Article  CAS  PubMed  Google Scholar 

  6. Nunez-Montero K, Salazar R, Santos A, Gomez-Espinoza O, Farah S, Troncoso C, Hoffmann C, Melivilu D, Scott F, Barrientos Diaz L (2021) Antarctic Rahnella inusitata: a producer of cold-stable beta-galactosidase enzymes. Int J Mol Sci 22(8):4144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Noby N, Auhim HS, Winter S, Worthy HL, Embaby AM, Saeed H, Hussein A, Pudney CR, Rizkallah PJ, Wells SA, Jones DD (2021) Structure and in silico simulations of a cold-active esterase reveals its prime cold-adaptation mechanism. Open Biol 11(12):210182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bezsudnova EY, Stekhanova TN, Ruzhitskiy AO, Popov VO (2020) Effects of pH and temperature on (S)-amine activity of transaminase from the cold-adapted bacterium Psychrobacter cryohalolentis. Extremophiles 24(4):537–549

    Article  CAS  PubMed  Google Scholar 

  9. Alvarez RG, Karki P, Langleite IE, Bakksjo RJ, Eichacker LA, Furnes C (2020) Characterisation of a novel cold-adapted calcium-activated transglutaminase: implications for medicine and food processing. FEBS Open Bio 10(4):495–506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. de Melo RR, de Lima EA, Persinoti GF, Vieira PS, de Sousa AS, Zanphorlin LM, de Giuseppe PO, Ruller R, Murakami MT (2021) Identification of a cold-adapted and metal-stimulated beta-1,4-glucanase with potential use in the extraction of bioactive compounds from plants. Int J Biol Macromol 166:190–199

    Article  PubMed  Google Scholar 

  11. Ge J, Jiang X, Liu W, Wang Y, Huang H, Bai Y, Su X, Yao B, Luo H (2020) Characterization, stability improvement, and bread baking applications of a novel cold-adapted glucose oxidase from Cladosporium neopsychrotolerans SL16. Food Chem 310:125970

    Article  CAS  PubMed  Google Scholar 

  12. Cai ZW, Ge HH, Yi ZW, Zeng RY, Zhang GY (2018) Characterization of a novel psychrophilic and halophilic beta-1, 3-xylanase from deep-sea bacterium, Flammeovirga pacifica strain WPAGA1. Int J Biol Macromol 118(Pt B):2176–2184

    Article  CAS  PubMed  Google Scholar 

  13. Huang H, Li S, Bao S, Mo K, Sun D, Hu Y (2021) Expression and characterization of a cold-adapted alginate lyase with exo/endo-type activity from a novel marine bacterium Alteromonas portus HB161718T. Mar Drugs 19(3):155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Jodlowska I, Twarda-Clapa A, Szymczak K, Bialkowska AM (2021) Green oxidation of amines by a novel cold-adapted monoamine oxidase MAO P3 from psychrophilic fungi Pseudogymnoascus sp. P3. Molecules 26(20):6237

  15. Kayihan DS, Kayihan C, Ozden Ciftci Y (2021) Transgenic tobacco plants overexpressing a cold-adaptive nitroreductase gene exhibited enhanced 2,4-dinitrotoluene detoxification rate at low temperature. Int J Phytoremediation 23(1):1–9

    Article  CAS  PubMed  Google Scholar 

  16. Petratos K, Gessmann R, Daskalakis V, Papadovasilaki M, Papanikolau Y, Tsigos I, Bouriotis V (2020) Structure and dynamics of a thermostable alcohol dehydrogenase from the Antarctic psychrophile Moraxella sp. TAE123. ACS Omega 5(24):14523–14534

  17. Su W, Ren Y, Wang D, Su Y, Feng J, Zhang C, Tang H, Xu L, Muhammad K, Que Y (2020) The alcohol dehydrogenase gene family in sugarcane and its involvement in cold stress regulation. BMC Genomics 21(1):521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wang Y, Hou Y, Wang Y, Zheng L, Wang Q (2019) A novel cold-adapted nitroreductase from Psychrobactersp. ANT206: Heterologous expression, characterization and nitrobenzene reduction capacity. Enzyme Microb Technol 131:109434

  19. Wang Y, Hou Y, Wang Y, Zheng L, Xu X, Pan K, Li R, Wang Q (2018) A novel cold-adapted leucine dehydrogenase from Antarctic sea-ice bacterium Pseudoalteromonas sp. ANT178. Mar Drugs 16(10):359

  20. Wang Y, Wang Q, Hou Y (2020) A new cold-adapted and salt-tolerant glutathione reductase from Antarctic psychrophilic bacterium Psychrobacter sp. and its resistance to oxidation. Int J Mol Sci 21(2):420

  21. Wisniewska KM, Twarda-Clapa A, Bialkowska AM (2021) Novel cold-adapted recombinant laccase KbLcc1 from Kabatiella bupleuri G3 IBMiP as a green catalyst in biotransformation. Int J Mol Sci 22(1):9593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kim H, Yeon YJ, Choi YR, Song W, Pack SP, Choi YS (2016) A cold-adapted tyrosinase with an abnormally high monophenolase/diphenolase activity ratio originating from the marine archaeon Candidatus Nitrosopumilus koreensis. Biotechnol Lett 38(9):1535–1542

    Article  CAS  PubMed  Google Scholar 

  23. Hou Y, Qiao C, Wang Y, Wang Y, Ren X, Wei Q, Wang Q (2019) Cold-adapted glutathione S-Transferases from Antarctic psychrophilic bacterium Halomonas sp. ANT108: heterologous expression, characterization, and oxidative resistance. Mar Drugs 17(3):147

  24. He J, Cui Z, Ji X, Luo Y, Wei Y, Zhang Q (2019) A novel histidine Kinase Gene HisK2301 from Rhodosporidium kratochvilovae contributes to cold adaption by promoting biosynthesis of polyunsaturated fatty acids and glycerol. J Agric Food Chem 67(2):653–660

    Article  CAS  PubMed  Google Scholar 

  25. Moon S, Kim J, Bae E (2017) Structural analyses of adenylate kinases from Antarctic and tropical fishes for understanding cold adaptation of enzymes. Sci Rep 7(1):16027

    Article  PubMed  PubMed Central  Google Scholar 

  26. Li PY, Zhang YQ, Zhang Y, Jiang WX, Wang YJ, Zhang YS, Sun ZZ, Li CY, Zhang YZ, Shi M, Song XY, Zhao LS, Chen XL (2020) Study on a novel cold-active and halotolerant monoacylglycerol lipase widespread in marine bacteria reveals a new group of bacterial monoacylglycerol lipases containing unusual C(A/S)HSMG catalytic motifs. Front Microbiol 11:9

    Article  PubMed  PubMed Central  Google Scholar 

  27. Karakas F, Arslanoglu A (2020) Gene cloning, heterologous expression, and partial characterization of a novel cold-adapted subfamily I.3 lipase from Pseudomonas fluorescence KE38. Sci Rep 10(1):22063

  28. Salwoom L, Raja Abd Rahman RNZ, Salleh AB, Mohd Shariff F, Convey P, Mohamad Ali MS (2019) New recombinant cold-adapted and organic solvent tolerant lipase from psychrophilic Pseudomonas sp. LSK25, isolated from Signy Island Antarctica. Int J Mol Sci 20(6):1264

  29. Maharana AK, Singh SM (2018) A cold and organic solvent tolerant lipase produced by Antarctic strain Rhodotorula sp. Y-23. J Basic Microbiol 58(4):331–342

  30. Van der Ent F, Lund BA, Svalberg L, Purg M, Chukwu G, Widersten M, Isaksen GV, Brandsdal BO, Aqvist J (2022) Structure and mechanism of a cold-adapted bacterial lipase. Biochemistry 61(10):933–942

    Article  PubMed  Google Scholar 

  31. Guang YS, P., Hua, Y., Matteo, M., Cristina, M., Patrizia B. (2017) Rational engineering of a cold-adapted α-Amylase from the Antarctic ciliate Euplotes focardii for simultaneous improvement of thermostability and catalytic activity. Aapplied and environmental microbiology 83(13):e00449-e517

    Google Scholar 

  32. Chen F, Ye J, Sista Kameshwar AK, Wu X, Ren J, Qin W, Li DW (2019) A novel cold-adaptive endo-1,4-beta-glucanase from Burkholderia pyrrocinia JK-SH007: gene expression and characterization of the enzyme and mode of action. Front Microbiol 10:3137

    Article  PubMed  Google Scholar 

  33. Bruck SA, Contato AG, Gamboa-Trujillo P, de Oliveira TB, Cereia M, de Moraes Polizeli MLT (2022) Prospection of psychrotrophic filamentous fungi isolated from the high andean paramo region of northern Ecuador: enzymatic activity and molecular identification. Microorganisms 10(2):82

    Article  Google Scholar 

  34. Okmane L, Nestor G, Jakobsson E, Xu B, Igarashi K, Sandgren M, Kleywegt GJ, Stahlberg J (2022) Glucomannan and beta-glucan degradation by Mytilus edulis Cel45A: crystal structure and activity comparison with GH45 subfamily A. B and C Carbohydr Polym 277:118771

    Article  CAS  Google Scholar 

  35. Orlando M, Pucciarelli S, Lotti M (2020) Endolysins from Antarctic Pseudomonas display lysozyme activity at low temperature. Mar Drugs 18(11):579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wu J, Geng A, Xie R, Wang H, Sun J (2018) Characterization of cold adapted and ethanol tolerant beta-glucosidase from Bacillus cellulosilyticus and its application for directed hydrolysis of cellobiose to ethanol. Int J Biol Macromol 109:872–879

    Article  CAS  PubMed  Google Scholar 

  37. Yang Y, Zheng Z, Xiao Y, Zhang J, Zhou Y, Li X, Li S, Yu H (2019) Cloning and characterization of a cold-adapted chitosanase from marine bacterium Bacillus sp. BY01. Molecules 24(21):3915

  38. Zhou Y, Chen X, Li X, Han Y, Wang Y, Yao R, Li S (2019) Purification and characterization of a new cold-adapted and thermo-tolerant chitosanase from marine bacterium Pseudoalteromonas sp. SY39. Molecules 24(1):183

  39. Zhang LL, Jiang XH, Xiao XF, Zhang WX, Shi YQ, Wang ZP, Zhou HX (2021) Expression and characterization of a novel cold-adapted chitosanase from marine Renibacterium sp. suitable for chitooligosaccharides preparation. Mar Drugs 19(11):596

  40. Muzyed S, Howlader MM, Tuvikene R (2021) Fermentation optimization, purification and biochemical characterization of iota-carrageenase from marine bacterium Cellulophaga baltica. Int J Biol Macromol 166:789–797

    Article  CAS  PubMed  Google Scholar 

  41. Zhao D, Jiang B, Zhang Y, Sun W, Pu Z, Bao Y (2021) Purification and characterization of a cold-adapted kappa-carrageenase from Pseudoalteromonas sp. ZDY3. Protein Expr Purif 178:105768

  42. Lee CH, Lee CR, Hong SK (2019) Biochemical characterization of a novel cold-adapted agarotetraose-producing alpha-agarase, AgaWS5, from Catenovulum sediminis WS1-A. Appl Microbiol Biotechnol 103(20):8403–8411

    Article  CAS  PubMed  Google Scholar 

  43. Okai M, Onoue C, Tsuda R, Ishigami C, Yoshida-Mishima C, Urano N, Kato C, Ishida M (2020) Q301P mutant of Vibrio PR protease affects activities under low-temperature and high-pressure conditions. J Biosci Bioeng 130(4):341–346

    Article  CAS  PubMed  Google Scholar 

  44. Singh D, Thakur S, Thayil SM, Kesavan AK (2019) Characterization of a cold-active, detergent-stable metallopeptidase purified from Bacillus sp. S1DI 10 using Response Surface Methodology. PLoS One 14(5):e0216990

  45. Zhou HX, Xu SS, Yin XJ, Wang FL, Li Y (2020) Characterization of a new bifunctional and cold-adapted polysaccharide lyase (PL) family 7 alginate lyase from Flavobacterium sp. Mar Drugs 18(8):388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Xu F, Chen XL, Sun XH, Dong F, Li CY, Li PY, Ding H, Chen Y, Zhang YZ, Wang P (2020) Structural and molecular basis for the substrate positioning mechanism of a new PL7 subfamily alginate lyase from the arctic. J Biol Chem 295(48):16380–16392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Zhang S, Li Y, Han F, Yu W (2022) YsHyl8A, an alkalophilic cold-adapted glycosaminoglycan lyase cloned from pathogenic Yersinia sp. 298. Molecules 27(9):2897

  48. Tang X, Jiao C, Wei Y, Zhuang XY, Xiao Q, Chen J, Chen FQ, Yang QM, Weng HF, Fang BS, Zhang YH, Xiao AF (2022) Biochemical characterization and cold-adaption mechanism of a PL-17 family alginate lyase Aly23 from marine bacterium Pseudoalteromonas sp. ASY5 and its application for oligosaccharides production. Mar Drugs 20(2):126

  49. Siddiqui KS, Cavicchioli R (2006) Cold-adapted enzymes. Annu Rev Biochem 75:403–433

    Article  CAS  PubMed  Google Scholar 

  50. Cavicchioli R, Siddiqui KS, Andrews D, Sowers KR (2002) Low-temperature extremophiles and their applications. Curr Opin Biotechnol 13(3):253–261

    Article  CAS  PubMed  Google Scholar 

  51. Bakunina I, Slepchenko L, Anastyuk S, Isakov V, Likhatskaya G, Kim N, Tekutyeva L, Son O, Balabanova L (2018) Characterization of properties and transglycosylation abilities of recombinant alpha-galactosidase from cold-adapted marine bacterium Pseudoalteromonas KMM 701 and its C494N and D451A Mutants. Mar Drugs 16(10):349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Wang QF, Wang YF, Hou YH, Shi YL, Han H, Miao M, Wu YY, Liu YP, Yue XN, Li YJ (2016) Cloning, expression and biochemical characterization of recombinant superoxide dismutase from Antarctic psychrophilic bacterium Pseudoalteromonas sp. ANT506. J Basic Microbiol 56(7):753–761

  53. Zhang W, Xu H, Wu Y, Zeng J, Guo Z, Wang L, Shen C, Qiao D, Cao Y (2018) A new cold-adapted, alkali-stable and highly salt-tolerant esterase from Bacillus licheniformis. Int J Biol Macromol 111:1183–1193

    Article  CAS  PubMed  Google Scholar 

  54. Seo JW, Tsevelkhorloo M, Lee CR, Kim SH, Kang DK, Asghar S, Hong SK (2020) Molecular characterization of a novel 1,3-alpha-3,6-anhydro-L-galactosidase, Ahg943, with cold- and high-salt-tolerance from Gayadomonas joobiniege G7. J Microbiol Biotechnol 30(11):1659–1669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Oskarsson KR (1867) Kristjansson MM (2019) Improved expression, purification and characterization of VPR, a cold active subtilisin-like serine proteinase and the effects of calcium on expression and stability. Biochim Biophys Acta Proteins Proteom 2:152–162

    Google Scholar 

  56. Tran KN, Jang SH (1869) Lee C (2021) Effect of active-site aromatic residues Tyr or Phe on activity and stability of glucose 6-phosphate dehydrogenase from psychrophilic Arctic bacterium Sphingomonas sp. Biochim Biophys Acta Proteins Proteom 1:140543

    Google Scholar 

  57. Zhang ZB, Xia YL, Dong GH, Fu YX, Liu SQ (2021) Exploring the cold-adaptation mechanism of serine hydroxymethyltransferase by comparative molecular dynamics simulations. Int J Mol Sci 22(4):1781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Mangiagalli M, Lapi M, Maione S, Orlando M, Brocca S, Pesce A, Barbiroli A, Camilloni C, Pucciarelli S, Lotti M, Nardini M (2021) The co-existence of cold activity and thermal stability in an Antarctic GH42 beta-galactosidase relies on its hexameric quaternary arrangement. FEBS J 288(2):546–565

    Article  CAS  PubMed  Google Scholar 

  59. Sirikharin R, Soderhall I, Soderhall K (2018) Characterization of a cold-active transglutaminase from a crayfish, Pacifastacus leniusculus. Fish Shellfish Immunol 80:546–549

    Article  CAS  PubMed  Google Scholar 

  60. Gao H, Li C, Bandikari R, Liu Z, Hu N, Yong Q (2018) A novel cold-adapted esterase from Enterobacter cloacae: characterization and improvement of its activity and thermostability via the site of Tyr193Cys. Microb Cell Fact 17(1):45

    Article  PubMed  PubMed Central  Google Scholar 

  61. Wang X, Kan G, Ren X, Yu G, Shi C, Xie Q, Wen H, Betenbaugh M (2018) Molecular cloning and characterization of a novel alpha-amylase from Antarctic Sea Ice bacterium Pseudoalteromonas sp. M175 and its primary application in detergent. Biomed Res Int 2018(2018):3258383

Download references

Funding

Financial support from the National Natural Science Foundation of China (Grant no. 31570054), the State Key Laboratory of Microbial Technology Open Projects Fund (Project nos. M2021-09, M2022-06), the Open Project Program for Key Laboratory of Fermentation Engineering (Ministry of Education) (202105FE08), and the Postgraduate Research Innovation Project 2023 for Hubei University of Technology are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

JKZ and ZW designed the study and coordinated the work. LY and CHY prepared all figures and tables. LY and ZLW wrote and revised the manuscript. JKZ and ZLW supervised. WZL and LY collated supplementary data for the manuscript. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Liwen Zhu.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

Not applicable.

Institutional review board statement

Not applicable.

Informed consent

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

449_2023_2904_MOESM1_ESM.docx

Table S1: Phylogenetic comparison of four types of cold-adapted enzymes from different sources based on amino acid sequences, Fig. S1: Phylogenetic comparison of four types of cold-adapted enzymes from different sources based on amino acid sequences. (DOCX 914 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Jia, K., Chen, H. et al. Cold-adapted enzymes: mechanisms, engineering and biotechnological application. Bioprocess Biosyst Eng 46, 1399–1410 (2023). https://doi.org/10.1007/s00449-023-02904-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-023-02904-2

Keywords

Navigation