Skip to main content

Advertisement

Log in

Mapping temporo-parietal and temporo-occipital cortico-cortical connections of the human middle longitudinal fascicle in subject-specific, probabilistic, and stereotaxic Talairach spaces

  • Original Research
  • Published:
Brain Imaging and Behavior Aims and scope Submit manuscript

Abstract

Originally, the middle longitudinal fascicle (MdLF) was defined as a long association fiber tract connecting the superior temporal gyrus and temporal pole with the angular gyrus. More recently its description has been expanded to include all long postrolandic cortico-cortical association connections of the superior temporal gyrus and dorsal temporal pole with the parietal and occipital lobes. Despite its location and size, which makes MdLF one of the most prominent cerebral association fiber tracts, its discovery in humans is recent. Given the absence of a gold standard in humans for this fiber tract, its precise and complete connectivity remains to be determined with certainty. In this study using high angular resolution diffusion MRI (HARDI), we delineated for the first time, six major fiber connections of the human MdLF, four of which are temporo-parietal and two temporo-occipital, by examining morphology, topography, cortical connections, biophysical measures, volume and length in seventy brains. Considering the cortical affiliations of the different connections of MdLF we suggested that this fiber tract may be related to language, attention and integrative higher level visual and auditory processing associated functions. Furthermore, given the extensive connectivity provided to superior temporal gyrus and temporal pole with the parietal and occipital lobes, MdLF may be involved in several neurological and psychiatric conditions such as primary progressive aphasia and other aphasic syndromes, some forms of behavioral variant of frontotemporal dementia, atypical forms of Alzheimer’s disease, corticobasal degeneration, schizophrenia as well as attention-deficit/hyperactivity Disorder and neglect disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Aja-Fernandez, S., Niethammer, M., Kubicki, M., Shenton, M. E., & Westin, C. F. (2008). Restoration of DWI data using a Rician LMMSE estimator. IEEE Trans Med Imaging, 27(10), 1389–1403. doi:10.1109/TMI.2008.920609.

    Article  PubMed  PubMed Central  Google Scholar 

  • Alexander, A. L., Tsuruda, J. S., & Parker, D. L. (1997). Elimination of eddy current artifacts in diffusion-weighted echo-planar images: the use of bipolar gradients. Magn Reson Med, 38(6), 1016–1021.

    Article  CAS  PubMed  Google Scholar 

  • Armstrong, M. J., Litvan, I., Lang, A. E., Bak, T. H., Bhatia, K. P., Borroni, B., et al. (2013). Criteria for the diagnosis of corticobasal degeneration. Neurology, 80(5), 496–503. doi:10.1212/WNL.0b013e31827f0fd1.

    Article  PubMed  PubMed Central  Google Scholar 

  • Asami, T., Saito, Y., Whitford, T. J., Makris, N., Niznikiewicz, M., McCarley, R. W., et al. (2013). Abnormalities of middle longitudinal fascicle and disorganization in patients with schizophrenia. Schizophr Res, 143(2–3), 253–259.

    Article  PubMed  PubMed Central  Google Scholar 

  • Avants, B. B., Epstein, C. L., Grossman, M., & Gee, J. C. (2008). Symmetric diffeomorphic image registration with cross-correlation: evaluating automated labeling of elderly and neurodegenerative brain. Med Image Anal, 12(1), 26–41.

    Article  CAS  PubMed  Google Scholar 

  • Barnes, J., Dickerson, B. C., Frost, C., Jiskoot, L. C., Wolk, D., & van der Flier, W. M. (2015). Alzheimer’s disease first symptoms are age dependent: Evidence from the NACC dataset. Alzheimers Dement, 11(11), 1349–1357. doi:10.1016/j.jalz.2014.12.007.

    Article  PubMed  PubMed Central  Google Scholar 

  • Barta, P. E., Pearlson, G. D., Powers, R. E., Richards, S. S., & Tune, L. E. (1990). Auditory hallucinations and smaller superior temporal gyral volume in schizophrenia. Am J Psychiatry, 147(11), 1457–1462.

    Article  CAS  PubMed  Google Scholar 

  • Basser, P. J. (2004). Scaling laws for myelinated axons derived from an electrotonic core-conductor model. J Integr Neurosci, 3(2), 227–244.

    Article  PubMed  Google Scholar 

  • Basser, P. J., Mattiello, J., & LeBihan, D. (1994). MR diffusion tensor spectroscopy and imaging. Biophys J, 66(1), 259–267, doi:10.1016/S0006-3495(94)80775-1.

  • Baumgartner, C., Michailovich, O., Levitt, J., Pasternak, O., Bouix, S., Westin, C.-F., et al. (2012). A unified tractography framework for comparing diffusion models on clinical scans. Paper presented at the CDMRI-workshop (MICCAI’12), London.

    Google Scholar 

  • Benson, D. F., Davis, R. J., & Snyder, B. D. (1988). Posterior cortical atrophy. Arch Neurol, 45(7), 789–793.

    Article  CAS  PubMed  Google Scholar 

  • Broca, P. (1865). Sur la siege de la faculte du langage articule. Bulletin d’ Anthropologie, 6, 377–393.

    Google Scholar 

  • Brodmann, K. (1905). Beitrage zur histologischen Lokalisation der Grosshirnrinde. III. Mitteilung. Die Rindenfelder der niederen Affen. J Psychol Neurol, 4, 177–226.

    Google Scholar 

  • Bruce, C., Desimone, R., & Gross, C. G. (1981). Visual properties of neurons in a polysensory area in superior temporal sulcus of the macaque. J Neurophysiol, 46(2), 369–384.

    CAS  PubMed  Google Scholar 

  • Burdach, C. F. (1822). Baue und Leben des Gehirns. Leipzig: in der Dyk’schen Buchhandlung.

    Google Scholar 

  • Cabeza, R., & Nyberg, L. (2000). Neural bases of learning and memory: functional neuroimaging evidence. Curr Opin Neurol, 13(4), 415–421.

    Article  CAS  PubMed  Google Scholar 

  • Caviness, V. S. J., Makris, N., Meyer, J., & Kennedy, D. (1996). MRI-based parcellation of human neocortex: an anatomically specified method with estimate of reliability. J Cog Neurosci, 8(6), 566–588.

    Article  Google Scholar 

  • Chan, D., Anderson, V., Pijnenburg, Y., Whitwell, J., Barnes, J., Scahill, R., et al. (2009). The clinical profile of right temporal lobe atrophy. Brain, 132(Pt 5), 1287–1298. doi:10.1093/brain/awp037.

    Article  PubMed  Google Scholar 

  • Corbetta, M., & Shulman, G. L. (2002). Control of goal-directed and stimulus-driven attention in the brain. Nat Rev Neurosci, 3(3), 201–215.

    Article  CAS  PubMed  Google Scholar 

  • Cowan, W. M., Gottlieb, D. I., Hendrickson, A. E., Price, J. L., & Woolsey, T. A. (1972). The autoradiographic demonstration of axonal connections in the central nervous system. Brain Res, 37(1), 21–51.

    Article  CAS  PubMed  Google Scholar 

  • Critchley, M. (1966). Is developmental dyslexia the expression of minor cerebral damage? Clin Proc Child Hosp Dist Columbia, 22(8), 213–222.

    CAS  PubMed  Google Scholar 

  • Crutch, S. J., Schott, J. M., Rabinovici, G. D., Boeve, B. F., Cappa, S. F., Dickerson, B. C., et al. (2013). Shining a light on posterior cortical atrophy. Alzheimers Dement, 9(4), 463–465. doi:10.1016/j.jalz.2012.11.004.

    Article  PubMed  Google Scholar 

  • Dale, A. M., Fischl, B., & Sereno, M. I. (1999). Cortical surface-based analysis. I. Segmentation and surface reconstruction. Neuroimage, 9(2), 179–194. doi:10.1006/nimg.1998.0395.

    CAS  PubMed  Google Scholar 

  • Dale, A. M., Liu, A. K., Fischl, B. R., Buckner, R. L., Belliveau, J. W., Lewine, J. D., et al. (2000). Dynamic statistical parametric mapping: combining fMRI and MEG for high-resolution imaging of cortical activity. Neuron, 26(1), 55–67.

    Article  CAS  PubMed  Google Scholar 

  • De Witt Hamer, P. C., Moritz-Gasser, S., Gatignol, P., & Duffau, H. (2011). Is the human left middle longitudinal fascicle essential for language? A brain electrostimulation study. Hum Brain Mapp, 32(6), 962–973.

    Article  PubMed  Google Scholar 

  • Dejerine, J. (1895). Anatomie des Centres Nerveux (1980 (Masson ed.). Paris, France: Rueff et Cie.

    Google Scholar 

  • Desikan, R. S., Segonne, F., Fischl, B., Quinn, B. T., Dickerson, B. C., Blacker, D., et al. (2006). An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage, 31(3), 968–980. doi:10.1016/j.neuroimage.2006.01.021.

    Article  PubMed  Google Scholar 

  • Ding, S. L., Van Hoesen, G. W., Cassell, M. D., & Poremba, A. (2009). Parcellation of human temporal polar cortex: a combined analysis of multiple cytoarchitectonic, chemoarchitectonic, and pathological markers. J Comp Neurol, 514(6), 595–623.

    Article  PubMed  PubMed Central  Google Scholar 

  • Duffy, F. H., & Burchfiel, J. L. (1971). Somatosensory system: organizational hierarchy from single units in monkey area 5. Science, 172(3980), 273–275.

    Article  CAS  PubMed  Google Scholar 

  • Duncan, J., & Owen, A. M. (2000). Common regions of the human frontal lobe recruited by diverse cognitive demands. Trends Neurosci, 23(10), 475–483.

    Article  CAS  PubMed  Google Scholar 

  • Economo, C. (1929). The cytoarchitectonics of the human cerebral cortex. London: Oxford University Press.

    Google Scholar 

  • Evans, A. C., Collins, D. L., Mills, S. R., Brown, E. D., Kelly, R. L., & Peters, T. M. (1993). 3D statistical neuroanatomical model from 305 MRI volumes. Nuclear Science Symposium and Medical Imaging Conference, 1993 I.E. Conference Record, 3, 1813–1817.

  • First, M. B., Spitzer, R. L., Gibbon, M., & Williams, J. B. W. (1996). DSM-IV. Structured Clinical Interview for DSM-IV Axis I Disorders, Clinician Version (SCID-CV). Washington, D.C.: American Psychiatric Press, Inc..

    Google Scholar 

  • Fischl, B., & Dale, A. M. (2000). Measuring the thickness of the human cerebral cortex from magnetic resonance images. Proc Natl Acad Sci U S A, 97(20), 11050–11055. doi:10.1073/pnas.200033797.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fischl, B., Sereno, M. I., & Dale, A. M. (1999). Cortical surface-based analysis. II: Inflation, flattening, and a surface-based coordinate system. Neuroimage, 9(2), 195–207. doi:10.1006/nimg.1998.0396.

    Article  CAS  PubMed  Google Scholar 

  • Fischl, B., Salat, D. H., Busa, E., Albert, M., Dieterich, M., Haselgrove, C., et al. (2002). Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. Neuron, 33(3), 341–355.

    Article  CAS  PubMed  Google Scholar 

  • Fischl, B., van der Kouwe, A., Destrieux, C., Halgren, E., Segonne, F., Salat, D. H., et al. (2004). Automatically parcellating the human cerebral cortex. Cereb Cortex, 14(1), 11–22.

    Article  PubMed  Google Scholar 

  • Flechsig, P. (1901). Developmental (myelogenetic) localisation of the cerebral cortex in the human subject. Lancet, 2, 1027–1029.

    Article  Google Scholar 

  • Galaburda, A. M., Corsiglia, J., Rosen, G. D., & Sherman, G. F. (1987). Planum temporale asymmetry: Reappraisal since Geschwind and Levitsky. Neuropsychologia, 25(6), 853–868.

    Article  Google Scholar 

  • Geschwind, N. (1965). Disconnexion syndromes in animals and man. I. Brain, 88(2), 237–294.

    Article  CAS  PubMed  Google Scholar 

  • Geschwind, N., & Galaburda, A. M. (1987). Cerebral lateralization: biological mechanisms, associations and pathology. Cambridge, MA: MIT Press.

    Google Scholar 

  • Goldman-Rakic, P. S. (1988). Topography of cognition: parallel distributed networks in primate association cortex. Annu Rev Neurosci, 11, 137–156.

    Article  CAS  PubMed  Google Scholar 

  • Gorno-Tempini, M. L., Hillis, A. E., Weintraub, S., Kertesz, A., Mendez, M., Cappa, S. F., et al. (2011). Classification of primary progressive aphasia and its variants. Neurology, 76(11), 1006–1014. doi:10.1212/WNL.0b013e31821103e6.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gow Jr., D. W., Segawa, J. A., Ahlfors, S. P., & Lin, F. H. (2008). Lexical influences on speech perception: a Granger causality analysis of MEG and EEG source estimates. Neuroimage, 43(3), 614–623.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gow Jr., D. W., Keller, C. J., Eskandar, E., Meng, N., & Cash, S. S. (2009). Parallel versus serial processing dependencies in the perisylvian speech network: a Granger analysis of intracranial EEG data. Brain Lang, 110(1), 43–48.

    Article  PubMed  PubMed Central  Google Scholar 

  • Heid, O. (2000). Eddy current-nulled diffusion weighting. Proc Intl Soc Mag Reson Med, 8, 799.

    Google Scholar 

  • Heilman, K. M., & Valenstein, E. (1985). Clinical neuropsychology. New York: Oxford University Press.

    Google Scholar 

  • Heilman, K. M., & Van Den Abell, T. (1980). Right hemisphere dominance for attention: the mechanism underlying hemispheric asymmetries of inattention (neglect). Neurology, 30(3), 327–330.

    Article  CAS  PubMed  Google Scholar 

  • Heilman, K. M., Pandya, D. N., & Geschwind, N. (1970). Trimodal inattention following parietal lobe ablations. Trans Am Neurol Assoc, 95, 259–261.

    CAS  PubMed  Google Scholar 

  • Heilman, K. M., Watson, R. T., Bower, D., & Valenstein, E. (1983). Right hemisphere dominance for attention. Rev Neurol (Paris), 139(1), 15–17.

    CAS  Google Scholar 

  • Hickok, G. (2001). Functional anatomy of speech perception and speech production: psycholinguistic implications. J Psycholinguist Res, 30(3), 225–235.

    Article  CAS  PubMed  Google Scholar 

  • Hickok, G., & Poeppel, D. (2000). Towards a functional neuroanatomy of speech perception. Trends Cogn Sci, 4(4), 131–138.

    Article  CAS  PubMed  Google Scholar 

  • Hickok, G., & Poeppel, D. (2007). The cortical organization of speech processing. Nat Rev Neurosci, 8(5), 393–402.

    Article  CAS  PubMed  Google Scholar 

  • Jenkinson, M., & Smith, S. (2001). A global optimisation method for robust affine registration of brain images. Med Image Anal, 5(2), 143–156.

    Article  CAS  PubMed  Google Scholar 

  • Kamali, A., Flanders, A. E., Brody, J., Hunter, J. V., & Hasan, K. M. (2014a). Tracing superior longitudinal fasciculus connectivity in the human brain using high resolution diffusion tensor tractography. Brain Struct Funct, 219(1), 269–281. doi:10.1007/s00429-012-0498-y.

    Article  PubMed  Google Scholar 

  • Kamali, A., Sair, H. I., Radmanesh, A., & Hasan, K. M. (2014b). Decoding the superior parietal lobule connections of the superior longitudinal fasciculus/arcuate fasciculus in the human brain. Neuroscience, 277, 577–583. doi:10.1016/j.neuroscience.2014.07.035.

    Article  CAS  PubMed  Google Scholar 

  • Karnath, H. O., Ferber, S., & Himmelbach, M. (2001). Spatial awareness is a function of the temporal not the posterior parietal lobe. Nature, 411(6840), 950–953.

    Article  CAS  PubMed  Google Scholar 

  • Kasai, K., Shenton, M. E., Salisbury, D. F., Hirayasu, Y., Lee, C. U., Ciszewski, A. A., et al. (2003). Progressive decrease of left superior temporal gyrus gray matter volume in patients with first-episode schizophrenia. Am J Psychiatry, 160(1), 156–164.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kellmeyer, P., Ziegler, W., Peschke, C., Juliane, E., Schnell, S., Baumgaertner, A., et al. (2013). Fronto-parietal dorsal and ventral pathways in the context of different linguistic manipulations. Brain Lang, 127(2), 241–250. doi:10.1016/j.bandl.2013.09.011.

    Article  PubMed  Google Scholar 

  • Klingberg, T., Hedehus, M., Temple, E., Salz, T., Gabrieli, J. D., Moseley, M. E., et al. (2000). Microstructure of temporo-parietal white matter as a basis for reading ability: evidence from diffusion tensor magnetic resonance imaging. Neuron, 25(2), 493–500.

    Article  CAS  PubMed  Google Scholar 

  • Lacquaniti, F., Guigon, E., Bianchi, L., Ferraina, S., & Caminiti, R. (1995). Representing spatial information for limb movement: role of area 5 in the monkey. Cereb Cortex, 5(5), 391–409.

    Article  CAS  PubMed  Google Scholar 

  • Le Bihan, D., Breton, E., Lallemand, D., Grenier, P., Cabanis, E., & Laval-Jeantet, M. (1986). MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders. Radiology, 161(2), 401–407. doi:10.1148/radiology.161.2.3763909.

    Article  CAS  PubMed  Google Scholar 

  • Lori, N. F., Akbudak, E., Shimony, J. S., Cull, T. S., Snyder, A. Z., Guillory, R. K., et al. (2002). Diffusion tensor fiber tracking of human brain connectivity: aquisition methods, reliability analysis and biological results. NMR Biomed, 15(7–8), 494–515.

  • Ludwig, E., & Klingler, J. (1956). Atlas cerebri humani. Der innere Bau des Gehirns dargestellt auf Grund makroskopischer Präparate. Little, Brown: The inner structure of the brain demonstrated on the basis of macroscopical preparations. Boston.

    Google Scholar 

  • Luria, A. R. (1980). Higher cortical functions in man (2nd ed.). New York: Consultants Bureau.

    Book  Google Scholar 

  • Makris, N. (1999). Delineation of human assocation fiber pathways using histologic and magnetic resonance methodologies. Doctoral thesis: Boston University, Boston, MA.

    Google Scholar 

  • Makris, N., & Pandya, D. N. (2009). The extreme capsule in humans and rethinking of the language circuitry. Brain Struct Funct, 213(3), 343–358.

    Article  PubMed  Google Scholar 

  • Makris, N., Worth, A. J., Sorensen, A. G., Papadimitriou, G. M., Wu, O., Reese, T. G., et al. (1997). Morphometry of in vivo human white matter association pathways with diffusion-weighted magnetic resonance imaging. Annals of Neurology, 42(6), 951–962.

    Article  CAS  PubMed  Google Scholar 

  • Makris, N., Meyer, J. W., Bates, J. F., Yeterian, E. H., Kennedy, D. N., & Caviness, V. S. (1999). MRI-Based topographic parcellation of human cerebral white matter and nuclei II. Rationale and applications with systematics of cerebral connectivity. Neuroimage, 9(1), 18–45.

    Article  CAS  PubMed  Google Scholar 

  • Makris, N., Pandya, D. N., & Normandin, J. J. (2002a). Quantitative DT-MRI investigations of the human cingulum bundle. Central Nervous System Spectrums, 7(7), 522–528.

    Google Scholar 

  • Makris, N., Papadimitriou, G. M., Worth, A. J., Jenkins, B. G., Garrido, L., Sorensen, A. G., et al. (2002b). Diffusion tensor imaging. In C. Nemeroff (Ed.), Neuropsychopharmacology: the fifth generation of progress (Vol. 3, Chapter 27, pp. 357–371). New York: Lippincott, Williams, and Wilkins.

    Google Scholar 

  • Makris, N., Kennedy, D. N., McInerney, S., Sorensen, A. G., Wang, R., Caviness Jr., V. S., et al. (2005). Segmentation of subcomponents within the superior longitudinal fascicle in humans: a quantitative, in vivo, DT-MRI study. Cereb Cortex, 15(6), 854–869.

    Article  PubMed  Google Scholar 

  • Makris, N., Biederman, J., Valera, E. M., Bush, G., Kaiser, J., Kennedy, D. N., et al. (2007a). Cortical thinning of the attention and executive function networks in adults with attention-deficit/hyperactivity disorder. Cereb Cortex, 17(6), 1364–1375.

    Article  PubMed  Google Scholar 

  • Makris, N., Papadimitriou, G. M., Sorg, S., Kennedy, D. N., Caviness, V. S., & Pandya, D. N. (2007b). The occipitofrontal fascicle in humans: a quantitative, in vivo, DT-MRI study. Neuroimage, 37(4), 1100–1111. doi:10.1016/j.neuroimage.2007.05.042.

    Article  PubMed  PubMed Central  Google Scholar 

  • Makris, N., Buka, S. L., Biederman, J., Papadimitriou, G. M., Hodge, S. M., Valera, E. M., et al. (2008). Attention and executive systems abnormalities in adults with childhood ADHD: A DT-MRI study of connections. Cereb Cortex, 18(5), 1210–1220. doi:10.1093/cercor/bhm156.

    Article  PubMed  Google Scholar 

  • Makris, N., Papadimitriou, G. M., Kaiser, J. R., Sorg, S., Kennedy, D. N., & Pandya, D. N. (2009). Delineation of the middle longitudinal fascicle in humans: a quantitative, in vivo, DT-MRI study. Cereb Cortex, 19(4), 777–785. doi:10.1093/cercor/bhn124.

    Article  PubMed  Google Scholar 

  • Makris, N., Seidman, L. J., Ahern, T., Kennedy, D. N., Caviness, V. S., Tsuang, M. T., et al. (2010). White matter volume abnormalities and associations with symptomatology in schizophrenia. Psychiatry Research, 183(1), 21–29. doi:10.1016/j.pscychresns.2010.04.016.

    Article  PubMed  PubMed Central  Google Scholar 

  • Makris, N., Preti, M. G., Asami, T., Pelavin, P., Campbell, B., Papadimitriou, G. M., et al. (2013a). Human middle longitudinal fascicle: variations in patterns of anatomical connections. Brain Structure & Function, 218(4), 951–968. doi:10.1007/s00429-012-0441-2.

    Article  CAS  Google Scholar 

  • Makris, N., Preti, M. G., Wassermann, D., Rathi, Y., Papadimitriou, G. M., Yergatian, C., et al. (2013b). Human middle longitudinal fascicle: segregation and behavioral-clinical implications of two distinct fiber connections linking temporal pole and superior temporal gyrus with the angular gyrus or superior parietal lobule using multi-tensor tractography. Brain Imaging and Behavior, 7(3), 335–352. doi:10.1007/s11682-013-9235-2.

    Article  CAS  PubMed  Google Scholar 

  • Makris, N., Rathi, Y., Mouradian, P., Bonmassar, G., Papadimitriou, G., Ing, W. I., et al. (2015). Variability and anatomical specificity of the orbitofrontothalamic fibers of passage in the ventral capsule/ventral striatum (VC/VS): precision care for patient-specific tractography-guided targeting of deep brain stimulation (DBS) in obsessive compulsive disorder (OCD). Brain Imaging Behav. doi:10.1007/s11682-015-9462-9.

    PubMed  PubMed Central  Google Scholar 

  • Malcolm, J. G., Shenton, M. E., & Rathi, Y. (2010). Filtered multitensor tractography. IEEE Trans Med Imaging, 29(9), 1664–1675. doi:10.1109/TMI.2010.2048121.

    Article  PubMed  PubMed Central  Google Scholar 

  • Maldonado, I. L., de Champfleur, N. M., Velut, S., Destrieux, C., Zemmoura, I., & Duffau, H. (2013). Evidence of a middle longitudinal fasciculus in the human brain from fiber dissection. J Anat, 223(1), 38–45. doi:10.1111/joa.12055.

    Article  PubMed  PubMed Central  Google Scholar 

  • Martino, J., da Silva-Freitas, R., Caballero, H., de Lucas Marco, E., Garcia-Porrero, J. A., & Vazquez-Barquero, A. (2013). Fiber dissection and diffusion tensor imaging tractography study of the temporoparietal fiber intersection area. Neurosurgery, 72(1 Suppl Operative), 87–97 discussion 97–88. doi:10.1227/NEU.0b013e318274294b.

  • Menjot de Champfleur, N., Lima Maldonado, I., Moritz-Gasser, S., Machi, P., Le Bars, E., Bonafe, A., et al. (2013). Middle longitudinal fasciculus delineation within language pathways: a diffusion tensor imaging study in human. European Journal of Radiology, 82(1), 151–157. doi:10.1016/j.ejrad.2012.05.034.

    Article  PubMed  Google Scholar 

  • Mesulam, M. M. (1978). Tetramethyl benzidine for horseradish peroxidase neurohistochemistry: a non-carcinogenic blue reaction product with superior sensitivity for visualizing neural afferents and efferents. The Journal of Histochemistry and Cytochemistry, 26(2), 106–117.

    Article  CAS  PubMed  Google Scholar 

  • Mesulam, M. M. (1990). Large-scale neurocognitive networks and distributed processing for attention, language, and memory. Annals of Neurology, 28(5), 597–613.

    Article  CAS  PubMed  Google Scholar 

  • Mesulam, M. M. (1998). From sensation to cognition. Brain, 121 (Pt 6), 1013–1052.

  • Mesulam, M. M., Thompson, C. K., Weintraub, S., & Rogalski, E. J. (2015). The Wernicke conundrum and the anatomy of language comprehension in primary progressive aphasia. Brain, 138(Pt 8), 2423–2437. doi:10.1093/brain/awv154.

    Article  PubMed  PubMed Central  Google Scholar 

  • Meynert, T. (1865). Anatomie der Hirnrinde und ihre Verbindungsbahnen mit den empfindenden Oberflachen und den bewegenden Massen. Erlangen: In Leidesdorf’s Lehrbuch der phychischen Krankheiten.

    Google Scholar 

  • Molholm, S., Sehatpour, P., Mehta, A. D., Shpaner, M., Gomez-Ramirez, M., Ortigue, S., et al. (2006). Audio-visual multisensory integration in superior parietal lobule revealed by human intracranial recordings. Journal of Neurophysiology, 96(2), 721–729.

    Article  PubMed  Google Scholar 

  • Mori, S., Crain, B. J., Chacko, V. P., & van Zijl, P. C. (1999). Three-dimensional tracking of axonal projections in the brain by magnetic resonance imaging. Ann Neurol, 45(2), 265–269.

    Article  CAS  PubMed  Google Scholar 

  • Mountcastle, V. B., Lynch, J. C., Georgopoulos, A., Sakata, H., & Acuna, C. (1975). Posterior parietal association cortex of the monkey: command functions for operations within extrapersonal space. J Neurophysiol, 38(4), 871–908.

    CAS  PubMed  Google Scholar 

  • Pandya, D. N., & Yeterian, E. H. (1985). Architecture and connections of cortical association areas. In A. Peters, & E. G. Jones (Eds.), Cerebral cortex: association and auditory areas (Vol. 4, pp. 3–61): New York: Plenum.

  • Petkov, C. I., Kayser, C., Steudel, T., Whittingstall, K., Augath, M., & Logothetis, N. K. (2008). A voice region in the monkey brain. Nat Neurosci, 11(3), 367–374. doi:10.1038/nn2043.

    Article  CAS  PubMed  Google Scholar 

  • Pierpaoli, C., & Basser, P. J. (1996). Toward a quantitative assessment of diffusion anisotropy. Magn Reson Med, 36(6), 893–906.

    Article  CAS  PubMed  Google Scholar 

  • Poremba, A., Saunders, R. C., Crane, A. M., Cook, M., Sokoloff, L., & Mishkin, M. (2003). Functional mapping of the primate auditory system. Science, 299(5606), 568–572.

    Article  CAS  PubMed  Google Scholar 

  • Posner, M. I., & Petersen, S. E. (1990). The attention system of the human brain. Annu Rev Neurosci, 13, 25–42.

    Article  CAS  PubMed  Google Scholar 

  • Rajarethinam, R., Sahni, S., Rosenberg, D. R., & Keshavan, M. S. (2004). Reduced superior temporal gyrus volume in young offspring of patients with schizophrenia. Am J Psychiatry, 161(6), 1121–1124.

    Article  PubMed  Google Scholar 

  • Rascovsky, K., Hodges, J. R., Knopman, D., Mendez, M. F., Kramer, J. H., Neuhaus, J., et al. (2011). Sensitivity of revised diagnostic criteria for the behavioural variant of frontotemporal dementia. Brain, 134(Pt 9), 2456–2477. doi:10.1093/brain/awr179.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rathi, Y., Malcolm, J. G., Bouix, S., Westin, C.-F., & Shenton, M. E. (2010). False positive detection using filtered tractography. Proc Intl Soc Mag Reson Med, 18, 4019.

    Google Scholar 

  • Rauschecker, J. P., & Tian, B. (2000). Mechanisms and streams for processing of “what” and “where” in auditory cortex. Proc Natl Acad Sci U S A, 97(22), 11800–11806. doi:10.1073/pnas.97.22.11800.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reil, D. J. C., & Autenrieth, D. J. H. F. (1809). Archiv fur die Physiologie. Halle: In Der Curtschen Buchhandlung.

    Google Scholar 

  • Rilling, J. K., Glasser, M. F., Preuss, T. M., Ma, X., Zhao, T., Hu, X., et al. (2008). The evolution of the arcuate fasciculus revealed with comparative DTI. Nature Neuroscience, 11(4), 426–428. doi:10.1038/nn2072.

    Article  CAS  PubMed  Google Scholar 

  • Sakata, H., Takaoka, Y., Kawarasaki, A., & Shibutani, H. (1973). Somatosensory properties of neurons in the superior parietal cortex (area 5) of the rhesus monkey. Brain Res, 64, 85–102.

    Article  CAS  PubMed  Google Scholar 

  • Sapolsky, D., Bakkour, A., Negreira, A., Nalipinski, P., Weintraub, S., Mesulam, M. M., et al. (2010). Cortical neuroanatomic correlates of symptom severity in primary progressive aphasia. Neurology, 75(4), 358–366.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmahmann, J. D., & Pandya, D. N. (2006). Fiber pathways of the brain. New York: Oxford University Press.

    Book  Google Scholar 

  • Seltzer, B., & Pandya, D. N. (1978). Afferent cortical connections and architectonics of the superior temporal sulcus and surrounding cortex in the rhesus monkey. Brain Res, 149(1), 1–24.

    Article  CAS  PubMed  Google Scholar 

  • Seltzer, B., & Pandya, D. N. (1984). Further observations on parieto-temporal connections in the rhesus monkey. Exp Brain Res, 55(2), 301–312.

    Article  CAS  PubMed  Google Scholar 

  • Seltzer, B., & Pandya, D. N. (1991). Post-rolandic cortical projections of the superior temporal sulcus in the rhesus monkey. J Comp Neurol, 312(4), 625–640.

    Article  CAS  PubMed  Google Scholar 

  • Song, S. K., Sun, S. W., Ramsbottom, M. J., Chang, C., Russell, J., & Cross, A. H. (2002). Dysmyelination revealed through MRI as increased radial (but unchanged axial) diffusion of water. Neuroimage, 17(3), 1429–1436.

    Article  PubMed  Google Scholar 

  • Song, S. K., Sun, S. W., Ju, W. K., Lin, S. J., Cross, A. H., & Neufeld, A. H. (2003). Diffusion tensor imaging detects and differentiates axon and myelin degeneration in mouse optic nerve after retinal ischemia. Neuroimage, 20(3), 1714–1722.

    Article  PubMed  Google Scholar 

  • Suchan, J., Umarova, R., Schnell, S., Himmelbach, M., Weiller, C., Karnath, H. O., et al. (2014). Fiber pathways connecting cortical areas relevant for spatial orienting and exploration. Human Brain Mapping, 35(3), 1031–1043. doi:10.1002/hbm.22232.

    Article  PubMed  Google Scholar 

  • Talairach, J., & Tournoux, P. (1988). Co-planar stereotaxic atlas of the human brain. New York: Thieme Medical Publishers, Inc..

    Google Scholar 

  • Thiebaut de Schotten, M., Dell’Acqua, F., Forkel, S. J., Simmons, A., Vergani, F., Murphy, D. G., et al. (2011). A lateralized brain network for visuospatial attention. Nature Neuroscience, 14(10), 1245–1246.

    Article  CAS  PubMed  Google Scholar 

  • Tian, B., Reser, D., Durham, A., Kustov, A., & Rauschecker, J. P. (2001). Functional specialization in rhesus monkey auditory cortex. Science, 292(5515), 290–293. doi:10.1126/science.1058911.

    Article  CAS  PubMed  Google Scholar 

  • Tuch, D. S., Reese, T. G., Wiegell, M. R., Makris, N., Belliveau, J. W., & Wedeen, V. J. (2002). High angular resolution diffusion imaging reveals intravoxel white matter fiber heterogeneity. Magn Reson Med, 48(4), 577–582.

    Article  PubMed  Google Scholar 

  • Turken, A. U., & Dronkers, N. F. (2011). The neural architecture of the language comprehension network: converging evidence from lesion and connectivity analyses. Front Syst Neurosci, 5, 1.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang, Y., Fernandez-Miranda, J. C., Verstynen, T., Pathak, S., Schneider, W., & Yeh, F. C. (2013). Rethinking the role of the middle longitudinal fascicle in language and auditory pathways. Cereb Cortex, 23(10), 2347–2356. doi:10.1093/cercor/bhs225.

    Article  PubMed  Google Scholar 

  • Watson, R. T., Valenstein, E., Day, A., & Heilman, K. M. (1994). Posterior neocortical systems subserving awareness and neglect. Neglect associated with superior temporal sulcus but not area 7 lesions. Arch Neurol, 51(10), 1014–1021.

    Article  CAS  PubMed  Google Scholar 

  • Wernicke, C. (1874). Der aphasiche Symptomenkomplex. Breslau: Cohn und Weigert.

    Google Scholar 

  • Whitwell, J. L., Weigand, S. D., Boeve, B. F., Senjem, M. L., Gunter, J. L., DeJesus-Hernandez, M., et al. (2012). Neuroimaging signatures of frontotemporal dementia genetics: C9ORF72, tau, progranulin and sporadics. Brain, 135(Pt 3), 794–806. doi:10.1093/brain/aws001.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wolk, D. A., Dickerson, B. C., & Alzheimer’s Disease Neuroimaging, I. (2010). Apolipoprotein E (APOE) genotype has dissociable effects on memory and attentional-executive network function in Alzheimer’s disease. Proc Natl Acad Sci U S A, 107(22), 10256–10261. doi:10.1073/pnas.1001412107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Mr. Yeetzou Kao for excellent editorial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikos Makris.

Ethics declarations

Funding

This study was supported, in part, by grants from: NINDS, R21NS077059 and R21NS079905 (NM and BD); from NIA/NIMH, R01AG042512 (NM); from NIMH, R01 MH102377 (MK and NM); from NIMH, R01MH097979 (YR).

Conflicts of interest

Nikolaos Makris, Anni Zhu, George Papadimitriou, Palig Mouradian, Wingkwai I. Ng, Elisa Scaccianoce, Giuseppe Baselli, Francesca Baglio, Martha Shenton, Yogesh Rathi, Brad Dickerson, Edward H. Yeterian and Marek Kubicki declare that they have no conflict of interest.

Informed consent

All procedures followed were in accordance with the ethical standards of the responsible committee on human experimentation (institutional and national) and with the Helsinki Declaration of 1975, and the applicable revisions at the time of the investigation. Informed consent was obtained from all patients for being included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Makris, N., Zhu, A., Papadimitriou, G.M. et al. Mapping temporo-parietal and temporo-occipital cortico-cortical connections of the human middle longitudinal fascicle in subject-specific, probabilistic, and stereotaxic Talairach spaces. Brain Imaging and Behavior 11, 1258–1277 (2017). https://doi.org/10.1007/s11682-016-9589-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11682-016-9589-3

Keywords

Navigation