Skip to main content

Biotechnological Aspects of Cold-Active Enzymes

  • Chapter
  • First Online:
Psychrophiles: From Biodiversity to Biotechnology

Abstract

Cold-adapted enzymes produced by organisms inhabiting permanently low temperature environments are typically characterized by a high activity at low to moderate temperatures and a poor thermal stability. Such characteristics make these enzymes highly attractive for various applications where they can enable more efficient, cost-effective, and environmentally friendlier processes than higher temperature-adapted enzymes. In this chapter, the biotechnological aspects of cold-adapted enzymes and their application in industry are reviewed and discussed with a focus on cleaning/detergents, food and beverages, molecular biology, biomedicine, pharmaceuticals, cosmetics, textiles, biofuels, and materials applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adapa V, Ramya LN, Pulicherla KK, Sambasiva Rao KRS (2014) Cold active pectinases: advancing the food industry to the next generation. Appl Biochem Biotechnol 172(5):2324–2337. doi:10.1007/s12010-013-0685-1

    Article  CAS  PubMed  Google Scholar 

  • Akila G, Chandra TS (2010) Stimulation of biomethanation by Clostridium sp. PXYL1 in coculture with a Methanosarcina strain PMET1 at psychrophilic temperatures. J Appl Microbiol 108(1):204–213. doi:10.1111/j.1365-2672.2009.04412.x

    Article  CAS  PubMed  Google Scholar 

  • Antranikian G, Breves R, Janßen F, Qoura FM (2004) Pullulanases from psychrophilic organisms. Patent Application WO2006032477A1, DE102004046116A1

    Google Scholar 

  • Awazu N, Shodai T, Takakura H, Kitagawa M, Mukai H, Kato I (2011) Microorganism-derived psychrophilic endonuclease. Granted Patent US8034597B2

    Google Scholar 

  • Balabanova LA, Bakunina IY, Nedashkovskaya OI, Makarenkova ID, Zaporozhets TS, Besednova NN, Zvyagintseva TN, Rasskazov VA (2010) Molecular characterization and therapeutic potential of a marine bacterium Pseudoalteromonas sp. KMM 701 α-galactosidase. Mar Biotechnol 12(1):111–120. doi:10.1007/s10126-009-9205-2

    Article  CAS  PubMed  Google Scholar 

  • Barroca M, Santos G, Johansson B, Gillotin F, Feller G, Collins T (2017) Deciphering the factors defining the pH-dependence of a commercial glycoside hydrolase family 8 enzyme. Enzym Microb Technol 96:163–169. doi:10.1016/j.enzmictec.2016.10.011

    Article  CAS  Google Scholar 

  • BCC Research (2017) BCC research report. Global markets for enymes in industrial applications. BIO030J, Jan 2017. BCC Research LLC, USA

    Google Scholar 

  • Bjarnason JB, Benediktsson B (2010) Protein hydrolysates produced with the use of marine proteases. Granted Patents CA2421058C, DE60007655D1/T2, EP1227736B1, US7070953B1

    Google Scholar 

  • Blamey JM, Fischer F, Meyer H-P, Sarmiento F, Zinn M (2017) Enzymatic biocatalysis in chemical transformations: a promising and emerging field in green chemistry practice. In: Brahmachari G, Demain AL, Adrio JL (eds) Biotechnology of microbial enzymes, production, biocatalysis and industrial applications. Academic, New York, pp 347–403. doi:10.1016/B978-0-12-803725-6.00014-5

    Google Scholar 

  • Bommarius AS, Paye MF (2013) Stabilizing biocatalysts. Chem Soc Rev 42:6534–6565. doi:10.1039/c3cs60137d

    Article  CAS  PubMed  Google Scholar 

  • Cavicchioli R, Charlton T, Ertan H, Mohd Omar S, Siddiqui KS, Williams TJ (2011) Biotechnological uses of enzymes from psychrophiles. Microb Biotechnol 4(4):449–460. doi:10.1111/j.1751-7915.2011.00258.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cavicchioli R, Siddiqui KS, Andrews D, Sowers KR (2002) Low-temperature extremophiles and their applications. Curr Opin Biotechnol 13(3):253–261

    Article  CAS  PubMed  Google Scholar 

  • Cazarin C, Lima G, da Silva J, Maróstica M (2015) Enzymes in meat processing. In: Chandrasekaran M (ed) Enzymes in food and beverage processing. CRC, Boca Raton, pp 337–351. doi:10.1201/b19408-17

    Chapter  Google Scholar 

  • Çelik A, Yetiş G (2012) An unusually cold active nitroreductase for prodrug activations. Bioorg Med Chem 20(11):3540-3550. doi:10.1016/j.bmc.2012.04.004

  • Chandrasekaran M (2015) Enzymes in food and beverage processing. CRC, Boca Raton

    Book  Google Scholar 

  • Collins T, Claverie P, D’Amico S, Georlette D, Gratia E, Hoyoux A, Meuwis MA, Poncin J, Sonan G, Feller G, Gerday C (2002a) Life in the cold: psychrophilic enzymes. In: Pandalai SG (ed) Recent research developments in proteins, vol 1. Transworld Research Network, Trivandrum, pp 13–26

    Google Scholar 

  • Collins T, Meuwis MA, Stals I, Claeyssens M, Feller G, Gerday C (2002b) A novel family 8 xylanase, functional and physicochemical characterization. J Biol Chem 277(38):35133–35139. doi:10.1074/jbc.M204517200

    Article  CAS  PubMed  Google Scholar 

  • Collins T, Hoyoux A, Dutron A, Georis J, Genot B, Dauvrin T, Arnaut F, Gerday C, Feller G (2006) Use of glycoside hydrolase family 8 xylanases in baking. JCS 43:79–84

    Article  CAS  Google Scholar 

  • Collins T, D’Amico S, Marx J, Feller G, Gerday C (2007) Cold-adapted enzymes. In: Gerday C, Glansdorff N (eds) Physiology and biochemistry of extremophiles. ASM Press, Washington, DC, pp 165–179. doi:10.1128/9781555815813.ch13

    Chapter  Google Scholar 

  • Collins T, Feller G, Gerday C, Meuwis MA (2012) Family 8 enzymes with xylanolytic activity. Granted Patent US8309336B2

    Google Scholar 

  • Collins T, Roulling F, Florence P, Marx JC, Feller G, Gerday C, D’Amico S (2008) Fundamentals of cold-adapted enzymes. In: Margesin R, Schinner F, Marx JC, Gerday C (eds) Psychrophiles: from biodiversity to biotechnology. Springer, Berlin, pp 211–227

    Chapter  Google Scholar 

  • D’Amico S, Collins T, Marx JC, Feller G, Gerday C (2006) Psychrophilic microorganisms: challenges for life. EMBO Rep 7(4):385–389

    Article  PubMed  PubMed Central  Google Scholar 

  • Damhus T, Kaasgaard S, Olsen HS (2013) Enzymes at work, 4th edn. Novozymes A/S, Denmark

    Google Scholar 

  • Dornez E, Verjans P, Arnaut F, Delcour JA, Courtin CM (2011) Use of psychrophilic xylanases provides insight into the xylanase functionality in bread making. J Agric Food Chem 59(17):9553–9562. doi:10.1021/jf201752g

    Article  CAS  PubMed  Google Scholar 

  • Dutron A, Georis J, Genot B, Dauvrin T, Collins T, Hoyoux A, Feller G (2012) Use of family 8 enzymes with xylanolytic activity in baking. Granted Patents US8192772 (2012), EP1549147B1 (2011), CN1681392B (2010), DE60336153 D1 (2011), CA 2498014C (2011), ES2360942 (2011), DE60336153D1 (2011)

    Google Scholar 

  • Elleuche S, Schroder C, Sahm K, Antranikian G (2014) Extremozymes—biocatalysts with unique properties from extremophilic microorganisms. Curr Opin Biotechnol 29:116–123. doi:10.1016/j.copbio.2014.04.003

    Article  CAS  PubMed  Google Scholar 

  • Festersen RM, Olsen HS, Pedersen S (2005) Alcohol product processes. Granted Patents DE04718914T1, EP1604019B1, CN1788083B, US8772001B2

    Google Scholar 

  • Fields PA, Dong Y, Meng X, Somero GN (2015) Adaptations of protein structure and function to temperature: there is more than one way to ‘skin a cat’. J Exp Biol 218(12):1801–1811. doi:10.1242/jeb.114298

    Article  PubMed  Google Scholar 

  • Fornbacke M, Clarsund M (2013) Cold-adapted proteases as an emerging class of therapeutics. Infect Dis Ther 2(1):15–26. doi:10.1007/s40121-013-0002-x

    Article  PubMed  PubMed Central  Google Scholar 

  • Gerday C (2013) Psychrophily and catalysis. Biology 2(2):719–741. doi:10.3390/biology2020719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gerday C (2014) Fundamentals of cold-active enzymes. In: Buzzini P, Margesin R (eds) Cold-adapted yeasts: biodiversity, adaptation strategies and biotechnological significance. Springer, Berlin, pp 325–350. doi:10.1007/978-3-642-39681-6_15

    Chapter  Google Scholar 

  • Ghosh M, Pulicherla KK, Rekha VP, Raja PK, Sambasiva Rao KR (2012) Cold active beta-galactosidase from Thalassospira sp. 3SC-21 to use in milk lactose hydrolysis: a novel source from deep waters of Bay-of-Bengal. World J Microbiol Biotechnol 28(9):2859–2869. doi:10.1007/s11274-012-1097-z

    Article  CAS  PubMed  Google Scholar 

  • Gohel V, Duan G (2012) No-cook process for ethanol production using indian broken rice and pearl millet. Int J Microbiol 2012:680232. doi:10.1155/2012/680232

    Article  PubMed  PubMed Central  Google Scholar 

  • He H, Chen X, Li J, Zhang Y, Gao P (2004) Taste improvement of refrigerated meat treated with cold-adapted protease. Food Chem 84(2):307–311. doi:10.1016/S0308-8146(03)00242-5

    Article  CAS  Google Scholar 

  • Hoyoux A, Jennes I, Dubois P, Genicot S, Dubail F, Francois JM, Baise E, Feller G, Gerday C (2001) Cold-adapted beta-galactosidase from the Antarctic psychrophile Pseudoalteromonas haloplanktis. Appl Environ Microbiol 67(4):1529–1535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huston AL (2008) Biotechnological aspects of cold-adapted enzymes. In: Margesin R, Schinner F, Marx JC, Gerday C (eds) Psychrophiles: from biodiversity to biotechnology. Springer, Berlin, pp 347–364

    Chapter  Google Scholar 

  • Ji L, Yang J, Fan H, Yang Y, Li B, Yu X, Zhu N, Yuan H (2014) Synergy of crude enzyme cocktail from cold-adapted Cladosporium cladosporioides Ch2-2 with commercial xylanase achieving high sugars yield at low cost. Biotechnol Biofuels 7(1):130. doi:10.1186/s13068-014-0130-x

    Article  PubMed  PubMed Central  Google Scholar 

  • Junpei Z, Rui Z, Zunxi H, Zhifeng S, Xianghua T, Junjun L, Qian W (2016) Low-temperature salt-tolerant product-inhibition-resistant beta-N-acetyl glucosamine enzyme JB10NagA. Patent Application CN105483101A

    Google Scholar 

  • Karan R, Capes MD, Dassarma S (2012) Function and biotechnology of extremophilic enzymes in low water activity. Aquat Biol 8(1):4. doi:10.1186/2046-9063-8-4

    Article  CAS  Google Scholar 

  • Karasova-Lipovova P, Strnad H, Spiwok V, Mala S, Kralova B, Russell NJ (2003) The cloning, purification and characterisation of a cold-active [beta]-galactosidase from the psychrotolerant Antarctic bacterium Arthrobacter sp. C2-2. Enzym Microb Technol 33(6):836–844

    Article  CAS  Google Scholar 

  • Kirk O, Christensen MW (2002) Lipases from Candida antarctica: unique biocatalysts from a unique origin. Org Process Res Dev 6(4):446–451. doi:10.1021/op0200165

    Article  CAS  Google Scholar 

  • Kobori H, Sullivan CW, Shizuya H (1984) Heat-labile alkaline phosphatase from Antarctic bacteria: rapid 5’ end labelling of nucleic acids. Proc Natl Acad Sci USA 81:6691–6695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lanes O, Leiros I, Smalas AO, Willassen NP (2002) Identification, cloning, and expression of uracil-DNA glycosylase from Atlantic cod (Gadus morhua): characterization and homology modeling of the cold-active catalytic domain. Extremophiles 6(1):73–86

    Article  CAS  PubMed  Google Scholar 

  • Liszka MJ, Clark ME, Schneider E, Clark DS (2012) Nature versus nurture: developing enzymes that function under extreme conditions. Annu Rev Chem Biomol Eng 3:77–102. doi:10.1146/annurev-chembioeng-061010-114239

    Article  CAS  PubMed  Google Scholar 

  • Littlechild JA (2015) Enzymes from extreme environments and their industrial applications. Front Bioeng Biotechnol 3:161. doi:10.3389/fbioe.2015.00161

    Article  PubMed  PubMed Central  Google Scholar 

  • Margesin R, Fauster V, Fonteyne PA (2005) Characterization of cold-active pectate lyases from psychrophilic Mrakia frigida. Lett Appl Microbiol 40(6):453–459

    Article  CAS  PubMed  Google Scholar 

  • Margesin R, Feller G, Gerday C, Russell NJ (2003) Cold-adapted microorganisms: adaptation strategies and biotechnological potential. In: Britton G (ed) Encyclopedia of environmental microbiology. Wiley, New York. doi:10.1002/0471263397.env150

    Google Scholar 

  • Mateo C, Palomo JM, Fernandez-Lorente G, Guisan JM, Fernandez-Lafuente R (2007) Improvement of enzyme activity, stability and selectivity via immobilization techniques. Enzyme Microb Technol 40(6):1451–1463. doi:10.1016/j.enzmictec.2007.01.018

    Article  CAS  Google Scholar 

  • Muller-Greven JC, Post MA, Kubu CJ (2012) Recombinant Colwellia psychrerythraea alkaline phosphatase and uses thereof. Granted Patents US8486665B2, US8129168B2

    Google Scholar 

  • Naga Padma P, Anuradha K, Reddy G (2011) Pectinolytic yeast isolates for cold-active polygalacturonase production. Innov Food Sci Emerg Technol. 12(2):178–181. doi:10.1016/j.ifset.2011.02.001

    Article  CAS  Google Scholar 

  • Nakagawa T, Ikehata R, Myoda T, Miyaji T, Tomizuka N (2007) Overexpression and functional analysis of cold-active β-galactosidase from Arthrobacter psychrolactophilus strain F2. Protein Expr Purif 54(2):295–299. doi:10.1016/j.pep.2007.03.010

    Article  CAS  PubMed  Google Scholar 

  • Nilsen I, Overbö K, Lanes O (2008) Shrimp alkaline phosphatase. Granted Patents US 7323325B2, DE60130567D1, DE60130567T2, EP1326890B1

    Google Scholar 

  • Pan X, Tu T, Wang L, Luo H, Ma R, Shi P, Meng K, Yao B (2014) A novel low-temperature-active pectin methylesterase from Penicillium chrysogenum F46 with high efficiency in fruit firming. Food Chem 162:229–234. doi:10.1016/j.foodchem.2014.04.069

    Article  CAS  PubMed  Google Scholar 

  • Pawar R, Vasudeo Z, Siddhivinayak B, Govind P (2009) Application of protease isolated from Bacillus sp. 158 in enzymatic cleansing of contact lenses. Biotechnology 8(2):276–280. doi:10.3923/biotech.2009.276.280

    Article  CAS  Google Scholar 

  • Pawlak-Szukalska A, Wanarska M, Popinigis AT, Kur J (2014) A novel cold-active β-d-galactosidase with transglycosylation activity from the Antarctic Arthrobacter sp. 32cB—Gene cloning, purification and characterization. Process Biochem 49(12):2122–2133. doi:10.1016/j.procbio.2014.09.018

    Article  CAS  Google Scholar 

  • Rina M, Pozidis C, Mavromatis K, Tzanodaskalaki M, Kokkinidis M, Bouriotis V (2000) Alkaline phosphatase from the Antarctic strain TAB5. Properties and psychrophilic adaptations. Eur J Biochem 267(4):1230–1238

    Article  CAS  PubMed  Google Scholar 

  • Santiago M, Ramírez-Sarmiento CA, Zamora RA, Parra LP (2016) Discovery, molecular mechanisms, and industrial applications of cold-active enzymes. Front Microbiol 7:1408. doi:10.3389/fmicb.2016.01408

    PubMed  PubMed Central  Google Scholar 

  • Sarmiento F, Peralta R, Blamey JM (2015) Cold and hot extremozymes: industrial relevance and current trends. Front Bioeng Biotechnol 3:148. doi:10.3389/fbioe.2015.00148

    Article  PubMed  PubMed Central  Google Scholar 

  • Schmidt M, Stougaard P (2010) Identification, cloning and expression of a cold-active beta-galactosidase from a novel Arctic bacterium, Alkalilactibacillus ikkense. Environ Technol 31(10):1107–1114. doi:10.1080/09593331003677872

    Article  CAS  PubMed  Google Scholar 

  • Shahidi F, Janak Kamil YVA (2001) Enzymes from fish and aquatic invertebrates and their application in the food industry. Trends Food Sci Tech 12(12):435–464. doi:10.1016/S0924-2244(02)00021-3

    Article  Google Scholar 

  • Shimizu K, Cha J, Stucky GD, Morse DE (1998) Silicatein α: cathepsin L-like protein in sponge biosilica. Proc Natl Acad Sci USA 95(11):6234–6238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siddiqui KS (2015) Some like it hot, some like it cold: Temperature dependent biotechnological applications and improvements in extremophilic enzymes. Biotechnol Adv 33(8):1912–1922. doi:10.1016/j.biotechadv.2015.11.001

    Article  CAS  PubMed  Google Scholar 

  • Stougaard P, Schmidt M (2012) Cold-active beta-galactosidase, a method of producing same and use of such enzyme. Granted Patents US8288143, EP2396403B1, EP2396403B8, CN102361974B

    Google Scholar 

  • Suen W-C, Zhang N, Xiao L, Madison V, Zaks A (2004) Improved activity and thermostability of Candida antarctica lipase B by DNA family shuffling. Protein Eng Des Sel 17(2):133–140. doi:10.1093/protein/gzh017

    Article  CAS  PubMed  Google Scholar 

  • Sullivan CW, Shizuya H, Kobori H (1988) Heat sensitive bacterial alkaline phosphatase. Granted Patent US4720458

    Google Scholar 

  • The Freedonia Group (2016) World enzymes industry study with forecasts for 2020 & 2025, Study #3417. https://www.freedoniagroup.com/brochure/34xx/3417smwe.pdf

  • Tsuji M, Yokota Y, Shimohara K, Kudoh S, Hoshino T (2013) An application of wastewater treatment in a cold environment and stable lipase production of Antarctic basidiomycetous yeast Mrakia blollopis. PLoS One 8(3):e59376. doi:10.1371/journal.pone.0059376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tu T, Meng K, Bai Y, Shi P, Luo H, Wang Y, Yang P, Zhang Y, Zhang W, Yao B (2013) High-yield production of a low-temperature-active polygalacturonase for papaya juice clarification. Food Chem 141(3):2974–2981. doi:10.1016/j.foodchem.2013.05.132

    Article  CAS  PubMed  Google Scholar 

  • Valentini F, Diamanti A, Palleschi G (2010) New bio-cleaning strategies on porous building materials affected by biodeterioration event. Appl Surf Sci 256(22):6550–6563. doi:10.1016/j.apsusc.2010.04.046

    Article  CAS  Google Scholar 

  • Van de Voorde I, Goiris K, Syryn E, Van den Bussche C, Aerts G (2014) Evaluation of the cold-active Pseudoalteromonas haloplanktis β-galactosidase enzyme for lactose hydrolysis in whey permeate as primary step of D-tagatose production. Process Biochem 49(12):2134–2140. doi:10.1016/j.procbio.2014.09.010

    Article  Google Scholar 

  • Venugopal V (2016) Enzymes from seafood processing waste and their applications in seafood processing. In: Se-Kwon K, Fidel T (eds) Advances in food and nutrition research, vol 78. Academic, New York, pp 47–69. doi:10.1016/bs.afnr.2016.06.004

    Google Scholar 

  • Wang X, Schloßmacher U, Wiens M, Batel R, Schröder HC, Müller WEG (2012) Silicateins, silicatein interactors and cellular interplay in sponge skeletogenesis: formation of glass fiber-like spicules. FEBS J 279(10):1721–1736. doi:10.1111/j.1742-4658.2012.08533.x

    Article  CAS  PubMed  Google Scholar 

  • Webster A, May E (2006) Bioremediation of weathered-building stone surfaces. Trends Biotechnol 24(6):255–260. doi:10.1016/j.tibtech.2006.04.005

    Article  CAS  PubMed  Google Scholar 

  • Wen J, Ren C, Huang N, Liu Y, Zeng R (2015) Draft genome of bagasse-degrading bacteria Bacillus aryabhattai GZ03 from deep sea water. Mar Genomics 19:13–14. doi:10.1016/j.margen.2014.11.004

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

T.C. is supported by the Fundação para a Ciência e a Tecnologia (FCT), the European Social Fund, the Programa Operacional Potencial Humano and the Investigador FCT Programme (IF/01635/2014). M.B. acknowledges the FCT for grant PD/BD/113810/2015 within the Doctoral Program in Applied and Environmental Microbiology. This work was funded by the European Regional Development Fund (ERDF) through project EcoAgriFood (NORTE-01-0145-FEDER-000009) via the North Portugal Regional Operational Programme (NORTE 2020) under the PORTUGAL 2020 Partnership Agreement. The FCT is thanked for their funding through EngXyl (EXPL/BBB-BIO/1772/2013-FCOMP-01-0124-FEDER-041595) and the strategic program UID/BIA/04050/2013 (POCI-01-0145-FEDER-007569). All the technical staff at the CBMA are thanked for their skillful technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tony Collins .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Barroca, M., Santos, G., Gerday, C., Collins, T. (2017). Biotechnological Aspects of Cold-Active Enzymes. In: Margesin, R. (eds) Psychrophiles: From Biodiversity to Biotechnology. Springer, Cham. https://doi.org/10.1007/978-3-319-57057-0_19

Download citation

Publish with us

Policies and ethics