Skip to main content

Advertisement

Log in

Characterization of stem cell subtypes and prognostic signature in hepatocellular carcinoma

  • Research
  • Published:
Journal of Cancer Research and Clinical Oncology Aims and scope Submit manuscript

Abstract

Background

Cancer stem cells (CSCs) were linked to cancer aggressiveness and poor prognosis in patients with hepatocellular carcinoma (HCC).

Methods

We integrated two external HCC cohorts to develop the stem cell subtypes according to unsupervised clustering with 26 stem cell gene sets. Between the subtypes, differences in prognosis, clinical characteristics, recognized HCC subtypes, metabolic profile, immune-related features, somatic mutation, and drug sensitivity were examined. The prognostic signature was created, and validated by numerous cohorts, and used to assess the efficacy of immunotherapy and transcatheter arterial chemoembolization (TACE) treatment. The nomogram was developed based on the signature and clinical features. We further examined the function of KIF20A in HCC and proved that KIF20A had the potential to regulate the stemness of HCC cells through western blot.

Results

Low stem cell patterns, a good prognosis, positive clinical features, specific molecular subtypes, low metastatic characteristics, and an abundance of metabolic and immunological aspects were associated with Cluster 1, whereas Cluster 2 was the reverse. Chemotherapy and immunotherapy were more effective in Cluster 1. Cluster 1 and CTNNB1 and ALB mutation were more closely. Additionally, the prognosis, immunotherapeutic, and TACE therapy responses were all worse in the high-risk group. The nomogram could predict the survival probability of HCC patients. KIF20A was discovered to be overexpressed in HCC and was revealed to be connected to the stemness of the HepG2 cell line.

Conclusions

Two stem cell subgroups with different prognoses, metabolic, and immunological characteristics in HCC patients were identified. We also created a 7-gene prognostic signature and a nomogram to estimate the survival probability. The function of KIF20A in HCC stemness was initially examined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Availability of data and materials

The data are available from the corresponding author for reasonable requests.

Abbreviations

AUCs:

Area under curves

BP:

Biological processes

CSCs:

Cancer stem cells

CAFs:

Cancer-associated fibroblasts

CNV:

Copy number variation

DE:

Differentially expressed

DSS:

Disease-special survival

DMEM:

Dulbecco’s modified Eagle’s medium

FBS:

Fetal bovine serum

HCC:

Hepatocellular carcinoma

HRD:

Homologous recombination deficiency

hCAR:

Human constitutive androstane receptor

ICB:

Immune checkpoint blockade

ITH:

Intra-tumor heterogeneity

KM:

Kaplan–Meier

KEGG:

Kyoto encyclopedia of genes and genomes

LOH:

Loss of heterozygosity

NTP:

Nearest template prediction

NC:

Negative control

OS:

Overall survival

PCA:

Principal component analysis

PFS:

Progression-free survival

RT-PCR:

Real-time polymerase chain reaction

RFS:

Recurrence-free survival

siRNA:

Small interfering RNA

tSNE:

T-distributed stochastic neighbor embedding

TACE:

Transcatheter arterial chemoembolization

TME:

Tumor microenvironment

TMB:

Tumor mutation burden

WB:

Western blot

References

  • Bagaev A, Kotlov N, Nomie K, Svekolkin V, Gafurov A, Isaeva O et al (2021) Conserved pan-cancer microenvironment subtypes predict response to immunotherapy. Cancer Cell 39:845-865 e7

    CAS  PubMed  Google Scholar 

  • Batlle E, Clevers H (2017) Cancer stem cells revisited. Nat Med 23:1124–1134

    CAS  PubMed  Google Scholar 

  • Bhalla K, Hwang BJ, Dewi RE, Twaddel W, Goloubeva OG, Wong KK et al (2012) Metformin prevents liver tumorigenesis by inhibiting pathways driving hepatic lipogenesis. Cancer Prev Res (phila) 5:544–552

    CAS  PubMed  Google Scholar 

  • Bonnet D, Dick JE (1997) Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 3:730–737

    CAS  PubMed  Google Scholar 

  • Boyault S, Rickman DS, de Reynies A, Balabaud C, Rebouissou S, Jeannot E et al (2007) Transcriptome classification of HCC is related to gene alterations and to new therapeutic targets. Hepatology 45:42–52

    CAS  PubMed  Google Scholar 

  • Braun DA, Hou Y, Bakouny Z, Ficial M, Sant’ Angelo M, Forman J et al (2020) Interplay of somatic alterations and immune infiltration modulates response to PD-1 blockade in advanced clear cell renal cell carcinoma. Nat Med 26:909–918

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cancer Genome Atlas Research Network (2017) Electronic address wbe, Cancer Genome Atlas Research N. Comprehensive and integrative genomic characterization of hepatocellular carcinoma. Cell 169:1327-1341 e23

    Google Scholar 

  • Chan TA, Hermeking H, Lengauer C, Kinzler KW, Vogelstein B (1999) 14-3-3Sigma is required to prevent mitotic catastrophe after DNA damage. Nature 401:616–620

    CAS  PubMed  Google Scholar 

  • Chen L, Yang B (2013) 14-3-3 sigma is a useful immunohistochemical marker for diagnosing ovarian granulosa cell tumors and steroid cell tumors. Int J Gynecol Pathol 32:156–162

    CAS  PubMed  Google Scholar 

  • Chen S, Morine Y, Tokuda K, Yamada S, Saito Y, Nishi M et al (2021) Cancer-associated fibroblast-induced M2-polarized macrophages promote hepatocellular carcinoma progression via the plasminogen activator inhibitor-1 pathway. Int J Oncol. https://doi.org/10.3892/ijo.2021.5239

    Article  PubMed  PubMed Central  Google Scholar 

  • Chiang DY, Villanueva A, Hoshida Y, Peix J, Newell P, Minguez B et al (2008) Focal gains of VEGFA and molecular classification of hepatocellular carcinoma. Cancer Res 68:6779–6788

    CAS  PubMed  PubMed Central  Google Scholar 

  • Desert R, Rohart F, Canal F, Sicard M, Desille M, Renaud S et al (2017) Human hepatocellular carcinomas with a periportal phenotype have the lowest potential for early recurrence after curative resection. Hepatology 66:1502–1518

    CAS  PubMed  Google Scholar 

  • Gao Q, Wang ZC, Duan M, Lin YH, Zhou XY, Worthley DL et al (2017) Cell culture system for analysis of genetic heterogeneity within hepatocellular carcinomas and response to pharmacologic agents. Gastroenterology 152:232-242 e4

    CAS  PubMed  Google Scholar 

  • Gao Q, Zhu H, Dong L, Shi W, Chen R, Song Z et al (2019) Integrated proteogenomic characterization of HBV-related hepatocellular carcinoma. Cell 179(561–577):e22

    Google Scholar 

  • Guo JC, Yang YJ, Zhang JQ, Guo M, Xiang L, Yu SF et al (2019) microRNA-448 inhibits stemness maintenance and self-renewal of hepatocellular carcinoma stem cells through the MAGEA6-mediated AMPK signaling pathway. J Cell Physiol 234:23461–23474

    CAS  PubMed  Google Scholar 

  • Guo C, Tang Y, Yang Z, Li G, Zhang Y (2022) Hallmark-guided subtypes of hepatocellular carcinoma for the identification of immune-related gene classifiers in the prediction of prognosis, treatment efficacy, and drug candidates. Front Immunol 13:958161

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hinshaw DC, Shevde LA (2019) The tumor microenvironment innately modulates cancer progression. Cancer Res 79:4557–4566

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hoshida Y, Nijman SM, Kobayashi M, Chan JA, Brunet JP, Chiang DY et al (2009) Integrative transcriptome analysis reveals common molecular subclasses of human hepatocellular carcinoma. Cancer Res 69:7385–7392

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huang C, Zhang C, Sheng J, Wang D, Zhao Y, Qian L et al (2021) Identification and validation of a tumor microenvironment-related gene signature in hepatocellular carcinoma prognosis. Front Genet 12:717319

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ke S, Chen S, Dong Z, Hong CS, Zhang Q, Tang L et al (2017) Erythrocytosis in hepatocellular carcinoma portends poor prognosis by respiratory dysfunction secondary to mitochondrial DNA mutations. Hepatology 65:134–151

    CAS  PubMed  Google Scholar 

  • Kurebayashi Y, Ojima H, Tsujikawa H, Kubota N, Maehara J, Abe Y et al (2018) Landscape of immune microenvironment in hepatocellular carcinoma and its additional impact on histological and molecular classification. Hepatology 68:1025–1041

    CAS  PubMed  Google Scholar 

  • Lapidot T, Sirard C, Vormoor J, Murdoch B, Hoang T, Caceres-Cortes J et al (1994) A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature 367:645–648

    CAS  PubMed  Google Scholar 

  • Laurent-Puig P, Legoix P, Bluteau O, Belghiti J, Franco D, Binot F et al (2001) Genetic alterations associated with hepatocellular carcinomas define distinct pathways of hepatocarcinogenesis. Gastroenterology 120:1763–1773

    CAS  PubMed  Google Scholar 

  • Lee TK, Guan XY, Ma S (2022) Cancer stem cells in hepatocellular carcinoma - from origin to clinical implications. Nat Rev Gastroenterol Hepatol 19:26–44

    PubMed  Google Scholar 

  • Li X, Huang W, Huang W, Wei T, Zhu W, Chen G et al (2020) Kinesin family members KIF2C/4A/10/11/14/18B/20A/23 predict poor prognosis and promote cell proliferation in hepatocellular carcinoma. Am J Transl Res 12:1614–1639

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li Z, Kwon SM, Li D, Li L, Peng X, Zhang J et al (2022) Human constitutive androstane receptor represses liver cancer development and hepatoma cell proliferation by inhibiting erythropoietin signaling. J Biol Chem 298:101885

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu J, Ma Q, Zhang M, Wang X, Zhang D, Li W et al (2012) Alterations of TP53 are associated with a poor outcome for patients with hepatocellular carcinoma: evidence from a systematic review and meta-analysis. Eur J Cancer 48:2328–2338

    CAS  PubMed  PubMed Central  Google Scholar 

  • Llovet JM, Kelley RK, Villanueva A, Singal AG, Pikarsky E, Roayaie S et al (2021) Hepatocellular carcinoma. Nat Rev Dis Primers 7:6

    PubMed  Google Scholar 

  • Lu M, Huang X, Chen Y, Fu Y, Xu C, Xiang W et al (2018) Aberrant KIF20A expression might independently predict poor overall survival and recurrence-free survival of hepatocellular carcinoma. IUBMB Life 70:328–335

    CAS  PubMed  Google Scholar 

  • Ma S, Chan KW, Hu L, Lee TK, Wo JY, Ng IO et al (2007) Identification and characterization of tumorigenic liver cancer stem/progenitor cells. Gastroenterology 132:2542–2556

    CAS  PubMed  Google Scholar 

  • Ma R, Zhang W, Tang K, Zhang H, Zhang Y, Li D et al (2013) Switch of glycolysis to gluconeogenesis by dexamethasone for treatment of hepatocarcinoma. Nat Commun 4:2508

    PubMed  Google Scholar 

  • Malta TM, Sokolov A, Gentles AJ, Burzykowski T, Poisson L, Weinstein JN et al (2018) Machine learning identifies stemness features associated with oncogenic dedifferentiation. Cell 173:338-354 e15

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mariathasan S, Turley SJ, Nickles D, Castiglioni A, Yuen K, Wang Y et al (2018) TGFbeta attenuates tumour response to PD-L1 blockade by contributing to exclusion of T cells. Nature 554:544–548

    CAS  PubMed  PubMed Central  Google Scholar 

  • McGlynn KA, Hagberg K, Chen J, Graubard BI, London WT, Jick S et al (2015) Statin use and risk of primary liver cancer in the Clinical Practice Research Datalink. J Natl Cancer Inst 107:djv009

    PubMed  PubMed Central  Google Scholar 

  • Meng L, Hsu JK, Tsai RY (2011) GNL3L depletion destabilizes MDM2 and induces p53-dependent G2/M arrest. Oncogene 30:1716–1726

    CAS  PubMed  Google Scholar 

  • Miao S, Wang SM, Cheng X, Li YF, Zhang QS, Li G et al (2017) Erythropoietin promoted the proliferation of hepatocellular carcinoma through hypoxia induced translocation of its specific receptor. Cancer Cell Int 17:119

    PubMed  PubMed Central  Google Scholar 

  • Nakamura M, Takano A, Thang PM, Tsevegjav B, Zhu M, Yokose T et al (2020) Characterization of KIF20A as a prognostic biomarker and therapeutic target for different subtypes of breast cancer. Int J Oncol 57:277–288

    CAS  PubMed  Google Scholar 

  • Nathanson T, Ahuja A, Rubinsteyn A, Aksoy BA, Hellmann MD, Miao D et al (2017) Somatic mutations and neoepitope homology in melanomas treated with CTLA-4 blockade. Cancer Immunol Res 5:84–91

    CAS  PubMed  Google Scholar 

  • Oura K, Morishita A, Tani J, Masaki T (2021) Tumor immune microenvironment and immunosuppressive therapy in hepatocellular carcinoma: a review. Int J Mol Sci 22:5801

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pardal R, Clarke MF, Morrison SJ (2003) Applying the principles of stem-cell biology to cancer. Nat Rev Cancer 3:895–902

    CAS  PubMed  Google Scholar 

  • Pineda CT, Ramanathan S, Fon Tacer K, Weon JL, Potts MB, Ou YH et al (2015) Degradation of AMPK by a cancer-specific ubiquitin ligase. Cell 160:715–728

    CAS  PubMed  PubMed Central  Google Scholar 

  • Prager BC, Bhargava S, Mahadev V, Hubert CG, Rich JN (2020) Glioblastoma stem cells: driving resilience through chaos. Trends Cancer 6:223–235

    PubMed  PubMed Central  Google Scholar 

  • Qiu C, Shi W, Wu H, Zou S, Li J, Wang D et al (2021) Identification of molecular subtypes and a prognostic signature based on inflammation-related genes in colon adenocarcinoma. Front Immunol 12:769685

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ravi D, Chen Y, Karia B, Brown A, Gu TT, Li J et al (2011) 14-3-3 sigma expression effects G2/M response to oxygen and correlates with ovarian cancer metastasis. PLoS ONE 6:e15864

    CAS  PubMed  PubMed Central  Google Scholar 

  • Reis H, Putter C, Megger DA, Bracht T, Weber F, Hoffmann AC et al (2015) A structured proteomic approach identifies 14-3-3Sigma as a novel and reliable protein biomarker in panel based differential diagnostics of liver tumors. Biochim Biophys Acta 1854:641–650

    CAS  PubMed  Google Scholar 

  • Ribatti D, Marzullo A, Gentile A, Longo V, Nico B, Vacca A et al (2007) Erythropoietin/erythropoietin-receptor system is involved in angiogenesis in human hepatocellular carcinoma. Histopathology 50:591–596

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schulte L, Scheiner B, Voigtlander T, Koch S, Schweitzer N, Marhenke S et al (2019) Treatment with metformin is associated with a prolonged survival in patients with hepatocellular carcinoma. Liver Int 39:714–726

    CAS  PubMed  Google Scholar 

  • Shi M, Zheng H, Nie B, Gong W, Cui X (2014) Statin use and risk of liver cancer: an update meta-analysis. BMJ Open 4:e005399

    PubMed  PubMed Central  Google Scholar 

  • Shi C, Huang D, Lu N, Chen D, Zhang M, Yan Y et al (2016) Aberrantly activated Gli2-KIF20A axis is crucial for growth of hepatocellular carcinoma and predicts poor prognosis. Oncotarget 7:26206–26219

    PubMed  PubMed Central  Google Scholar 

  • Shi W, Lu J, Li J, Qiu M, Lu Y, Gu J et al (2020) Piperlongumine attenuates high calcium/phosphate-induced arterial calcification by preserving P53/PTEN signaling. Front Cardiovasc Med 7:625215

    CAS  PubMed  Google Scholar 

  • Song W, Li H, Tao K, Li R, Song Z, Zhao Q et al (2008) Expression and clinical significance of the stem cell marker CD133 in hepatocellular carcinoma. Int J Clin Pract 62:1212–1218

    CAS  PubMed  Google Scholar 

  • Sun W, Kosyna FK, Jelkmann W, Depping R (2015) Prolyl-4-Hydroxylase 2 Potentially Contributes to Hepatocellular Carcinoma-Associated erythrocytosis by maintaining hepatocyte nuclear factor-4alpha expression. Cell Physiol Biochem 37:2257–2264

    CAS  PubMed  Google Scholar 

  • Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A et al (2021) Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 71:209–249

    PubMed  Google Scholar 

  • Tanaka M, Katayama F, Kato H, Tanaka H, Wang J, Qiao YL et al (2011) Hepatitis B and C virus infection and hepatocellular carcinoma in China: a review of epidemiology and control measures. J Epidemiol 21:401–416

    PubMed  PubMed Central  Google Scholar 

  • Tang C, Ma J, Liu X, Liu Z (2020) Development and validation of a novel stem cell subtype for bladder cancer based on stem genomic profiling. Stem Cell Res Ther 11:457

    CAS  PubMed  PubMed Central  Google Scholar 

  • Thorsson V, Gibbs DL, Brown SD, Wolf D, Bortone DS, Ou Yang TH et al (2018) The immune landscape of cancer. Immunity 48:812-830 e14

    CAS  PubMed  PubMed Central  Google Scholar 

  • Van Allen EM, Miao D, Schilling B, Shukla SA, Blank C, Zimmer L et al (2015) Genomic correlates of response to CTLA-4 blockade in metastatic melanoma. Science 350:207–211

    PubMed  PubMed Central  Google Scholar 

  • Villanueva A (2019) Hepatocellular carcinoma. N Engl J Med 380:1450–1462

    CAS  PubMed  Google Scholar 

  • Wu C, Qi X, Qiu Z, Deng G, Zhong L (2021) Low expression of KIF20A suppresses cell proliferation, promotes chemosensitivity and is associated with better prognosis in HCC. Aging (albany NY) 13:22148–22163

    CAS  PubMed  Google Scholar 

  • Xiang R, Song W, Ren J, Wu J, Fu J, Fu T (2021) Identification of stem cell-related subtypes and risk scoring for gastric cancer based on stem genomic profiling. Stem Cell Res Ther 12:563

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xue R, Zhang Q, Cao Q, Kong R, Xiang X, Liu H et al (2022) Liver tumour immune microenvironment subtypes and neutrophil heterogeneity. Nature 612:141–147

    CAS  PubMed  Google Scholar 

  • Yamashita T, Wang XW (2013) Cancer stem cells in the development of liver cancer. J Clin Invest 123:1911–1918

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yang XR, Xu Y, Yu B, Zhou J, Qiu SJ, Shi GM et al (2010) High expression levels of putative hepatic stem/progenitor cell biomarkers related to tumour angiogenesis and poor prognosis of hepatocellular carcinoma. Gut 59:953–962

    CAS  PubMed  Google Scholar 

  • Yang Z, Sun B, Zhao X, Shao B, An J, Gu Q et al (2015) Erythropoietin and erythropoietin receptor in hepatocellular carcinoma: correlation with vasculogenic mimicry and poor prognosis. Int J Clin Exp Pathol 8:4033–4043

    PubMed  PubMed Central  Google Scholar 

  • Yang C, Huang X, Liu Z, Qin W, Wang C (2020a) Metabolism-associated molecular classification of hepatocellular carcinoma. Mol Oncol 14:896–913

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yang L, Zhang Z, Sun Y, Pang S, Yao Q, Lin P et al (2020b) Integrative analysis reveals novel driver genes and molecular subclasses of hepatocellular carcinoma. Aging (albany NY) 12:23849–23871

    CAS  PubMed  Google Scholar 

  • Yang C, Zhang S, Cheng Z, Liu Z, Zhang L, Jiang K et al (2022) Multi-region sequencing with spatial information enables accurate heterogeneity estimation and risk stratification in liver cancer. Genome Med 14:142

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshimoto S, Loo TM, Atarashi K, Kanda H, Sato S, Oyadomari S et al (2013) Obesity-induced gut microbial metabolite promotes liver cancer through senescence secretome. Nature 499:97–101

    CAS  PubMed  Google Scholar 

  • Zhang J, Huang D, Saw PE, Song E (2022) Turning cold tumors hot: from molecular mechanisms to clinical applications. Trends Immunol 43:523–545

    CAS  PubMed  Google Scholar 

  • Zheng H, Liu H, Li H, Dou W, Wang J, Zhang J et al (2022) Characterization of stem cell landscape and identification of stemness-relevant prognostic gene signature to aid immunotherapy in colorectal cancer. Stem Cell Res Ther 13:244

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank all the public databases included in this study.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

CQ: supervision, project administration, data curation, and writing—original draft. WS: formal analysis, data curation, investigation, writing—original draft. HW: investigation, and writing—original draft.

Corresponding authors

Correspondence to Chenjie Qiu or Wenxiang Shi.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval and consent to participate

It was approved by Changzhou Hospital of Traditional Chinese Medicine’s Research Ethics Committee.

Informed consent

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2340 KB)

Supplementary file2 (XLSX 51 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiu, C., Wu, H. & Shi, W. Characterization of stem cell subtypes and prognostic signature in hepatocellular carcinoma. J Cancer Res Clin Oncol 149, 14081–14100 (2023). https://doi.org/10.1007/s00432-023-05239-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00432-023-05239-3

Keywords

Navigation