Skip to main content

Advertisement

Log in

Industrial applications of immobilized nano-biocatalysts

  • Critical Review
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Immobilized enzyme-based catalytic constructs could greatly improve various industrial processes due to their extraordinary catalytic activity and reaction specificity. In recent decades, nano-enzymes, defined as enzyme immobilized on nanomaterials, gained popularity for the enzymes’ improved stability, reusability, and ease of separation from the biocatalytic process. Thus, enzymes can be strategically incorporated into nanostructured materials to engineer nano-enzymes, such as nanoporous particles, nanofibers, nanoflowers, nanogels, nanomembranes, metal–organic frameworks, multi-walled or single-walled carbon nanotubes, and nanoparticles with tuned shape and size. Surface-area-to-volume ratio, pore-volume, chemical compositions, electrical charge or conductivity of nanomaterials, protein charge, hydrophobicity, and amino acid composition on protein surface play fundamental roles in the nano-enzyme preparation and catalytic properties. With proper understanding, the optimization of the above-mentioned factors will lead to favorable micro-environments for biocatalysts of industrial relevance. Thus, the application of nano-enzymes promise to further strengthen the advances in catalysis, biotransformation, biosensing, and biomarker discovery. Herein, this review article spotlights recent progress in nano-enzyme development and their possible implementation in different areas, including biomedicine, biosensors, bioremediation of industrial pollutants, biofuel production, textile, leather, detergent, food industries and antifouling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

CNTs:

Carbon nanotubes

ChOx:

Cholesterol oxidase

GONS:

Graphene oxide nanosheets

GOx:

Glucose oxidase

HRP:

Horseradish peroxidase

MNPs:

Magnetic nanoparticles

MWCNTs:

Multi-walled carbon nanotubes

NBC:

Nanobiocatalytic

NBT:

Nanobiotechnology

NC:

Nanocomposite

NEs:

Nanoenzymes

NM:

Nanomaterial

NPs:

Nanoparticles

PEG:

Polyethylene glycol

PLGA:

Polylactic–polyglycolic acid

PS:

Polystyrene

SOD:

Superoxide dismutase

References

  1. Homaei AA, Sariri R, Vianello F, Stevanato R (2013) Enzyme immobilization: an update. J Chem Biol 6:185–205

    Article  PubMed  PubMed Central  Google Scholar 

  2. Ashkan Z, Hemmati R, Homaei A, Dinari A, Jamlidoost M, Tashakor A (2020) Immobilization of enzymes on nanoinorganic support materials: an update. Int J Biol Macromol 168:708–721

    Article  PubMed  Google Scholar 

  3. Zahirinejad S, Hemmati R, Homaei A, Dinari A, Hosseinkhani S, Mohammadi S, Vianello F (2021) Nano-organic supports for enzyme immobilization: scopes and perspectives. Colloids Surf B Biointerfaces 204:111774

    Article  CAS  PubMed  Google Scholar 

  4. Lahiji S, Hemmati R, Homaei A, Saffar B, Ghorbani M (2021) Improved thermal stability of phytase from Yersinia intermedia by physical adsorption immobilization on amino-multiwalled carbon nanotubes. Bioproc Biosyst Eng 44:2217–2228

  5. Guisan JM (2006) Immobilization of enzymes as the 21st century begins. Immobilization of enzymes and cells 1–13

  6. Ansari SA, Husain Q (2012) Potential applications of enzymes immobilized on/in nano materials: a review. Biotechnol Adv 30:512–523

    Article  CAS  PubMed  Google Scholar 

  7. Pundir CS (2015) Enzyme nanoparticles: preparation, characterisation, properties and applications. William Andrew, Norwich

    Google Scholar 

  8. Husain Q (2016) Magnetic nanoparticles as a tool for the immobilization/stabilization of hydrolases and their applications: an overview. Biointerface Res Appl Chem 6:1585–1606

  9. Kim J, Grate JW, Wang P (2008) Nanobiocatalysis and its potential applications. Trends Biotechnol 26:639–646

    Article  CAS  PubMed  Google Scholar 

  10. Husain Q (2017) Nanomaterials immobilized cellulolytic enzymes and their industrial applications: a literature review. JSM Biochem Mol Biol 4:1029

    Google Scholar 

  11. Husain Q (2017) High yield immobilization and stabilization of oxidoreductases using magnetic nanosupports and their potential applications: an update. Curr Catal 6:168–187

    Article  CAS  Google Scholar 

  12. Mu Q, Liu W, Xing Y, Zhou H, Li Z, Zhang Y, Ji L, Wang F, Si Z, Zhang B (2008) Protein binding by functionalized multiwalled carbon nanotubes is governed by the surface chemistry of both parties and the nanotube diameter. J Phys Chem C 112:3300–3307

    Article  CAS  Google Scholar 

  13. Gu Z, Yang Z, Chong Y, Ge C, Weber JK, Bell DR, Zhou R (2015) Surface curvature relation to protein adsorption for carbon-based nanomaterials. Sci Rep 5:1–9

    Article  Google Scholar 

  14. Kim J, Grate JW, Wang P (2006) Nanostructures for enzyme stabilization. Chem Eng Sci 61:1017–1026

    Article  CAS  Google Scholar 

  15. Wang P (2006) Nanoscale biocatalyst systems. Curr Opin Biotechnol 17:574–579

    Article  CAS  PubMed  Google Scholar 

  16. Husain Q (2017) Nanosupport bound lipases their stability and applications. Biointerface Res Appl Chem 7:2194–2216

    CAS  Google Scholar 

  17. Homaei AA, Sajedi RH, Sariri R, Seyfzadeh S, Stevanato R (2010) Cysteine enhances activity and stability of immobilized papain. Amino Acids 38:937–942

    Article  CAS  PubMed  Google Scholar 

  18. Homaei A (2015) Enzyme immobilization and its application in the food industry. Adv Food Biotechnol 9:145–164

    Article  Google Scholar 

  19. Homaei A, Saberi D (2015) Immobilization of α-amylase on gold nanorods: an ideal system for starch processing. Process Biochem 50:1394–1399

    Article  CAS  Google Scholar 

  20. Homaei A, Barkheh H, Sariri R, Stevanato R (2014) Immobilized papain on gold nanorods as heterogeneous biocatalysts. Amino Acids 46:1649–1657

    Article  CAS  PubMed  Google Scholar 

  21. Homaei A (2017) Immobilization of Penaeus merguiensis alkaline phosphatase on gold nanorods for heavy metal detection. Ecotoxicol Environ Saf 136:1–7

    Article  CAS  PubMed  Google Scholar 

  22. Homaei A, Samari F (2017) Investigation of activity and stability of papain by adsorption on multi-wall carbon nanotubes. Int J Biol Macromol 105:1630–1635

    Article  CAS  PubMed  Google Scholar 

  23. Ranjbari N, Razzaghi M, Fernandez-Lafuente R, Shojaei F, Satari M, Homaei A (2019) Improved features of a highly stable protease from Penaeus vannamei by immobilization on glutaraldehyde activated graphene oxide nanosheets. Int J Biol Macromol 130:564–572

    Article  CAS  PubMed  Google Scholar 

  24. Shojaei F, Homaei A, Taherizadeh MR, Kamrani E (2017) Characterization of biosynthesized chitosan nanoparticles from Penaeus vannamei for the immobilization of P. vannamei protease: an eco-friendly nanobiocatalyst. Int J Food Prop 20:1413–1423

    CAS  Google Scholar 

  25. Diyanat S, Homaei A, Mosaddegh E (2018) Immobilization of Penaeus vannamei protease on ZnO nanoparticles for long-term use. Int J Biol Macromol 118:92–98

    Article  CAS  PubMed  Google Scholar 

  26. Parak WJ, Gerion D, Pellegrino T, Zanchet D, Micheel C, Williams SC, Boudreau R, Le Gros MA, Larabell CA, Alivisatos AP (2003) Biological applications of colloidal nanocrystals. Nanotechnology 14:R15

    Article  CAS  Google Scholar 

  27. Xu P, Zeng GM, Huang DL, Feng CL, Hu S, Zhao MH, Lai C, Wei Z, Huang C, Xie GX (2012) Use of iron oxide nanomaterials in wastewater treatment: a review. Sci Total Environ 424:1–10

    Article  CAS  PubMed  Google Scholar 

  28. Gong J-L, Wang B, Zeng G-M, Yang C-P, Niu C-G, Niu Q-Y, Zhou W-J, Liang Y (2009) Removal of cationic dyes from aqueous solution using magnetic multi-wall carbon nanotube nanocomposite as adsorbent. J Hazard Mater 164:1517–1522

    Article  CAS  PubMed  Google Scholar 

  29. Lai C, Wang M-M, Zeng G-M, Liu Y-G, Huang D-L, Zhang C, Wang R-Z, Xu P, Cheng M, Huang C (2016) Synthesis of surface molecular imprinted TiO2/graphene photocatalyst and its highly efficient photocatalytic degradation of target pollutant under visible light irradiation. Appl Surf Sci 390:368–376

    Article  CAS  Google Scholar 

  30. De Crozals G, Bonnet R, Farre C, Chaix C (2016) Nanoparticles with multiple properties for biomedical applications: a strategic guide. Nano Today 11:435–463

    Article  Google Scholar 

  31. Thorkelsson K, Bai P, Xu T (2015) Self-assembly and applications of anisotropic nanomaterials: a review. Nano Today 10:48–66

    Article  CAS  Google Scholar 

  32. Brigger I, Dubernet C, Couvreur P (2012) Nanoparticles in cancer therapy and diagnosis. Adv Drug Deliv Rev 64:24–36

    Article  Google Scholar 

  33. Nam J-M, Thaxton CS, Mirkin CA (2003) Nanoparticle-based bio-bar codes for the ultrasensitive detection of proteins. Science 301:1884–1886

    Article  CAS  PubMed  Google Scholar 

  34. Niemeyer CM (2001) Nanoparticles, proteins, and nucleic acids: biotechnology meets materials science. Angew Chem Int Ed 40:4128–4158

    Article  CAS  Google Scholar 

  35. Webster TJ, Schadler LS, Siegel RW, Bizios R (2001) Mechanisms of enhanced osteoblast adhesion on nanophase alumina involve vitronectin. Tissue Eng 7:291–301

    Article  CAS  PubMed  Google Scholar 

  36. Czeslik C, Winter R (2001) Effect of temperature on the conformation of lysozyme adsorbed to silica particles. Phys Chem Chem Phys 3:235–239

    Article  CAS  Google Scholar 

  37. Chen M, Zeng G, Xu P, Lai C, Tang L (2017) How do enzymes ‘meet’ nanoparticles and nanomaterials? Trends Biochem Sci 42:914–930

    Article  PubMed  Google Scholar 

  38. Sarno M, Iuliano M, Polichetti M, Ciambelli P (2017) High activity and selectivity immobilized lipase on Fe3O4 nanoparticles for banana flavour synthesis. Process Biochem 56:98–108

    Article  CAS  Google Scholar 

  39. Kavetskyy T, Stasyuk N, Smutok O, Demkiv O, Kukhazh Y, Hoivanovych N, Boev V, Ilcheva V, Petkova T, Gonchar M (2019) Improvement of amperometric laccase biosensor using enzyme-immobilized gold nanoparticles coupling with ureasil polymer as a host matrix. Gold Bull 52:79–85

    Article  CAS  Google Scholar 

  40. Landarani-Isfahani A, Taheri-Kafrani A, Amini M, Mirkhani V, Moghadam M, Soozanipour A, Razmjou A (2015) Xylanase immobilized on novel multifunctional hyperbranched polyglycerol-grafted magnetic nanoparticles: an efficient and robust biocatalyst. Langmuir 31:9219–9227

    Article  CAS  PubMed  Google Scholar 

  41. Besharati Vineh M, Saboury AA, Poostchi AA, Mamani L (2018) Physical adsorption of horseradish peroxidase on reduced graphene oxide nanosheets functionalized by amine: a good system for biodegradation of high phenol concentration in wastewater. Int J Environ Res 12:45–57

    Article  CAS  Google Scholar 

  42. Bower C, Sananikone S, Bothwell M, McGuire J (1999) Activity losses among T4 lysozyme charge variants after adsorption to colloidal silica. Biotechnol Bioeng 64:373–376

    Article  CAS  PubMed  Google Scholar 

  43. Magro M, Baratella D, Venerando A, Nalotto G, Basso CR, Molinari S, Salviulo G, Ugolotti J, Pedrosa VA, Vianello F (2020) Enzyme immobilization on maghemite nanoparticles with improved catalytic activity: an electrochemical study for xanthine. Materials 13:1776

    Article  CAS  PubMed Central  Google Scholar 

  44. Magro M, Cozza G, Molinari S, Venerando A, Baratella D, Miotto G, Zennaro L, Rossetto M, Frömmel J, Kopečná M (2020) Role of carboxylic group pattern on protein surface in the recognition of iron oxide nanoparticles: a key for protein corona formation. Int J Biol Macromol 164:1715–1728

    Article  CAS  PubMed  Google Scholar 

  45. Magro M, Baratella D, Miotto G, Frömmel J, Šebela M, Kopečná M, Agostinelli E, Vianello F (2019) Enzyme self-assembly on naked iron oxide nanoparticles for aminoaldehyde biosensing. Amino Acids 51:679–690

    Article  CAS  PubMed  Google Scholar 

  46. Johnson BJ, Algar WR, Malanoski AP, Ancona MG, Medintz IL (2014) Understanding enzymatic acceleration at nanoparticle interfaces: approaches and challenges. Nano Today 9:102–131

    Article  CAS  Google Scholar 

  47. Ding S, Cargill AA, Medintz IL, Claussen JC (2015) Increasing the activity of immobilized enzymes with nanoparticle conjugation. Curr Opin Biotechnol 34:242–250

    Article  CAS  PubMed  Google Scholar 

  48. Breger JC, Ancona MG, Walper SA, Oh E, Susumu K, Stewart MH, Deschamps JR, Medintz IL (2015) Understanding how nanoparticle attachment enhances phosphotriesterase kinetic efficiency. ACS Nano 9:8491–8503

    Article  CAS  PubMed  Google Scholar 

  49. Crommelin DJ, Storm G, Jiskoot W, Stenekes R, Mastrobattista E, Hennink WE (2003) Nanotechnological approaches for the delivery of macromolecules. J Control Release 87:81–88

    Article  CAS  PubMed  Google Scholar 

  50. Heredia KL, Maynard HD (2006) Synthesis of protein–polymer conjugates. Org Biomol Chem 5:45–53

    Article  PubMed  Google Scholar 

  51. Shang W, Nuffer JH, Muñiz-Papandrea VA, Colón W, Siegel RW, Dordick JS (2009) Cytochrome c on silica nanoparticles: influence of nanoparticle size on protein structure, stability, and activity. Small 5:470–476

    Article  CAS  PubMed  Google Scholar 

  52. Wilson GS, Hu Y (2000) Enzyme-based biosensors for in vivo measurements. Chem Rev 100:2693–2704

    Article  CAS  PubMed  Google Scholar 

  53. Wilson GS, Gifford R (2005) Biosensors for real-time in vivo measurements. Biosens Bioelectron 20:2388–2403

    Article  CAS  PubMed  Google Scholar 

  54. Homaei A (2015) Enhanced activity and stability of papain immobilized on CNBr-activated sepharose. Int J Biol Macromol 75:373–377

    Article  CAS  PubMed  Google Scholar 

  55. Shi X, Gu W, Li B, Chen N, Zhao K, Xian Y (2014) Enzymatic biosensors based on the use of metal oxide nanoparticles. Microchim Acta 181:1–22

    Article  CAS  Google Scholar 

  56. Kishen A, John M, Lim C, Asundi A (2003) A fiber optic biosensor (FOBS) to monitor mutans streptococci in human saliva. Biosens Bioelectron 18:1371–1378

    Article  CAS  PubMed  Google Scholar 

  57. Wolfbeis OS (2008) Fiber-optic chemical sensors and biosensors. Anal Chem 80:4269–4283

    Article  CAS  PubMed  Google Scholar 

  58. Zeng S, Yong K-T, Roy I, Dinh X-Q, Yu X, Luan F (2011) A review on functionalized gold nanoparticles for biosensing applications. Plasmonics 6:491

    Article  CAS  Google Scholar 

  59. Scheller FW, Wollenberger U, Warsinke A, Lisdat F (2001) Research and development in biosensors. Curr Opin Biotechnol 12:35–40

    Article  CAS  PubMed  Google Scholar 

  60. Husain Q (2018) Nanocarriers immobilized proteases and their industrial applications: an overview. J Nanosci Nanotechnol 18:486–499

    Article  CAS  PubMed  Google Scholar 

  61. Karunakaran C, Rajkumar R, Bhargava K (2015) Introduction to biosensors. Biosensors and bioelectronics, Elsevier

  62. Sistani P, Sofimaryo L, Masoudi ZR, Sayad A, Rahimzadeh R, Salehi B (2014) A penicillin biosensor by using silver nanoparticles. Int J Electrochem Sci 9:6201–6212

    Google Scholar 

  63. Bourigua S, Maaref A, Bessueille F, Renault NJ (2012) A new design of electrochemical and optical biosensors based on biocatalytic growth of au nanoparticles - example of glucose detection. Electroanalysis 25:644–651

    Article  Google Scholar 

  64. Yang T, Li Z, Wang L, Guo C, Sun Y (2007) Synthesis, characterization, and self-assembly of protein lysozyme monolayer-stabilized gold nanoparticles. Langmuir 23:10533–10538

    Article  CAS  PubMed  Google Scholar 

  65. Sharma B, Mandani S, Sarma TK (2014) Enzymes as bionanoreactors: glucose oxidase for the synthesis of catalytic Au nanoparticles and Au nanoparticle–polyaniline nanocomposites. J Mater Chem B 2:4072–4079

    Article  CAS  PubMed  Google Scholar 

  66. Urbanova V, Magro M, Gedanken A, Baratella D, Vianello F, Zboril R (2014) Nanocrystalline iron oxides, composites, and related materials as a platform for electrochemical, magnetic, and chemical biosensors. Chem Mater 26:6653–6673

    Article  CAS  Google Scholar 

  67. Magro M, Baratella D, Pianca N, Toninello A, Grancara S, Zboril R, Vianello F (2013) Electrochemical determination of hydrogen peroxide production by isolated mitochondria: a novel nanocomposite carbon–maghemite nanoparticle electrode. Sens Actuators B Chem 176:315–322

    Article  CAS  Google Scholar 

  68. Magro M, Sinigaglia G, Nodari L, Tucek J, Polakova K, Marusak Z, Cardillo S, Salviulo G, Russo U, Stevanato R (2012) Charge binding of rhodamine derivative to OH− stabilized nanomaghemite: universal nanocarrier for construction of magnetofluorescent biosensors. Acta Biomater 8:2068–2076

    Article  CAS  PubMed  Google Scholar 

  69. Sinigaglia G, Magro M, Miotto G, Cardillo S, Agostinelli E, Zboril R, Bidollari E, Vianello F (2012) Catalytically active bovine serum amine oxidase bound to fluorescent and magnetically drivable nanoparticles. Int J Nanomed 7:2249

    CAS  Google Scholar 

  70. Baratella D, Magro M, Sinigaglia G, Zboril R, Salviulo G, Vianello F (2013) A glucose biosensor based on surface active maghemite nanoparticles. Biosens Bioelectron 45:13–18

    Article  CAS  PubMed  Google Scholar 

  71. Liao M-H, Guo J-C, Chen W-C (2006) A disposable amperometric ethanol biosensor based on screen-printed carbon electrodes mediated with ferricyanide-magnetic nanoparticle mixture. J Magn Magn Mater 304:e421–e423

    Article  CAS  Google Scholar 

  72. Baby TT, Ramaprabhu S (2010) SiO2 coated Fe3O4 magnetic nanoparticle dispersed multiwalled carbon nanotubes based amperometric glucose biosensor. Talanta 80:2016–2022

    Article  CAS  PubMed  Google Scholar 

  73. Pal S, Alocilja EC (2009) Electrically active polyaniline coated magnetic (EAPM) nanoparticle as novel transducer in biosensor for detection of Bacillus anthracis spores in food samples. Biosens Bioelectron 24:1437–1444

    Article  CAS  PubMed  Google Scholar 

  74. Wang S, Tan Y, Zhao D, Liu G (2008) Amperometric tyrosinase biosensor based on Fe3O4 nanoparticles–chitosan nanocomposite. Biosens Bioelectron 23:1781–1787

    Article  CAS  PubMed  Google Scholar 

  75. Díez P, Villalonga R, Villalonga ML, Pingarrón JM (2012) Supramolecular immobilization of redox enzymes on cyclodextrin-coated magnetic nanoparticles for biosensing applications. J Colloid Interface Sci 386:181–188

    Article  PubMed  Google Scholar 

  76. Stanciu L, Won Y-H, Ganesana M, Andreescu S (2009) Magnetic particle-based hybrid platforms for bioanalytical sensors. Sensors 9:2976–2999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Putzbach W, Ronkainen N (2013) Immobilization techniques in the fabrication of nanomaterial-based electrochemical biosensors: a review. Sensors 13:4811–4840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Kumar A, Park GD, Patel SKS, Kondaveeti S, Otari S, Anwar MZ, Kalia VC, Singh Y, Kim SC, Cho B-K, Sohn J-H, Kim DR, Kang YC, Lee J-K (2019) SiO2 microparticles with carbon nanotube-derived mesopores as an efficient support for enzyme immobilization. Chem Eng J 359:1252–1264

    Article  CAS  Google Scholar 

  79. Yu C-Y, Huang L-Y, Kuan I, Lee S-L (2013) Optimized production of biodiesel from waste cooking oil by lipase immobilized on magnetic nanoparticles. Int J Mol Sci 14:24074–24086

    Article  PubMed  PubMed Central  Google Scholar 

  80. Mangas-Sánchez J, Adlercreutz P (2015) Highly efficient enzymatic biodiesel production promoted by particle-induced emulsification. Biotechnol Biofuels 8:1–8

    Article  Google Scholar 

  81. Babaki M, Yousefi M, Habibi Z, Mohammadi M, Yousefi P, Mohammadi J, Brask J (2016) Enzymatic production of biodiesel using lipases immobilized on silica nanoparticles as highly reusable biocatalysts: effect of water, t-butanol and blue silica gel contents. Renew Energy 91:196–206

    Article  CAS  Google Scholar 

  82. Cho EJ, Jung S, Kim HJ, Lee YG, Nam KC, Lee H-J, Bae H-J (2012) Co-immobilization of three cellulases on Au-doped magnetic silica nanoparticles for the degradation of cellulose. Chem Commun 48:886–888

    Article  CAS  Google Scholar 

  83. Abraham RE, Verma ML, Barrow CJ, Puri M (2014) Suitability of magnetic nanoparticle immobilised cellulases in enhancing enzymatic saccharification of pretreated hemp biomass. Biotechnol Biofuels 7:90

    Article  PubMed  PubMed Central  Google Scholar 

  84. Cruz-Izquierdo Á, Picó EA, López C, Serra JL, Llama MJ (2014) Magnetic cross-linked enzyme aggregates (mCLEAs) of Candida antarctica lipase: an efficient and stable biocatalyst for biodiesel synthesis. PLoS One 9:e115202

    Article  PubMed  PubMed Central  Google Scholar 

  85. DiCosimo R, McAuliffe J, Poulose AJ, Bohlmann G (2013) Industrial use of immobilized enzymes. Chem Soc Rev 42:6437

    Article  CAS  PubMed  Google Scholar 

  86. Nisha S, Karthick SA, Gobi N (2012) A review on methods, application and properties of immobilized enzyme. Chem Sci Rev Lett 1:148–155

    Google Scholar 

  87. Leong SS, Ahmad Z, Low SC, Camacho J, Faraudo J, Lim J (2020) Unified view of magnetic nanoparticle separation under magnetophoresis. Langmuir 36:8033–8055

    Article  CAS  PubMed  Google Scholar 

  88. Misson M, Zhang H, Jin B (2015) Nanobiocatalyst advancements and bioprocessing applications. J R Soc Interface 12:20140891

    Article  PubMed  PubMed Central  Google Scholar 

  89. Lupoi JS, Smith EA (2011) Evaluation of nanoparticle-immobilized cellulase for improved ethanol yield in simultaneous saccharification and fermentation reactions. Biotechnol Bioeng 108:2835–2843

    Article  CAS  PubMed  Google Scholar 

  90. Chang RH-Y, Jang J, Wu KCW (2011) Cellulase immobilized mesoporous silica nanocatalysts for efficient cellulose-to-glucose conversion. Green Chem 13:2844

    Article  CAS  Google Scholar 

  91. Cho EJ, Jung S, Kim HJ, Lee YG, Nam KC, Lee H-J, Bae H-J (2012) Co-immobilization of three cellulases on Au-doped magnetic silicananoparticles for the degradation of cellulose. Chem Commun 48:886–888

    Article  CAS  Google Scholar 

  92. Lv Y, Lin Z, Tan T, Svec F (2013) Preparation of reusable bioreactors using reversible immobilization of enzyme on monolithic porous polymer support with attached gold nanoparticles. Biotechnol Bioeng 111:50–58

    Article  PubMed  Google Scholar 

  93. Raghavendra T, Basak A, Manocha LM, Shah AR, Madamwar D (2013) Robust nanobioconjugates of Candida antarctica lipase B - multiwalled carbon nanotubes: characterization and application for multiple usages in non-aqueous biocatalysis. Biores Technol 140:103–110

    Article  CAS  Google Scholar 

  94. Mubarak NM, Wong JR, Tan KW, Sahu JN, Abdullah EC, Jayakumar NS, Ganesan P (2014) Immobilization of cellulase enzyme on functionalized multiwall carbon nanotubes. J Mol Catal B Enzym 107:124–131

    Article  CAS  Google Scholar 

  95. Pavlidis IV, Tsoufis T, Enotiadis A, Gournis D, Stamatis H (2010) Functionalized multi-wall carbon nanotubes for lipase immobilization. Adv Eng Mater 12:B179–B183

    Article  Google Scholar 

  96. Torchilin VP (1988) Immobilised enzymes as drugs. Adv Drug Deliv Rev 1:270

    Article  Google Scholar 

  97. Vellard M (2003) The enzyme as drug: application of enzymes as pharmaceuticals. Curr Opin Biotechnol 14:444–450

    Article  CAS  PubMed  Google Scholar 

  98. Driscoll CF, Morris RM, Senyei AE, Widder KJ, Heller GS (1984) Magnetic targeting of microspheres in blood flow. Microvasc Res 27:353–369

    Article  CAS  PubMed  Google Scholar 

  99. De Strooper B, Vassar R, Golde T (2010) The secretases: enzymes with therapeutic potential in Alzheimer disease. Nat Rev Neurol 6:99–107

    Article  PubMed  PubMed Central  Google Scholar 

  100. Vertegel AA, Reukov V, Maximov V (2011) Enzyme–Nanoparticle conjugates for biomedical applications. Enzyme Stabilization and Immobilization, Springer

  101. Wang M, Zhang J, Yuan Z, Yang W, Wu Q, Gu H (2012) Targeted thrombolysis by using of magnetic mesoporous silica nanoparticles. J Biomed Nanotechnol 8:624–632

    Article  CAS  PubMed  Google Scholar 

  102. Torchilin VP, Papisov MI, Smirnov VN (1985) Magnetic sephadex as a carrier for enzyme immobilization and drug targeting. J Biomed Mater Res 19:461–466

    Article  CAS  PubMed  Google Scholar 

  103. Ma Y-H, Hsu Y-W, Chang Y-J, Hua M-Y, Chen J-P, Wu T (2007) Intra-arterial application of magnetic nanoparticles for targeted thrombolytic therapy: a rat embolic model. J Magn Magn Mater 311:342–346

    Article  CAS  Google Scholar 

  104. Capitanescu C, Macovei Oprescu AM, Ionita D, Dinca GV, Turculet C, Manole G, Macovei RA (2016) Molecular processes in the streptokinase thrombolytic therapy. J Enzyme Inhib Med Chem 31:1411–1414

    Article  CAS  PubMed  Google Scholar 

  105. Sharma P, Jha AB, Dubey RS, Pessarakli M (2012) Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J Bot 2012

  106. Tiukinhoy-Laing SD, Huang S, Klegerman M, Holland CK, McPherson DD (2007) Ultrasound-facilitated thrombolysis using tissue-plasminogen activator-loaded echogenic liposomes. Thromb Res 119:777–784

    Article  CAS  PubMed  Google Scholar 

  107. Yurko Y, Maximov V, Andreozzi E, Thompson GL, Vertegel AA (2009) Design of biomedical nanodevices for dissolution of blood clots. Mater Sci Eng C 29:737–741

    Article  CAS  Google Scholar 

  108. Sharma P, Jha AB, Dubey RS, Pessarakli M (2012) Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J Bot 2012:1–26

    Article  Google Scholar 

  109. Bargagli E, Olivieri C, Bennett D, Prasse A, Muller-Quernheim J, Rottoli P (2009) Oxidative stress in the pathogenesis of diffuse lung diseases: a review. Respir Med 103:1245–1256

    Article  CAS  PubMed  Google Scholar 

  110. Kliment CR, Oury TD (2010) Oxidative stress, extracellular matrix targets, and idiopathic pulmonary fibrosis. Free Radic Biol Med 49:707–717

    Article  CAS  PubMed  Google Scholar 

  111. Hood ED, Chorny M, Greineder CF, Alferiev IS, Levy RJ, Muzykantov VR (2014) Endothelial targeting of nanocarriers loaded with antioxidant enzymes for protection against vascular oxidative stress and inflammation. Biomaterials 35:3708–3715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Dziubla TD, Shuvaev VV, Hong NK, Hawkins BJ, Madesh M, Takano H, Simone E, Nakada MT, Fisher A, Albelda SM, Muzykantov VR (2008) Endothelial targeting of semi-permeable polymer nanocarriers for enzyme therapies. Biomaterials 29:215–227

    Article  CAS  PubMed  Google Scholar 

  113. Begley DJ (2004) Delivery of therapeutic agents to the central nervous system: the problems and the possibilities. Pharmacol Ther 104:29–45

    Article  CAS  PubMed  Google Scholar 

  114. Alam MI, Beg S, Samad A, Baboota S, Kohli K, Ali J, Ahuja A, Akbar M (2010) Strategy for effective brain drug delivery. Eur J Pharm Sci 40:385–403

    Article  CAS  PubMed  Google Scholar 

  115. Schroeder U, Sommerfeld P, Ulrich S, Sabel BA (1998) Nanoparticle technology for delivery of drugs across the blood-brain barrier. J Pharm Sci 87:1305–1307

    Article  CAS  PubMed  Google Scholar 

  116. Reukov V, Maximov V, Vertegel A (2010) Proteins conjugated to poly(butyl cyanoacrylate) nanoparticles as potential neuroprotective agents. Biotechnol Bioeng 108:243–252

    Article  Google Scholar 

  117. Chen Y-P, Chen C-T, Hung Y, Chou C-M, Liu T-P, Liang M-R, Chen C-T, Mou C-Y (2013) A new strategy for intracellular delivery of enzyme using mesoporous silica nanoparticles: superoxide dismutase. J Am Chem Soc 135:1516–1523

    Article  CAS  PubMed  Google Scholar 

  118. Yang H, Qu L, Wimbrow A, Jiang X, Sun Y-P (2007) Enhancing antimicrobial activity of lysozyme against Listeria monocytogenes using immunonanoparticles. J Food Prot 70:1844–1849

    Article  CAS  PubMed  Google Scholar 

  119. Ashraf S, Chatha M, Ejaz W, Janjua H, Hussain I (2014) Lysozyme-coated silver nanoparticles for differentiating bacterial strains on the basis of antibacterial activity. Nanoscale Res Lett 9:565

    Article  PubMed  PubMed Central  Google Scholar 

  120. Satishkumar R, Vertegel A (2008) Charge-directed targeting of antimicrobial protein-nanoparticle conjugates. Biotechnol Bioeng 100:403–412

    Article  CAS  PubMed  Google Scholar 

  121. Sigurdardóttir SB, Lehmann J, Ovtar S, Grivel JC, Negra MD, Kaiser A, Pinelo M (2018) Enzyme immobilization on inorganic surfaces for membrane reactor applications: mass transfer challenges, enzyme leakage and reuse of materials. Adv Synth Catal 360:2578–2607

    Article  Google Scholar 

  122. Aebersold R, Mann M (2003) Mass spectrometry-based proteomics. Nature 422:198

    Article  CAS  PubMed  Google Scholar 

  123. Fan J, Shui W, Yang P, Wang X, Xu Y, Wang H, Chen X, Zhao D (2005) Mesoporous silica nanoreactors for highly efficient proteolysis. Chem A Eur J 11:5391–5396

    Article  CAS  Google Scholar 

  124. Shui W, Fan J, Yang P, Liu C, Zhai J, Lei J, Yan Y, Zhao D, Chen X (2006) Nanopore-based proteolytic reactor for sensitive and comprehensive proteomic analyses. Anal Chem 78:4811–4819

    Article  CAS  PubMed  Google Scholar 

  125. Zuo C, Yu W, Zhou X, Zhao D, Yang P (2006) Highly efficient enrichment and subsequent digestion of proteins in the mesoporous molecular sieve silicate SBA-15 for matrix-assisted laser desorption/ionization mass spectrometry with time-of-flight/time-of-flight analyzer peptide mapping. Rapid Commun Mass Spectrom 20:3139–3144

    Article  CAS  PubMed  Google Scholar 

  126. Qin W, Song Z, Fan C, Zhang W, Cai Y, Zhang Y, Qian X (2012) Trypsin immobilization on hairy polymer chains hybrid magnetic nanoparticles for ultra fast, highly efficient proteome digestion, facile 18O labeling and absolute protein quantification. Anal Chem 84:3138–3144

    Article  CAS  PubMed  Google Scholar 

  127. Hu Z, Zhao L, Zhang H, Zhang Y, Ra Wu, Zou H (2014) The on-bead digestion of protein corona on nanoparticles by trypsin immobilized on the magnetic nanoparticle. J Chromatogr A 1334:55–63

    Article  CAS  PubMed  Google Scholar 

  128. Fan C, Shi Z, Pan Y, Song Z, Zhang W, Zhao X, Tian F, Peng B, Qin W, Cai Y (2014) Dual matrix-based immobilized trypsin for complementary proteolytic digestion and fast proteomics analysis with higher protein sequence coverage. Anal Chem 86:1452–1458

    Article  CAS  PubMed  Google Scholar 

  129. Jiang B, Yang K, Zhao Q, Wu Q, Liang Z, Zhang L, Peng X, Zhang Y (2012) Hydrophilic immobilized trypsin reactor with magnetic graphene oxide as support for high efficient proteome digestion. J Chromatogr A 1254:8–13

    Article  CAS  PubMed  Google Scholar 

  130. Yuan H, Zhang S, Zhao B, Weng Y, Zhu X, Li S, Zhang L, Zhang Y (2017) Enzymatic reactor with trypsin immobilized on graphene oxide modified polymer microspheres to achieve automated proteome quantification. Anal Chem 89:6324–6329

    Article  CAS  PubMed  Google Scholar 

  131. Ren X, Bai H, Pan Y, Tong W, Qin P, Yan H, Deng S, Zhong R, Qin W, Qian X (2014) A graphene oxide-based immobilized PNGase F reagent for highly efficient N-glycan release and MALDI-TOF MS profiling. Anal Methods 6:2518–2525

    Article  CAS  Google Scholar 

  132. Hermanová S, Zarevúcká M, Bouša D, Pumera M, Sofer Z (2015) Graphene oxide immobilized enzymes show high thermal and solvent stability. Nanoscale 7:5852–5858

    Article  PubMed  Google Scholar 

  133. Chen L, Wei B, Zhang X, Li C (2013) Bifunctional graphene/γ-Fe2O3 hybrid aerogels with double nanocrystalline networks for enzyme immobilization. Small 9:2331–2340

    Article  CAS  PubMed  Google Scholar 

  134. Mu X, Qiao J, Qi L, Dong P, Ma H (2014) Poly (2-vinyl-4, 4-dimethylazlactone)-functionalized magnetic nanoparticles as carriers for enzyme immobilization and its application. ACS Appl Mater Interfaces 6:21346–21354

    Article  CAS  PubMed  Google Scholar 

  135. Wu Q, Wang X, Liao C, Wei Q, Wang Q (2015) Microgel coating of magnetic nanoparticles via bienzyme-mediated free-radical polymerization for colorimetric detection of glucose. Nanoscale 7:16578–16582

    Article  CAS  PubMed  Google Scholar 

  136. Butt A, Farrukh A, Ghaffar A, Duran H, Oluz Z, ur Rehman H, Hussain T, Ahmad R, Tahir A, Yameen B (2015) Design of enzyme-immobilized polymer brush-grafted magnetic nanoparticles for efficient nematicidal activity. RSC Adv 5:77682–77688

    Article  CAS  Google Scholar 

  137. Tully J, Yendluri R, Lvov Y (2016) Halloysite clay nanotubes for enzyme immobilization. Biomacromol 17:615–621

    Article  CAS  Google Scholar 

  138. Chao C, Liu J, Wang J, Zhang Y, Zhang B, Zhang Y, Xiang X, Chen R (2013) Surface modification of halloysite nanotubes with dopamine for enzyme immobilization. ACS Appl Mater Interfaces 5:10559–10564

    Article  CAS  PubMed  Google Scholar 

  139. Jiao F, Zhai R, Huang J, Zhang Y, Zhang Y, Qian X (2016) Hollow silica bubble based immobilized trypsin for highly efficient proteome digestion and buoyant separation. RSC Adv 6:84113–84118

    Article  CAS  Google Scholar 

  140. Chen Z, Zhang J, Singh S, Peltier-Pain P, Thorson JS, Hinds BJ (2014) Functionalized anodic aluminum oxide membrane-electrode system for enzyme immobilization. ACS Nano 8:8104–8112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Shi Q, Su Y, Ning X, Chen W, Peng J, Jiang Z (2011) Trypsin-enabled construction of anti-fouling and self-cleaning polyethersulfone membrane. Biores Technol 102:647–651

    Article  CAS  Google Scholar 

  142. Kim J, Delio R, Dordick JS (2002) Protease-containing silicates as active antifouling materials. Biotechnol Prog 18:551–555

    Article  CAS  PubMed  Google Scholar 

  143. Kim YD, Dordick JS, Clark DS (2001) Siloxane-based biocatalytic films and paints for use as reactive coatings. Biotechnol Bioeng 72:475–482

    Article  CAS  PubMed  Google Scholar 

  144. Kausar A, Rafique I, Muhammad B (2016) Review of applications of polymer/carbon nanotubes and epoxy/CNT composites. Polym Plast Technol Eng 55:1167–1191

    Article  CAS  Google Scholar 

  145. Asuri P, Karajanagi SS, Kane RS, Dordick JS (2007) Polymer–nanotube–enzyme composites as active antifouling films. Small 3:50–53

    Article  CAS  PubMed  Google Scholar 

  146. Akhtar S, Khan AA, Husain Q (2005) Partially purified bitter gourd (Momordica charantia) peroxidase catalyzed decolorization of textile and other industrially important dyes. Biores Technol 96:1804–1811

    Article  CAS  Google Scholar 

  147. Khan AA, Alzohairy MA (2010) Recent advances and applications of immobilized enzyme technologies: a review. Res J Biol Sci 5:565–575

    Article  Google Scholar 

  148. Pandey K, Singh B, Pandey AK, Badruddin IJ, Pandey S, Mishra VK, Jain PA (2017) Application of microbial enzymes in industrial waste water treatment. Int J Curr Microbiol App Sci 6:1243–1254

    Article  Google Scholar 

  149. Zhang W, Yang Q, Luo Q, Shi L, Meng S (2020) Laccase-carbon nanotube nanocomposites for enhancing dyes removal. J Clean Prod 242:118425

    Article  CAS  Google Scholar 

  150. Fulekar M (2010) Nanotechnology: importance and applications. IK International Pvt Ltd, Bangalore

    Google Scholar 

  151. Watlington K (2005) Emerging nanotechnologies for site remediation and wastewater treatment. Environmental Protection Agency

  152. Cloete TE, De Kwaadsteniet M, Botes M (2010) Nanotechnology in water treatment applications. Horizon Scientific Press, Poole

    Google Scholar 

  153. Mojsov K (2011) Application of enzymes in the textile industry: a review

  154. Araujo R, Casal M, Cavaco-Paulo A (2008) Application of enzymes for textile fibres processing. Biocatal Biotransform 26:332–349

    Article  CAS  Google Scholar 

  155. Kirk O, Borchert TV, Fuglsang CC (2002) Industrial enzyme applications. Curr Opin Biotechnol 13:345–351

    Article  CAS  PubMed  Google Scholar 

  156. Olsen HS, Falholt P (1998) The role of enzymes in modern detergency. J Surfactants Deterg 1:555–567

    Article  CAS  Google Scholar 

  157. Heikinheimo L, Buchert J, Miettinen-Oinonen A, Suominen P (2000) Treating denim fabrics with Trichoderma reesei cellulases. Text Res J 70:969–973

    Article  CAS  Google Scholar 

  158. Gupta R, Beg Q, Lorenz P (2002) Bacterial alkaline proteases: molecular approaches and industrial applications. Appl Microbiol Biotechnol 59:15–32

    Article  CAS  PubMed  Google Scholar 

  159. Gupta R, Gigras P, Mohapatra H, Goswami VK, Chauhan B (2003) Microbial α-amylases: a biotechnological perspective. Process Biochem 38:1599–1616

    Article  CAS  Google Scholar 

  160. Hasan F, Shah AA, Hameed A (2006) Industrial applications of microbial lipases. Enzyme Microb Technol 39:235–251

    Article  CAS  Google Scholar 

  161. Cullinan P, Harris J, Taylor AN, Hole A, Jones M, Barnes F, Jolliffe G (2000) An outbreak of asthma in a modern detergent factory. Lancet 356:1899–1900

    Article  CAS  PubMed  Google Scholar 

  162. Soleimani M, Khani A, Najafzadeh K (2012) α-Amylase immobilization on the silica nanoparticles for cleaning performance towards starch soils in laundry detergents. J Mol Catal B Enzym 74:1–5

    Article  CAS  Google Scholar 

  163. Kourkoutas Y, Bekatorou A, Banat IM, Marchant R, Koutinas A (2004) Immobilization technologies and support materials suitable in alcohol beverages production: a review. Food Microbiol 21:377–397

    Article  CAS  Google Scholar 

  164. Çelik A, Dinçer A, Aydemir T (2016) Characterization of β-glucosidase immobilized on chitosan-multiwalled carbon nanotubes (MWCNTS) and their application on tea extracts for aroma enhancement. Int J Biol Macromol 89:406–414

    Article  PubMed  Google Scholar 

  165. Mohnen D (2008) Pectin structure and biosynthesis. Curr Opin Plant Biol 11:266–277

    Article  CAS  PubMed  Google Scholar 

  166. Hiteshi K, Chauhan S, Gupta R (2013) Immobilization of microbial pectinases: a review. CIBTech J Biotechnol 2:37–52

    CAS  Google Scholar 

  167. Kashyap D, Vohra P, Chopra S, Tewari R (2001) Applications of pectinases in the commercial sector: a review. Biores Technol 77:215–227

    Article  CAS  Google Scholar 

  168. Sojitra UV, Nadar SS, Rathod VK (2017) Immobilization of pectinase onto chitosan magnetic nanoparticles by macromolecular cross-linker. Carbohyd Polym 157:677–685

    Article  CAS  Google Scholar 

  169. Shahrestani H, Taheri-Kafrani A, Soozanipour A, Tavakoli O (2016) Enzymatic clarification of fruit juices using xylanase immobilized on 1, 3, 5-triazine-functionalized silica-encapsulated magnetic nanoparticles. Biochem Eng J 109:51–58

    Article  CAS  Google Scholar 

  170. Pricelius S, Murkovic M, Souter P, Guebitz GM (2009) Substrate specificities of glycosidases from Aspergillus species pectinase preparations on elderberry anthocyanins. J Agric Food Chem 57:1006–1012

    Article  CAS  PubMed  Google Scholar 

  171. Talbert JN, Goddard JM (2013) Characterization of lactase-conjugated magnetic nanoparticles. Process Biochem 48:656–662

    Article  CAS  Google Scholar 

  172. Tallapragada P, Dikshit R, Jadhav A, Sarah U (2017) Partial purification and characterization of amylase enzyme under solid state fermentation from Monascus sanguineus. J Genet Eng Biotechnol 15:95–101

    Article  PubMed  PubMed Central  Google Scholar 

  173. Khan MJ, Khan FH, Husain Q (2011) Application of immobilized ipomoea batata β amylase in the saccharification of starch. J Appl Biol Sci 5:33–39

    CAS  Google Scholar 

  174. Khan MJ, Qayyum S, Alam F, Husain Q (2011) Effect of tin oxide nanoparticle binding on the structure and activity of α-amylase from Bacillus amyloliquefaciens. Nanotechnology 22:455708

    Article  PubMed  Google Scholar 

  175. Długosz O, Matysik J, Matyjasik W, Banach M (2020) Catalytic and antimicrobial properties of α-amylase immobilised on the surface of metal oxide nanoparticles. J Clust Sci 1–14

  176. Cabrera MP, Assis CR, Neri DF, Pereira CF, Soria F, Carvalho LB Jr (2017) High sucrolytic activity by invertase immobilized onto magnetic diatomaceous earth nanoparticles. Biotechnol Rep 14:38–46

    Article  Google Scholar 

  177. Ramachandraiah K, Han SG, Chin KB (2015) Nanotechnology in meat processing and packaging: potential applications—a review. Asian Australas J Anim Sci 28:290

    Article  PubMed  PubMed Central  Google Scholar 

  178. Albelda JA, Uzunoglu A, Santos GNC, Stanciu LA (2017) Graphene-titanium dioxide nanocomposite based hypoxanthine sensor for assessment of meat freshness. Biosens Bioelectron 89:518–524

    Article  CAS  PubMed  Google Scholar 

  179. Baratella D, Bonaiuto E, Magro M, de Almeida RJ, Kanamori Y, Lima GPP, Agostinelli E, Vianello F (2018) Endogenous and food-derived polyamines: determination by electrochemical sensing. Amino Acids 50:1187–1203

    Article  CAS  PubMed  Google Scholar 

  180. Apetrei IM, Apetrei C (2015) The biocomposite screen-printed biosensor based on immobilization of tyrosinase onto the carboxyl functionalised carbon nanotube for assaying tyramine in fish products. J Food Eng 149:1–8

    Article  CAS  Google Scholar 

  181. Li D, He Q, Cui Y, Duan L, Li J (2007) Immobilization of glucose oxidase onto gold nanoparticles with enhanced thermostability. Biochem Biophys Res Commun 355:488–493

    Article  CAS  PubMed  Google Scholar 

  182. Grohmann K, Baldwin E (1992) Hydrolysis of orange peel with pectinase and cellulase enzymes. Biotechnol Lett 14:1169–1174

    Article  CAS  Google Scholar 

  183. Wilkins MR, Widmer WW, Grohmann K, Cameron RG (2007) Hydrolysis of grapefruit peel waste with cellulase and pectinase enzymes. Biores Technol 98:1596–1601

    Article  CAS  Google Scholar 

  184. Choi IS, Cho EJ, Moon J-H, Bae H-J (2015) Onion skin waste as a valorization resource for the by-products quercetin and biosugar. Food Chem 188:537–542

    Article  CAS  PubMed  Google Scholar 

  185. Fernández K, Vega M, Aspé E (2015) An enzymatic extraction of proanthocyanidins from País grape seeds and skins. Food Chem 168:7–13

    Article  PubMed  Google Scholar 

  186. Kumar S, Sharma P, Ratrey P, Datta B (2016) Reusable nanobiocatalysts for the efficient extraction of pigments from orange peel. J Food Sci Technol 53:3013–3019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Liu H, Liu J, Tan B, Zhou F, Qin Y, Yang R (2012) Covalent immobilization of Kluyveromyces fragilis β-galactosidase on magnetic nanosized epoxy support for synthesis of galacto-oligosaccharide. Bioprocess Biosyst Eng 35:1287–1295

    Article  CAS  PubMed  Google Scholar 

  188. Song YS, Shin HY, Lee JY, Park C, Kim SW (2012) β-Galactosidase-immobilised microreactor fabricated using a novel technique for enzyme immobilisation and its application for continuous synthesis of lactulose. Food Chem 133:611–617

    Article  CAS  Google Scholar 

  189. Zhang J, Zhang S-Y, Xu J-J, Chen H-Y (2004) A new method for the synthesis of selenium nanoparticles and the application to construction of H2O2 biosensor. Chin Chem Lett 15:1345–1348

    CAS  Google Scholar 

  190. Zhang F, Wang X, Ai S, Sun Z, Wan Q, Zhu Z, Xian Y, Jin L, Yamamoto K (2004) Immobilization of uricase on ZnO nanorods for a reagentless uric acid biosensor. Anal Chim Acta 519:155–160

    Article  CAS  Google Scholar 

  191. Huang J, Liu C, Xiao H, Wang J, Jiang D, Gu E (2007) Zinc tetraaminophthalocyanine-Fe3O4 nanoparticle composite for laccase immobilization. Int J Nanomed 2:775

    CAS  Google Scholar 

  192. Zhang Y, Zeng G, Tang L, Yu H, Li J (2007) Catechol biosensor based on immobilizing laccase to modified core-shell magnetic nanoparticles supported on carbon paste electrode. Huan Jing Ke Xue Huanjing Kexue 28:2320–2325

    CAS  PubMed  Google Scholar 

  193. Galliker P, Hommes G, Schlosser D, Corvini PF-X, Shahgaldian P (2010) Laccase-modified silica nanoparticles efficiently catalyze the transformation of phenolic compounds. J Colloid Interface Sci 349:98–105

    Article  CAS  PubMed  Google Scholar 

  194. Salimi A, Sharifi E, Noorbakhsh A, Soltanian S (2007) Immobilization of glucose oxidase on electrodeposited nickel oxide nanoparticles: direct electron transfer and electrocatalytic activity. Biosens Bioelectron 22:3146–3153

    Article  CAS  PubMed  Google Scholar 

  195. Zhao K, Zhuang S, Chang Z, Songm H, Dai L, He P, Fang Y (2007) Amperometric glucose biosensor based on platinum nanoparticles combined aligned carbon nanotubes electrode. Electroanalysis 19:1069–1074

    Article  CAS  Google Scholar 

  196. Radhakumary C, Sreenivasan K (2011) Naked eye detection of glucose in urine using glucose oxidase immobilized gold nanoparticles. Anal Chem 83:2829–2833

    Article  CAS  PubMed  Google Scholar 

  197. Crespilho FN, Iost RM, Travain SA, Oliveira ON Jr, Zucolotto V (2009) Enzyme immobilization on Ag nanoparticles/polyaniline nanocomposites. Biosens Bioelectron 24:3073–3077

    Article  CAS  PubMed  Google Scholar 

  198. Sahoo B, Sahu SK, Pramanik P (2011) A novel method for the immobilization of urease on phosphonate grafted iron oxide nanoparticle. J Mol Catal B Enzym 69:95–102

    Article  CAS  Google Scholar 

  199. Lin J, Qu W, Zhang S (2007) Disposable biosensor based on enzyme immobilized on Au–chitosan-modified indium tin oxide electrode with flow injection amperometric analysis. Anal Biochem 360:288–293

    Article  CAS  PubMed  Google Scholar 

  200. Wu H, Wang J, Kang X, Wang C, Wang D, Liu J, Aksay IA, Lin Y (2009) Glucose biosensor based on immobilization of glucose oxidase in platinum nanoparticles/graphene/chitosan nanocomposite film. Talanta 80:403–406

    Article  CAS  PubMed  Google Scholar 

  201. Wu Z, Zhang B, Yan B (2009) Regulation of enzyme activity through interactions with nanoparticles. Int J Mol Sci 10:4198–4209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Jang E, Park S, Park S, Lee Y, Kim DN, Kim B, Koh WG (2010) Fabrication of poly (ethylene glycol)-based hydrogels entrapping enzyme-immobilized silica nanoparticles. Polym Adv Technol 21:476–482

    CAS  Google Scholar 

  203. Ma Z, Ding T (2009) Bioconjugates of glucose oxidase and gold nanorods based on electrostatic interaction with enhanced thermostability. Nanoscale Res Lett 4:1236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Mahmoud KA, Male KB, Hrapovic S, Luong JH (2009) Cellulose nanocrystal/gold nanoparticle composite as a matrix for enzyme immobilization. ACS Appl Mater Interfaces 1:1383–1386

    Article  CAS  PubMed  Google Scholar 

  205. Ling YP, Heng LY (2010) A potentiometric formaldehyde biosensor based on immobilization of alcohol oxidase on acryloxysuccinimide-modified acrylic microspheres. Sensors 10:9963–9981

    Article  PubMed  PubMed Central  Google Scholar 

  206. Attar A, Cubillana-Aguilera L, Naranjo-Rodríguez I, de Cisneros JLH-H, Palacios-Santander JM, Amine A (2015) Amperometric inhibition biosensors based on horseradish peroxidase and gold sononanoparticles immobilized onto different electrodes for cyanide measurements. Bioelectrochemistry 101:84–91

    Article  CAS  PubMed  Google Scholar 

  207. Zhang X, Zhang Y, Chen F, Li Y, Zhang S (2016) Visual detection of single-nucleotide polymorphisms and DNA methyltransferase based on cation-exchange of CuS nanoparticles and click chemistry of functionalized gold nanoparticles. Chem Commun 52:13261–13264

    Article  CAS  Google Scholar 

  208. Zheng T, Cherubin P, Cilenti L, Teter K, Huo Q (2016) A simple and fast method to study the hydrodynamic size difference of protein disulfide isomerase in oxidized and reduced form using gold nanoparticles and dynamic light scattering. Analyst 141:934–938

    Article  CAS  PubMed  Google Scholar 

  209. Hushiarian R, Yusof NA, Abdullah AH, Ahmad SAA, Dutse SW (2015) Facilitating the indirect detection of genomic DNA in an electrochemical DNA biosensor using magnetic nanoparticles and DNA ligase. Anal Chem Res 6:17–25

    Article  CAS  Google Scholar 

  210. Karimi M, Habibi-Rezaei M, Rezaei K, Moosavi-Movahedi AA, Kokini J (2016) Immobilization of inulinase from Aspergillus niger on octadecyl substituted nanoporous silica: inulin hydrolysis in a continuous mode operation. Biocatal Agric Biotechnol 7:174–180

    Article  Google Scholar 

  211. Chen M, Zeng G, Lai C, Zhang C, Xu P, Yan M, Xiong W (2017) Interactions of carbon nanotubes and/or graphene with manganese peroxidase during biodegradation of endocrine disruptors and triclosan. Chemosphere 184:127–136

    Article  CAS  PubMed  Google Scholar 

  212. Apetrei IM, Apetrei C (2016) Amperometric biosensor based on diamine oxidase/platinum nanoparticles/graphene/chitosan modified screen-printed carbon electrode for histamine detection. Sensors 16:422

    Article  PubMed  PubMed Central  Google Scholar 

  213. Feifel SC, Kapp A, Lisdat F (2014) Electroactive nanobiomolecular architectures of laccase and cytochrome c on electrodes: applying silica nanoparticles as artificial matrix. Langmuir 30:5363–5367

    Article  CAS  PubMed  Google Scholar 

  214. Li K, Fan Y, He Y, Zeng L, Han X, Yan Y (2017) Burkholderia cepacia lipase immobilized on heterofunctional magnetic nanoparticles and its application in biodiesel synthesis. Sci Rep 7:1–17

    Google Scholar 

  215. Wang X, Liu X, Zhao C, Ding Y, Xu P (2011) Biodiesel production in packed-bed reactors using lipase–nanoparticle biocomposite. Biores Technol 102:6352–6355

    Article  CAS  Google Scholar 

  216. Wang J, Li K, He Y, Wang Y, Han X, Yan Y (2019) Enhanced performance of lipase immobilized onto Co2+-chelated magnetic nanoparticles and its application in biodiesel production. Fuel 255:115794

    Article  CAS  Google Scholar 

  217. Nematian T, Shakeri A, Salehi Z, Saboury AA (2020) Lipase immobilized on functionalized superparamagnetic few-layer graphene oxide as an efficient nanobiocatalyst for biodiesel production from Chlorella vulgaris bio-oil. Biotechnol Biofuels 13:1–15

    Article  Google Scholar 

  218. Fan Y, Wu G, Su F, Li K, Xu L, Han X, Yan Y (2016) Lipase oriented-immobilized on dendrimer-coated magnetic multi-walled carbon nanotubes toward catalyzing biodiesel production from waste vegetable oil. Fuel 178:172–178

    Article  CAS  Google Scholar 

  219. Raita M, Arnthong J, Champreda V, Laosiripojana N (2015) Modification of magnetic nanoparticle lipase designs for biodiesel production from palm oil. Fuel Process Technol 134:189–197

    Article  CAS  Google Scholar 

  220. Bartha-Vári J-H, Moisă ME, Bencze LC, Irimie F-D, Paizs C, Toșa MI (2020) Efficient biodiesel production catalyzed by nanobioconjugate of lipase from Pseudomonas fluorescens. Molecules 25:651

    Article  PubMed Central  Google Scholar 

  221. Fan Y, Su F, Li K, Ke C, Yan Y (2017) Carbon nanotube filled with magnetic iron oxide and modified with polyamidoamine dendrimers for immobilizing lipase toward application in biodiesel production. Sci Rep 7:1–13

    Google Scholar 

  222. Mehrasbi MR, Mohammadi J, Peyda M, Mohammadi M (2017) Covalent immobilization of Candida antarctica lipase on core-shell magnetic nanoparticles for production of biodiesel from waste cooking oil. Renew Energy 101:593–602

    Article  CAS  Google Scholar 

  223. Tran D-T, Chen C-L, Chang J-S (2012) Immobilization of Burkholderia sp. lipase on a ferric silica nanocomposite for biodiesel production. J Biotechnol 158:112–119

    Article  CAS  PubMed  Google Scholar 

  224. Chang M, Lin Y-H, Gabayno JL, Li Q, Liu X (2017) Thrombolysis based on magnetically-controlled surface-functionalized Fe3O4 nanoparticle. Bioengineered 8:29–35

    Article  CAS  PubMed  Google Scholar 

  225. Tadayon A, Jamshidi R, Esmaeili A (2016) Targeted thrombolysis of tissue plasminogen activator and streptokinase with extracellular biosynthesis nanoparticles using optimized Streptococcus equi supernatant. Int J Pharm 501:300–310

    Article  CAS  PubMed  Google Scholar 

  226. Drozdov A, Prilepskii A, Koltsova E, Anastasova E, Vinogradov V (2020) Magnetic polyelectrolyte-based composites with dual anticoagulant and thrombolytic properties: towards optimal composition. J Sol Gel Sci Technol 95:771–782

    Article  CAS  Google Scholar 

  227. Hu J, Huang S, Zhu L, Huang W, Zhao Y, Jin K, ZhuGe Q (2018) Tissue plasminogen activator-porous magnetic microrods for targeted thrombolytic therapy after ischemic stroke. ACS Appl Mater Interfaces 10:32988–32997

    Article  CAS  PubMed  Google Scholar 

  228. Dziubla TD, Shuvaev VV, Hong NK, Hawkins BJ, Madesh M, Takano H, Simone E, Nakada MT, Fisher A, Albelda SM (2008) Endothelial targeting of semi-permeable polymer nanocarriers for enzyme therapies. Biomaterials 29:215–227

    Article  CAS  PubMed  Google Scholar 

  229. Yun X, Maximov VD, Yu J, Vertegel AA, Kindy MS (2013) Nanoparticles for targeted delivery of antioxidant enzymes to the brain after cerebral ischemia and reperfusion injury. J Cereb Blood Flow Metab 33:583–592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Singhal A, Morris V, Labhasetwar V, Ghorpade A (2013) Nanoparticle-mediated catalase delivery protects human neurons from oxidative stress. Cell Death Dis 4:e903–e903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Liu T, Xiao B, Xiang F, Tan J, Chen Z, Zhang X, Wu C, Mao Z, Luo G, Chen X (2020) Ultrasmall copper-based nanoparticles for reactive oxygen species scavenging and alleviation of inflammation related diseases. Nat Commun 11:1–16

    CAS  Google Scholar 

  232. Wang Y, Li S, Jin M, Han Q, Liu S, Chen X, Han Y (2020) Enhancing the thermo-stability and anti-bacterium activity of lysozyme by immobilization on chitosan nanoparticles. Int J Mol Sci 21:1635

    Article  CAS  PubMed Central  Google Scholar 

  233. Muro S, Cui X, Gajewski C, Murciano J-C, Muzykantov VR, Koval M (2003) Slow intracellular trafficking of catalase nanoparticles targeted to ICAM-1 protects endothelial cells from oxidative stress. Am J Physiol Cell Physiol 285:C1339–C1347

    Article  CAS  PubMed  Google Scholar 

  234. Vahdati M, Moghadam TT (2020) Synthesis and characterization of selenium nanoparticles-lysozyme nanohybrid system with synergistic antibacterial properties. Sci Rep 10:1–10

    Article  Google Scholar 

  235. Chapurina YE, Drozdov AS, Popov I, Vinogradov VV, Dudanov IP, Vinogradov VV (2016) Streptokinase@ alumina nanoparticles as a promising thrombolytic colloid with prolonged action. J Mater Chem B 4:5921–5928

    Article  CAS  PubMed  Google Scholar 

  236. Shamsi M, Zahedi P (2017) On-chip preparation of streptokinase entrapped in chitosan nanoparticles used in thrombolytic therapy potentially. J Pharm Sci 106:3623–3630

    Article  CAS  PubMed  Google Scholar 

  237. Zamanlu M, Eskandani M, Barar J, Jaymand M, Pakchin PS, Farhoudi M (2019) Enhanced thrombolysis using tissue plasminogen activator (tPA)-loaded PEGylated PLGA nanoparticles for ischemic stroke. J Drug Deliv Sci Technol 53:101165

    Article  CAS  Google Scholar 

  238. Jin H-j, Zhang H, Sun M-l, Zhang B-g, Zhang J-w (2013) Urokinase-coated chitosan nanoparticles for thrombolytic therapy: preparation and pharmacodynamics in vivo. J Thromb Thrombolysis 36:458–468

    Article  CAS  PubMed  Google Scholar 

  239. Dai Y, Yao J, Song Y, Liu X, Wang S, Yuan Y (2016) Enhanced performance of immobilized laccase in electrospun fibrous membranes by carbon nanotubes modification and its application for bisphenol A removal from water. J Hazard Mater 317:485–493

    Article  CAS  PubMed  Google Scholar 

  240. Alver E, Metin AÜ (2017) Chitosan based metal-chelated copolymer nanoparticles: laccase immobilization and phenol degradation studies. Int Biodeterior Biodegrad 125:235–242

    Article  CAS  Google Scholar 

  241. Zhang C, Cai X (2019) Immobilization of horseradish peroxidase on Fe3O4/nanotubes composites for biocatalysis-degradation of phenol. Compos Interfaces 26:379–396

    Article  CAS  Google Scholar 

  242. Fu M, Xing J, Ge Z (2019) Preparation of laccase-loaded magnetic nanoflowers and their recycling for efficient degradation of bisphenol A. Sci Total Environ 651:2857–2865

    Article  CAS  PubMed  Google Scholar 

  243. Fetyan NA, Azeiz AA, Ismail I, Salem T (2017) Biodegradation of cibacron redazo dye and industrial textile effluent by Pseudomonas aeruginosa immobilized on chitosan-Fe2O3 composite. J Adv Biol Biotechnol 1–15

  244. García-Morales R, García-García A, Orona-Navar C, Osma JF, Nigam K, Ornelas-Soto N (2018) Biotransformation of emerging pollutants in groundwater by laccase from P. sanguineus CS43 immobilized onto titania nanoparticles. J Environ Chem Eng 6:710–717

    Article  Google Scholar 

  245. Liu S, Huang B, Zheng G, Zhang P, Li J, Yang B, Liang L (2020) Nanocapsulation of horseradish peroxidase (HRP) enhances enzymatic performance in removing phenolic compounds. Int J Biol Macromol 150:814–822

    Article  CAS  PubMed  Google Scholar 

  246. Shao B, Liu Z, Zeng G, Liu Y, Yang X, Zhou C, Chen M, Liu Y, Jiang Y, Yan M (2019) Immobilization of laccase on hollow mesoporous carbon nanospheres: noteworthy immobilization, excellent stability and efficacious for antibiotic contaminants removal. J Hazard Mater 362:318–326

    Article  CAS  PubMed  Google Scholar 

  247. Ciğeroğlu Z, Haşimoğlu A, Özdemir OK (2020) Synthesis, characterization and an application of graphene oxide nanopowder: methylene blue adsorption and comparison between experimental data and literature data. J Dispers Sci Technol 42:771–783

    Article  Google Scholar 

  248. Maryskova M, Rysova M, Novotny V, Sevcu A (2019) Polyamide-laccase nanofiber membrane for degradation of endocrine-disrupting bisphenol A, 17α-ethinylestradiol, and triclosan. Polymers 11:1560

    Article  CAS  PubMed Central  Google Scholar 

  249. Sarno M, Iuliano M (2020) New nano-biocatalyst for 4-chlorophenols removal from wastewater. Mater Today Proc 20:74–81

    Article  CAS  Google Scholar 

  250. Li A, Yang X, Yu B, Cai X (2020) Immobilization of horseradish peroxidase on polyglycerol-functionalized magnetic Fe3O4/nanodiamond nanocomposites and its application in phenol biodegradation. Res Chem Intermed 46:101–118

    Article  Google Scholar 

  251. Maryšková M, Ardao I, García-González CA, Martinová L, Rotková J, Ševců A (2016) Polyamide 6/chitosan nanofibers as support for the immobilization of Trametes versicolor laccase for the elimination of endocrine disrupting chemicals. Enzyme Microb Technol 89:31–38

    Article  PubMed  Google Scholar 

  252. Kadam AA, Jang J, Jee SC, Sung J-S, Lee DS (2018) Chitosan-functionalized supermagnetic halloysite nanotubes for covalent laccase immobilization. Carbohyd Polym 194:208–216

    Article  CAS  Google Scholar 

  253. Rani M, Shanker U, Chaurasia AK (2017) Catalytic potential of laccase immobilized on transition metal oxides nanomaterials: degradation of alizarin red S dye. J Environ Chem Eng 5:2730–2739

    Article  CAS  Google Scholar 

  254. Khan MF, Kundu D, Hazra C, Patra S (2019) A strategic approach of enzyme engineering by attribute ranking and enzyme immobilization on zinc oxide nanoparticles to attain thermostability in mesophilic Bacillus subtilis lipase for detergent formulation. Int J Biol Macromol 136:66–82

    Article  CAS  PubMed  Google Scholar 

  255. Liu B, Li T, Wang W, Sagis LM, Yuan Q, Lei X, Stuart MAC, Li D, Bao C, Bai J (2020) Corncob cellulose nanosphere as an eco-friendly detergent. Nat Sustain 3:448–458

    Article  Google Scholar 

  256. Soleimani M, Khani A, Dalali N, Behbehani GR (2013) Improvement in the cleaning performance towards protein soils in laundry detergents by protease immobilization on the silica nanoparticles. J Surfactants Deterg 16:421–426

    Article  CAS  Google Scholar 

  257. Guan Y, Yu H-Y, Abdalkarim SYH, Wang C, Tang F, Marek J, Chen W-L, Militky J, Yao J-M (2019) Green one-step synthesis of ZnO/cellulose nanocrystal hybrids with modulated morphologies and superfast absorption of cationic dyes. Int J Biol Macromol 132:51–62

    Article  CAS  PubMed  Google Scholar 

  258. Mukhopadhyay A, Chakrabarti K (2015) Enhancement of thermal and pH stability of an alkaline metalloprotease by nano-hydroxyapatite and its potential applications. RSC Adv 5:89346–89362

    Article  CAS  Google Scholar 

  259. Ibrahim ASS, Al-Salamah AA, El-Toni AM, Almaary KS, El-Tayeb MA, Elbadawi YB, Antranikian G (2016) Enhancement of alkaline protease activity and stability via covalent immobilization onto hollow core-mesoporous shell silica nanospheres. Int J Mol Sci 17:184

    Article  PubMed Central  Google Scholar 

  260. Shakerian F, Zhao J, Li S-P (2020) Recent development in the application of immobilized oxidative enzymes for bioremediation of hazardous micropollutants–a review. Chemosphere 239:124716

    Article  CAS  PubMed  Google Scholar 

  261. Horst F, Rueda EH, Ferreira ML (2006) Activity of magnetite-immobilized catalase in hydrogen peroxide decomposition. Enzyme Microb Technol 38:1005–1012

    Article  CAS  Google Scholar 

  262. Namdeo M, Bajpai S (2009) Immobilization of α-amylase onto cellulose-coated magnetite (CCM) nanoparticles and preliminary starch degradation study. J Mol Catal B Enzym 59:134–139

    Article  CAS  Google Scholar 

  263. Ahmad R, Khatoon N, Sardar M (2013) Biosynthesis, characterization and application of TiO2 nanoparticles in biocatalysis and protein folding. J Proteins Proteomics 4:115–121

    Google Scholar 

  264. Ahmad R, Mishra A, Sardar M (2014) Simultaneous immobilization and refolding of heat treated enzymes on TiO2 nanoparticles. Adv Sci Eng Med 6:1264–1268

    Article  CAS  Google Scholar 

  265. Pandey P, Singh SP, Arya SK, Gupta V, Datta M, Singh S, Malhotra BD (2007) Application of thiolated gold nanoparticles for the enhancement of glucose oxidase activity. Langmuir 23:3333–3337

    Article  CAS  PubMed  Google Scholar 

  266. Kouassi GK, Irudayaraj J, McCarty G (2005) Activity of glucose oxidase functionalized onto magnetic nanoparticles. Biomagn Res Technol 3:1

    Article  PubMed  PubMed Central  Google Scholar 

  267. Ansari SA, Husain Q, Qayyum S, Azam A (2011) Designing and surface modification of zinc oxide nanoparticles for biomedical applications. Food Chem Toxicol 49:2107–2115

    Article  CAS  PubMed  Google Scholar 

  268. Prakasham R, Devi GS, Laxmi KR, Rao CS (2007) Novel synthesis of ferric impregnated silica nanoparticles and their evaluation as a matrix for enzyme immobilization. J Phys Chem C 111:3842–3847

    Article  CAS  Google Scholar 

  269. Singh V, Ahmed S (2012) Silver nanoparticle (AgNPs) doped gum acacia–gelatin–silica nanohybrid: an effective support for diastase immobilization. Int J Biol Macromol 50:353–361

    Article  CAS  PubMed  Google Scholar 

  270. Singh N, Srivastava G, Talat M, Raghubanshi H, Srivastava ON, Kayastha AM (2014) Cicer α-galactosidase immobilization onto functionalized graphene nanosheets using response surface method and its applications. Food Chem 142:430–438

    Article  CAS  PubMed  Google Scholar 

  271. Agrawal R, Verma A, Satlewal A (2016) Application of nanoparticle-immobilized thermostable β-glucosidase for improving the sugarcane juice properties. Innov Food Sci Emerg Technol 33:472–482

    Article  CAS  Google Scholar 

  272. Selvarajan E, Mohanasrinivasan V, Devi CS, Doss CGP (2015) Immobilization of β-galactosidase from Lactobacillus plantarum HF571129 on ZnO nanoparticles: characterization and lactose hydrolysis. Bioprocess Biosyst Eng 38:1655–1669

    Article  CAS  PubMed  Google Scholar 

  273. Ansari SA, Satar R, Chibber S, Khan MJ (2013) Enhanced stability of Kluyveromyces lactis β galactosidase immobilized on glutaraldehyde modified multiwalled carbon nanotubes. J Mol Catal B Enzym 97:258–263

    Article  CAS  Google Scholar 

  274. Neri DF, Balcão VM, Carneiro-da-Cunha MG, Carvalho LB Jr, Teixeira JA (2008) Immobilization of β-galactosidase from Kluyveromyces lactis onto a polysiloxane–polyvinyl alcohol magnetic (mPOS–PVA) composite for lactose hydrolysis. Catal Commun 9:2334–2339

    Article  CAS  Google Scholar 

  275. Chen S-C, Duan K-J (2015) Production of galactooligosaccharides using β-galactosidase immobilized on chitosan-coated magnetic nanoparticles with Tris (hydroxymethyl) phosphine as an optional coupling agent. Int J Mol Sci 16:12499–12512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  276. Ansari SA, Satar R, Zaidi SK, Naseer MI, Karim S, Alqahtani MH, Rasool M (2015) Nanodiamonds as an effective and novel matrix for immobilizing β galactosidase. Food Bioprod Process 95:298–303

    Article  CAS  Google Scholar 

  277. Ansari SA, Satar R, Alam F, Alqahtani MH, Chaudhary AG, Naseer MI, Karim S, Sheikh IA (2012) Cost effective surface functionalization of silver nanoparticles for high yield immobilization of Aspergillus oryzae β-galactosidase and its application in lactose hydrolysis. Process Biochem 47:2427–2433

    Article  CAS  Google Scholar 

  278. Khan M, Husain Q, Ahmad N (2019) Elucidating the binding efficacy of β-galactosidase on polyaniline–chitosan nanocomposite and polyaniline–chitosan–silver nanocomposite: activity and molecular docking insights. J Chem Technol Biotechnol 94:837–849

    Article  CAS  Google Scholar 

  279. Shafi A, Khan M, Khan MZ, Husain Q (2019) Ameliorating the activity and stability of β galactosidase by tailoring potential nanobiocatalyst on functionalized nanographene: headway to lactose hydrolysis. LWT 112:108260

    Article  CAS  Google Scholar 

  280. Asmat S, Husain Q (2018) Exquisite stability and catalytic performance of immobilized lipase on novel fabricated nanocellulose fused polypyrrole/graphene oxide nanocomposite: characterization and application. Int J Biol Macromol 117:331–341

    Article  CAS  PubMed  Google Scholar 

  281. Petkova GA, Záruba К, Žvátora P, Král V (2012) Gold and silver nanoparticles for biomolecule immobilization and enzymatic catalysis. Nanoscale Res Lett 7:287

    Article  PubMed  PubMed Central  Google Scholar 

  282. Siddiqui I, Husain Q (2019) Stabilization of polydopamine modified silver nanoparticles bound trypsin: insights on protein hydrolysis. Colloids Surf B 173:733–741

    Article  CAS  Google Scholar 

  283. Kumar A, Garg S (2009) Immobilization of enzymes and biotechnological perspective. In: Mishra SK, Champaign P (eds) Biotechnology applications. IK International, New Delhi, pp 39–52

    Google Scholar 

Download references

Acknowledgements

The authors express their gratitude to the research council of the University of Hormozgan for financial support during this project. Consejo Nacional de Ciencia y Tecnología (MX) is thankfully acknowledged for partially supporting this work under Sistema Nacional de Investigadores (SNI) program awarded to Hafiz M.N. Iqbal (CVU: 735340). Thanks, Tina Chen, for her valuable feedbacks.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmad Homaei.

Ethics declarations

Conflict of interest

Authors declare that there is no conflict of interest regarding the publication of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Razzaghi, M., Homaei, A., Vianello, F. et al. Industrial applications of immobilized nano-biocatalysts. Bioprocess Biosyst Eng 45, 237–256 (2022). https://doi.org/10.1007/s00449-021-02647-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-021-02647-y

Keywords

Navigation