Skip to main content

Advertisement

Log in

The connectivity-based parcellation of the angular gyrus: fiber dissection and MR tractography study

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

The angular gyrus (AG) wraps the posterior end of the superior temporal sulcus (STS), so it is considered a continuation of the superior temporal gyrus (STG)/ middle temporal gyrus (MTG) and forms the inferior parietal lobule (IPL) with the supramarginal gyrus (SMG). The AG was functionally divided in the literature, but there is no fiber dissection study in this context. This study divided AG into superior (sAG) and inferior (iAG) parts by focusing on STS. Red, blue silicone-injected eight and four non-silicone-injected human cadaveric cerebrums were dissected via the Klingler method focusing on the AG. White matter (WM) tracts identified during dissection were then reconstructed on the Human Connectome Project 1065 individual template for validation. According to this study, superior longitudinal fasciculus (SLF) II and middle longitudinal fasciculus (MdLF) are associated with sAG; the anterior commissure (AC), optic radiation (OR) with iAG; the arcuate fasciculus (AF), inferior frontooccipital fasciculus (IFOF), and tapetum (Tp) with both parts. In cortical parcellation of AG based on STS, sAG and iAG were associated with different fiber tracts. Although it has been shown in previous studies that there are functionally different subunits with AG parcellation, here, for the first time, other functions of the subunits have been revealed with cadaveric dissection and tractography images.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig. 2

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Barbeau EB, Descoteaux M, Petrides M (2020) Dissociating the white matter tracts connecting the temporo-parietal cortical region with frontal cortex using diffusion tractography. Sci Rep 10(1):8186

    Article  CAS  Google Scholar 

  • Biceroglu H, Karadag A (2019) Neuroanatomical aspects of the temporo-parieto-occipital junction and new surgical strategy to preserve the associated tracts in junctional lesion surgery: fiber separation technique. Turk Neurosurg 29(6):864–874

    Google Scholar 

  • Binder JR, Desai RH, Graves WW, Conant LL (2009) Where is the semantic system? A critical review and meta-analysis of 120 functional neuroimaging studies. Cereb Cortex 19(12):2767–2796

    Article  Google Scholar 

  • Benjamin CF, Singh JM, Prabhu SP, Warfield SK (2014) Optimization of tractography of the optic radiations. Hum Brain Mapp 35(2):683–697

    Article  Google Scholar 

  • Briggs RG, Tanglay O, Dadario NB, Young IM, Fonseka RD, Hormovas J, Dhanaraj V, Lin YH, Kim SJ, Bouvette A, Chakraborty AR, Milligan TM, Abraham CJ, Anderson CD, O’Donoghue DL, Sughrue ME (2021) The unique fiber anatomy of middle temporal gyrus default mode connectivity. Oper Neurosurg (hagerstown) 15 21(1):E8–E14

    Article  Google Scholar 

  • Burks JD, Boettcher LB, Conner AK, Glenn CA, Bonney PA, Baker CM, Briggs RG, Pittman NA, O’Donoghue DL, Wu DH, Sughrue ME (2017) White matter connections of the inferior parietal lobule: a study of surgical anatomy. Brain Behav 7(4):e00640

    Article  Google Scholar 

  • Chan-Seng E, Moritz-Gasser S, Duffau H (2014) Awake mapping for low-grade gliomas involving the left sagittal stratum: anatomofunctional and surgical considerations. J Neurosurg 120(5):1069–1077

    Article  Google Scholar 

  • Chechlacz M, Rotshtein P, Hansen PC, Deb S, Riddoch MJ, Humphreys GW (2013) The central role of the temporo-parietal junction and the superior longitudinal fasciculus in supporting multi-item competition: evidence from lesion-symptom mapping of extinction. Cortex 49:487–506

    Article  Google Scholar 

  • Christiaens D, Reisert M, Dhollander T, Sunaert S, Suetens P, Maes F (2015) Global tractography of multishell diffusion-weighted imaging data using a multi-tissue model. Neuroimage 123:89–101

    Article  Google Scholar 

  • Cikla U, Swanson KI, Tumturk A, Keser N, Uluc K, Cohen-Gadol A, Baskaya MK (2016) Microsurgical resection of tumors of the lateral and third ventricles: operative corridors for difficult-to-reach lesions. J Neurooncol 130(2):331–340

    Article  Google Scholar 

  • Di Carlo DT, Benedetto N, Duffau H, Cagnazzo F, Weiss A, Castagna M, Cosottini M, Perrini P (2019) Microsurgical anatomy of the sagittal stratum. Acta Neurochir (wien) 161(11):2319–2327

    Article  Google Scholar 

  • Duffau H, Gatignol P, Mandonnet E, Peruzzi P, Tzourio-Mazoyer N, Capelle L (2005) New insights into the anatomo-functional connectivity of the semantic system: a study using cortico-subcortical electrostimulations. Brain 128(4):797–810

    Article  Google Scholar 

  • Dziedzic TA, Balasa A, Jeżewski MP, Michałowski Ł, Marchel A (2021) White matter dissection with the Klingler technique: a literature review. Brain Struct Funct 226(1):13–47

    Article  Google Scholar 

  • Egemen E, Celtikci P, Dogruel Y, Yakar F, Sahinoglu D, Farouk M, Adiguzel E, Ugur HC, Coskun E, Güngör A (2021) Microsurgical and tractographic anatomical study of transtemporal-transchoroidal fissure approaches to the ambient cistern. Oper Neurosurg (hagerstown) 20(2):189–197

    Article  Google Scholar 

  • Fernández-Miranda JC, Wang Y, Pathak S, Stefaneau L, Verstynen T, Yeh FC (2015) Asymmetry, connectivity, and segmentation of the arcuate fascicle in the human brain. Brain Struct Funct 220(3):1665–1680

    Article  Google Scholar 

  • Güngör A, Baydin S, Middlebrooks EH, Tanriover N, Isler C, Rhoton AL Jr (2017) The white matter tracts of the cerebrum in ventricular surgery and hydrocephalus. J Neurosurg 126(3):945–971

    Article  Google Scholar 

  • Jitsuishi T, Yamaguchi A (2020) Identification of a distinct association fiber tract “IPS-FG” to connect the intraparietal sulcus areas and fusiform gyrus by white matter dissection and tractography. Sci Rep 10(1):15475

    Article  CAS  Google Scholar 

  • Kadri PAS, de Oliveira JG, Krayenbühl N, Türe U, de Oliveira EPL, Al-Mefty O, Ribas GC (2017) Surgical approaches to the temporal horn: an anatomic analysis of white matter tract interruption. Oper Neurosurg (hagerstown) 13(2):258–270

    Article  Google Scholar 

  • Kalyvas A, Koutsarnakis C, Komaitis S, Karavasilis E, Christidi F, Skandalakis GP, Liouta E, Papakonstantinou O, Kelekis N, Duffau H, Stranjalis G (2020) Mapping the human middle longitudinal fasciculus through a focused anatomo-imaging study: shifting the paradigm of its segmentation and connectivity pattern. Brain Struct Funct 225:85–119

    Article  Google Scholar 

  • Kier EL, Staib LH, Davis LM, Bronen RA (2004) MR imaging of the temporal stem: anatomic dissection tractography of the uncinate fasciculus, inferior occipitofrontal fasciculus, and Meyer’s loop of the optic radiation. Am J Neuroradiol 25(5):677–691

    Google Scholar 

  • Kiriyama I, Miki H, Kikuchi K, Ohue S, Matsuda S, Mochizuki T (2009) Topographic analysis of the inferior parietal lobule in high-resolution 3D MR imaging. AJNR Am J Neuroradiol 30(3):520–524

    Article  CAS  Google Scholar 

  • Komaitis S, Skandalakis GP, Kalyvas AV, Drosos E, Lani E, Emelifeonwu J, Liakos F, Piagkou M, Kalamatianos T, Stranjalis G, Koutsarnakis C (2019) Dorsal component of the superior longitudinal fasciculus revisited: novel insights from a focused fiber dissection study. J Neurosurg 132(4):1265–1278

    Article  Google Scholar 

  • Latini F, Trevisi G, Fahlström M, Jemstedt M, AlberiusMunkhammar Å, Zetterling M, Hesselager G, Ryttlefors M (2021) New insights into the anatomy, connectivity and clinical implications of the middle longitudinal fasciculus. Front Neuroanat 14:610324

    Article  Google Scholar 

  • Lerma-Usabiaga G, Mukherjee P, Ren Z, Perry ML, Wandell BA (2019) Replication and generalization in applied neuroimaging. Neuroimage 202:116048

    Article  Google Scholar 

  • Makris N, Zhu A, Papadimitriou GM, Mouradian P, Ng I, Scaccianoce E, Baselli G, Baglio F, Shenton ME, Rathi Y, Dickerson B, Yeterian E, Kubicki M (2017) Mapping temporo-parietal and temporo-occipital cortico-cortical connections of the human middle longitudinal fascicle in subject-specific, probabilistic, and stereotaxic talairach spaces. Brain Imaging Behav 11(5):1258–1277

    Article  Google Scholar 

  • Maldonado IL, de Champfleur NM, Velut S, Destrieux C, Zemmoura I, Duffau H (2013) Evidence of a middle longitudinal fasciculus in the human brain from fiber dissection. J Anat 223(1):38–45

    Article  Google Scholar 

  • Mars RB, Jbabdi S, Sallet J, O’Reilly JX, Croxson PL, Olivier E, Noonan MP, Bergmann C, Mitchell AS, Baxter MG, Behrens TE, Johansen-Berg H, Tomassini V, Miller KL, Rushworth MF (2011) Diffusion-weighted imaging tractography-based parcellation of the human parietal cortex and comparison with human and macaque resting-state functional connectivity. J Neurosci 16 31(11):4087–4100

    Article  CAS  Google Scholar 

  • Martino J, Brogna C, Robles SG, Vergani F, Duffau H (2010) Anatomic dissection of the inferior fronto-occipital fasciculus revisited in the lights of brain stimulation data. Cortex 46(5):691–699

    Article  Google Scholar 

  • Martino J, da Silva-Freitas R, Caballero H, Marco de Lucas E, García-Porrero JA, Vázquez-Barquero A (2013) Fiber dissection and diffusion tensor imaging tractography study of the temporoparietal fiber intersection area. Neurosurgery 72(1):87–97

    Google Scholar 

  • Menjot de Champfleur N, Lima Maldonado I, Moritz-Gasser S, Machi P, Le Bars E, Bonafé A, Duffau H (2013) Middle longitudinal fasciculus delineation within language pathways: a diffusion tensor imaging study in human. Eur J Radiol 82(1):151–157. https://doi.org/10.1016/j.ejrad.2012.05.034

    Article  Google Scholar 

  • Motomura K, Fujii M, Maesawa S, Kuramitsu S, Natsume A, Wakabayashi T (2014) Association of dorsal inferior frontooccipital fasciculus fibers in the deep parietal lobe with both reading and writing processes: a brain mapping study. J Neurosurg 121(1):142–148

    Article  Google Scholar 

  • Naidich TP, Valavanis AG, Kubik S (1995) Anatomic relationships along the low-middle convexity: part I-normal specimens and magnetic resonance imaging. Neurosurgery 36(3):517–532

    CAS  Google Scholar 

  • Nakajima R, Kinoshita M, Shinohara H, Nakada M (2020) The superior longitudinal fascicle: reconsidering the fronto-parietal neural network based on anatomy and function. Brain Imaging Behav 14(6):2817–2830

    Article  Google Scholar 

  • Pastor-Escartín F, García-Catalán G, Holanda VM, Muftah Lahirish IA, Quintero RB, Neto MR, Quilis-Quesada V, Ibaoc KB, González Darder JM, de Oliveira E (2019) Microsurgical anatomy of the insular region and operculoinsular association fibers and its neurosurgical application. World Neurosurg 129:407–420

    Article  Google Scholar 

  • Petrides M, Pandya DN (1984) Projections to the frontal cortex from the posterior parietal region in the rhesus monkey. J Comp Neurol 228(1):105–116

    Article  CAS  Google Scholar 

  • Price AR, Bonner MF, Peelle JE, Grossman M (2015) Converging evidence for the neuroanatomic basis of combinatorial semantics in the angular gyrus. J Neurosci 35(7):3276–3284

    Article  CAS  Google Scholar 

  • Pustina D, Doucet G, Skidmore C, Sperling M, Tracy J (2014) Contralateral interictal spikes are related to tapetum damage in left temporal lobe epilepsy. Epilepsia 55(9):1406–1414

    Article  Google Scholar 

  • Rademacher J, Galaburda AM, Kennedy DN, Filipek PA, Caviness VS Jr (1992) Human cerebral cortex: localization, parcellation, and morphometry with magnetic resonance imaging. J Cogn Neurosci 4(4):352–374

    Article  CAS  Google Scholar 

  • Ramanan S, Piguet O, Irish M (2018) Rethinking the role of the angular gyrus in remembering the past and imagining the future: the contextual integration model. Neuroscientist 24(4):342–352

    Article  Google Scholar 

  • Rhoton AL Jr (2007) The cerebrum. Anatomy. Neurosurgery 61(1):37–118 (discussion 118–119)

    Article  Google Scholar 

  • Ribas GC (2010) The cerebral sulci and gyri. Neurosurg Focus 28(2):E2

    Article  Google Scholar 

  • Ribas EC, Yagmurlu K, de Oliveira E, Ribas GC, Rhoton A (2018) Microsurgical anatomy of the central core of the brain. J Neurosurg 129(3):752–769

    Article  Google Scholar 

  • Ripollés P, Biel D, Peñaloza C, Kaufmann J, Marco-Pallarés J, Noesselt T, Rodríguez-Fornells A (2017) Strength of temporal white matter pathways predicts semantic learning. J Neurosci 37(46):11101–11113

    Article  Google Scholar 

  • Rollans C, Cheema K, Georgiou GK, Cummine J (2017) Pathways of the inferior frontal occipital fasciculus in overt speech and reading. Neuroscience 364:93–106

    Article  CAS  Google Scholar 

  • Saalasti S, Alho J, Bar M, Glerean E, Honkela T, Kauppila M, Sams M, Jääskeläinen IP (2019) Inferior parietal lobule and early visual areas support elicitation of individualized meanings during narrative listening. Brain Behav 9(5):e01288

    Article  Google Scholar 

  • Sarubbo S, De Benedictis A, Merler S, Mandonnet E, Barbareschi M, Dallabona M, Chioffi F, Duffau H (2016) Structural and functional integration between dorsal and ventral language streams as revealed by blunt dissection and direct electrical stimulation. Hum Brain Mapp 37(11):3858–3872

    Article  Google Scholar 

  • Sarubbo S, Tate M, De Benedictis A, Merler S, Moritz-Gasser S, Herbet G, Duffau H (2020) Mapping critical cortical hubs and white matter pathways by direct electrical stimulation: an original functional atlas of the human brain. Neuroimage 205:116237

    Article  Google Scholar 

  • Schurr R, Zelman A, Mezer AA (2020) Subdividing the superior longitudinal fasciculus using local quantitative MRI. Neuroimage 208:116439

    Article  Google Scholar 

  • Seghier ML (2013) The angular gyrus: multiple functions and multiple subdivisions. Neuroscientist 19(1):43–61

    Article  Google Scholar 

  • Seghier ML, Fagan E, Price CJ (2010) Functional subdivisions in the left angular gyrus where the semantic system meets and diverges from the default network. J Neurosci 30(50):16809–16817

    Article  CAS  Google Scholar 

  • Vassal F, Schneider F, Sontheimer A, Lemaire JJ, Nuti C (2013) Intraoperative visualisation of language fascicles by diffusion tensor imaging-based tractography in glioma surgery. Acta Neurochir 155(3):437–448

    Article  Google Scholar 

  • Wang J, Fan L, Zhang Y, Liu Y, Jiang D, Zhang Y, Yu C, Jiang T (2012) Tractography-based parcellation of the human left inferior parietal lobule. Neuroimage 63(2):641–652

    Article  Google Scholar 

  • Wang Y, Fernández-Miranda JC, Verstynen T, Pathak S, Schneider W, Yeh FC (2013) Rethinking the role of the middle longitudinal fascicle in language and auditory pathways. Cereb Cortex 23(10):2347–2356

    Article  Google Scholar 

  • Wang J, Xie S, Guo X, Becker B, Fox PT, Eickhoff SB, Jiang T (2017) Correspondent functional topography of the human left inferior parietal lobule at rest and under task revealed using resting-state FMRI and coactivation based parcellation. Hum Brain Mapp 38(3):1659–1675

    Article  Google Scholar 

  • Yagmurlu K, Vlasak AL, Rhoton AL Jr (2015) Three-dimensional topographic fiber tract anatomy of the cerebrum. Neurosurgery 11(Suppl 2):274–305 (discussion 305)

    Google Scholar 

  • Yagmurlu K, Middlebrooks EH, Tanriover N, Rhoton AL Jr (2016) Fiber tracts of the dorsal language stream in the human brain. J Neurosurg 124(5):1396–1405

    Article  Google Scholar 

  • Yakar F, Eroglu U, Peker E, Armagan E, Comert A, Ugur HC (2018) Structure of corona radiata and tapetum fibers in ventricular surgery. J Clin Neurosci 57:143–148

    Article  Google Scholar 

  • Yeh FC, Tseng WY (2011) NTU-90: a high angular resolution brain atlas constructed by q-space diffeomorphic reconstruction. Neuroimage 58(1):91–99

    Article  Google Scholar 

Download references

Acknowledgements

This research was made possible due to the selfless gift from donor-cadaver patients. We are very grateful for their sacrifice.

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abuzer Güngör.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Ethical approval

This study was performed in line with the principles of the Declaration of Helsinki. Approval was granted by the. Ethics Committee of Pamukkale University (Date: 30.11.2021/No: 21).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yakar, F., Çeltikçi, P., Doğruel, Y. et al. The connectivity-based parcellation of the angular gyrus: fiber dissection and MR tractography study. Brain Struct Funct 228, 121–130 (2023). https://doi.org/10.1007/s00429-022-02555-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-022-02555-1

Keywords

Navigation