Skip to main content
Log in

The updated view on induced pluripotent stem cells for cardiovascular precision medicine

  • Invited Review
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Cardiovascular diseases have consistently been one of the leading causes of mortality, despite investigations by many scientists and clinicians. Animal models are versatile platforms to illustrate various mechanisms of different diseases, but are lacking in accurately portraying cardiovascular disease phenotypes. The advent of human pluripotent stem cells (PSCs) has led to much development in the construction of cardiovascular disease models. In this review, we provide a brief overview of the history and utilization of PSCs for cardiovascular precision medicine, including disease modeling, drug screening, and gene editing, and elaborate on the current updated research status of patient-specific induced pluripotent stem cell (iPSC)-based disease models for cardiac channelopathies, cardiomyopathies, and other cardiovascular diseases. Furthermore, we highlight the development of novel human iPSC-derived engineered heart tissues for cardiovascular disease modeling. Finally, we put forward our own views on the existing advantages and difficulties for moving forward in this field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Acimovic I, Refaat M, Moreau A, Salykin A, Reiken S, Sleiman Y, Souidi M, Přibyl J, Kajava A, Richard S, Lu J, Chevalier P, Skládal P, Dvořak P, Rotrekl V, Marks A, Scheinman M, Lacampagne A, Meli A (2018) Post-translational modifications and diastolic calcium leak associated to the novel RyR2-D3638A mutation lead to CPVT in patient-specific hiPSC-derived cardiomyocytes. Journal of Clinical Medicine 7:423. https://doi.org/10.3390/jcm7110423

    Article  CAS  PubMed Central  Google Scholar 

  2. Alfar EA, El-Armouche A, Guan K (2018) MicroRNAs in cardiomyocyte differentiation and maturation. Cardiovasc Res 114:779–781. https://doi.org/10.1093/cvr/cvy065

    Article  CAS  PubMed  Google Scholar 

  3. Bellin M, Greber B (2015) Human iPS cell models of Jervell and Lange-Nielsen syndrome. Rare Diseases 3:e1012978. https://doi.org/10.1080/21675511.2015.1012978

    Article  PubMed  PubMed Central  Google Scholar 

  4. Ben Jehuda R, Eisen B, Shemer Y, Mekies LN, Szantai A, Reiter I, Cui H, Guan K, Haron-Khun S, Freimark D, Sperling SR, Gherghiceanu M, Arad M, Binah O (2018) CRISPR correction of the PRKAG2 gene mutation in the patient's induced pluripotent stem cell-derived cardiomyocytes eliminates electrophysiological and structural abnormalities. Heart Rhythm 15:267–276. https://doi.org/10.1016/j.hrthm.2017.09.024

    Article  PubMed  Google Scholar 

  5. Carvajal-Vergara X, Sevilla A, D'Souza SL, Ang YS, Schaniel C, Lee DF, Yang L, Kaplan AD, Adler ED, Rozov R, Ge Y, Cohen N, Edelmann LJ, Chang B, Waghray A, Su J, Pardo S, Lichtenbelt KD, Tartaglia M, Gelb BD, Lemischka IR (2010) Patient-specific induced pluripotent stem-cell-derived models of LEOPARD syndrome. Nature 465:808–812. https://doi.org/10.1038/nature09005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Cashman TJ, Josowitz R, Johnson BV, Gelb BD, Costa KD (2016) Human engineered cardiac tissues created using induced pluripotent stem cells reveal functional characteristics of BRAF-mediated hypertrophic cardiomyopathy. PLoS One 11:e0146697. https://doi.org/10.1371/journal.pone.0146697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Chai S, Wan X, Ramirez-Navarro A, Tesar PJ, Kaufman ES, Ficker E, George AL, Deschênes I (2018) Physiological genomics identifies genetic modifiers of long QT syndrome type 2 severity. J Clin Investig 128:1043–1056. https://doi.org/10.1172/jci94996

    Article  PubMed  PubMed Central  Google Scholar 

  8. Chang ACY, Chang ACH, Kirillova A, Sasagawa K, Su W, Weber G, Lin J, Termglinchan V, Karakikes I, Seeger T, Dainis AM, Hinson JT, Seidman J, Seidman CE, Day JW, Ashley E, Wu JC, Blau HM (2018) Telomere shortening is a hallmark of genetic cardiomyopathies. Proc Natl Acad Sci U S A 115:9276–9281. https://doi.org/10.1073/pnas.1714538115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Clevers H (2016) Modeling Development and Disease with Organoids. Cell 165:1586–1597. https://doi.org/10.1016/j.cell.2016.05.082

    Article  CAS  PubMed  Google Scholar 

  10. Dai Y, Amenov A, Ignatyeva N, Koschinski A, Xu H, Soong PL, Tiburcy M, Linke WA, Zaccolo M, Hasenfuss G, Zimmermann WH, Ebert A (2020) Troponin destabilization impairs sarcomere-cytoskeleton interactions in iPSC-derived cardiomyocytes from dilated cardiomyopathy patients. Sci Rep 10:209. https://doi.org/10.1038/s41598-019-56597-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Devalla HD, Schwach V, Ford JW, Milnes JT, El-Haou S, Jackson C, Gkatzis K, Elliott DA, Chuva de Sousa Lopes SM, Mummery CL, Verkerk AO, Passier R (2015) Atrial-like cardiomyocytes from human pluripotent stem cells are a robust preclinical model for assessing atrial-selective pharmacology. EMBO Molecular Medicine 7:394-410. https://doi.org/10.15252/emmm.201404757

  12. Di Pasquale E, Lodola F, Miragoli M, Denegri M, Avelino-Cruz JE, Buonocore M, Nakahama H, Portararo P, Bloise R, Napolitano C, Condorelli G, Priori SG (2013) CaMKII inhibition rectifies arrhythmic phenotype in a patient-specific model of catecholaminergic polymorphic ventricular tachycardia. Cell Death & Disease 4:e843. https://doi.org/10.1038/cddis.2013.369

    Article  CAS  Google Scholar 

  13. Dudek J, Maack C (2017) Barth syndrome cardiomyopathy. Cardiovasc Res 113:399–410. https://doi.org/10.1093/cvr/cvx014

    Article  CAS  PubMed  Google Scholar 

  14. Egashira T, Yuasa S, Suzuki T, Aizawa Y, Yamakawa H, Matsuhashi T, Ohno Y, Tohyama S, Okata S, Seki T, Kuroda Y, Yae K, Hashimoto H, Tanaka T, Hattori F, Sato T, Miyoshi S, Takatsuki S, Murata M, Kurokawa J, Furukawa T, Makita N, Aiba T, Shimizu W, Horie M, Kamiya K, Kodama I, Ogawa S, Fukuda K (2012) Disease characterization using LQTS-specific induced pluripotent stem cells. Cardiovasc Res 95:419–429. https://doi.org/10.1093/cvr/cvs206

    Article  CAS  PubMed  Google Scholar 

  15. Eisen B, Ben Jehuda R, Cuttitta AJ, Mekies LN, Shemer Y, Baskin P, Reiter I, Willi L, Freimark D, Gherghiceanu M, Monserrat L, Scherr M, Hilfiker-Kleiner D, Arad M, Michele DE, Binah O (2019) Electrophysiological abnormalities in induced pluripotent stem cell-derived cardiomyocytes generated from Duchenne muscular dystrophy patients. J Cell Mol Med 23:2125–2135. https://doi.org/10.1111/jcmm.14124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Fang X, Miao S, Yu Y, Ding F, Han X, Wu H, Zhao ZA, Wang Y, Hu S, Lei W (2019) MIR148A family regulates cardiomyocyte differentiation of human embryonic stem cells by inhibiting the DLL1-mediated NOTCH signaling pathway. J Mol Cell Cardiol 134:1–12. https://doi.org/10.1016/j.yjmcc.2019.06.014

    Article  CAS  PubMed  Google Scholar 

  17. Fatica EM, DeLeonibus GA, House A, Kodger JV, Pearce RW, Shah RR, Levi L, Sandlers Y (2019) Barth syndrome: exploring cardiac metabolism with induced pluripotent stem cell-derived cardiomyocytes. Metabolites 9:306. https://doi.org/10.3390/metabo9120306

    Article  CAS  PubMed Central  Google Scholar 

  18. Aea F (2011) In vitro modeling of ryanodine receptor 2 dysfunction using human induced pluripotent stem cell. Cell Physiol Biochem 28:579–592. https://doi.org/10.1159/000335753

    Article  CAS  Google Scholar 

  19. Fujita S, Nakagawa R, Futatani T, Igarashi N, Fuchigami T, Saito S, Ohno S, Horie M, Hatasaki K (2019) Long QT syndrome with a de novo CALM2 mutation in a 4-year-old boy. Pediatr Int 61:852–858. https://doi.org/10.1111/ped.13959

    Article  CAS  PubMed  Google Scholar 

  20. Garg P, Garg V, Shrestha R, Sanguinetti MC, Kamp TJ, Wu JC (2018) Human induced pluripotent stem cell–derived cardiomyocytes as models for cardiac channelopathies. Circ Res 123:224–243. https://doi.org/10.1161/circresaha.118.311209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ge X, Ren Y, Bartulos O, Lee MY, Yue Z, Kim KY, Li W, Amos PJ, Bozkulak EC, Iyer A, Zheng W, Zhao H, Martin KA, Kotton DN, Tellides G, Park IH, Yue L, Qyang Y (2012) Modeling supravalvular aortic stenosis syndrome with human induced pluripotent stem cells. Circulation 126:1695–1704. https://doi.org/10.1161/CIRCULATIONAHA.112.116996

    Article  PubMed  PubMed Central  Google Scholar 

  22. Gee P, Xu H, Hotta A (2017) Cellular reprogramming, genome editing, and alternative CRISPR Cas9 technologies for precise gene therapy of duchenne muscular dystrophy. Stem Cells Int 2017:8765154–8765111. https://doi.org/10.1155/2017/8765154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Goldfracht I, Protze S, Shiti A, Setter N, Gruber A, Shaheen N, Nartiss Y, Keller G, Gepstein L (2020) Generating ring-shaped engineered heart tissues from ventricular and atrial human pluripotent stem cell-derived cardiomyocytes. Nat Commun 11:75. https://doi.org/10.1038/s41467-019-13868-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Granata A, Serrano F, Bernard WG, McNamara M, Low L, Sastry P, Sinha S (2017) An iPSC-derived vascular model of Marfan syndrome identifies key mediators of smooth muscle cell death. Nat Genet 49:97–109. https://doi.org/10.1038/ng.3723

    Article  CAS  PubMed  Google Scholar 

  25. Gu M, Shao NY, Sa S, Li D, Termglinchan V, Ameen M, Karakikes I, Sosa G, Grubert F, Lee J, Cao A, Taylor S, Ma Y, Zhao Z, Chappell J, Hamid R, Austin ED, Gold JD, Wu JC, Snyder MP, Rabinovitch M (2017) Patient-specific iPSC-derived endothelial cells uncover pathways that protect against pulmonary hypertension in BMPR2 mutation carriers. Cell Stem Cell 20(490-504):e495. https://doi.org/10.1016/j.stem.2016.08.019

    Article  CAS  Google Scholar 

  26. Han L, Li Y, Tchao J, Kaplan AD, Lin B, Li Y, Mich-Basso J, Lis A, Hassan N, London B, Bett GC, Tobita K, Rasmusson RL, Yang L (2014) Study familial hypertrophic cardiomyopathy using patient-specific induced pluripotent stem cells. Cardiovasc Res 104:258–269. https://doi.org/10.1093/cvr/cvu205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hayano M, Makiyama T, Kamakura T, Watanabe H, Sasaki K, Funakoshi S, Wuriyanghai Y, Nishiuchi S, Harita T, Yamamoto Y, Kohjitani H, Hirose S, Yokoi F, Chen J, Baba O, Horie T, Chonabayashi K, Ohno S, Toyoda F, Yoshida Y, Ono K, Horie M, Kimura T (2017) Development of a patient-derived induced pluripotent stem cell model for the investigation of SCN5A-D1275N-related cardiac sodium channelopathy. Circ J 81:1783–1791. https://doi.org/10.1253/circj.CJ-17-0064

    Article  CAS  PubMed  Google Scholar 

  28. He J-Q, Ma Y, Lee Y, Thomson JA, Kamp TJ (2003) Human embryonic stem cells develop into multiple types of cardiac myocytes. Circulation Research 93:32–39. https://doi.org/10.1161/01.Res.0000080317.92718.99

    Article  CAS  PubMed  Google Scholar 

  29. Hedley PL, Jørgensen P, Schlamowitz S, Wangari R, Moolman-Smook J, Brink PA, Kanters JK, Corfield VA, Christiansen M (2009) The genetic basis of long QT and short QT syndrome a mutation update. Human Mutation 30:1486–1511. https://doi.org/10.1002/humu.21106

    Article  CAS  PubMed  Google Scholar 

  30. Hinson JT, Chopra A, Nafissi N, Polacheck WJ, Benson CC, Swist S, Gorham J, Yang L, Schafer S, Sheng CC, Haghighi A, Homsy J, Hubner N, Church G, Cook SA, Linke WA, Chen CS, Seidman JG, Seidman CE (2015) HEART DISEASE. Titin mutations in iPS cells define sarcomere insufficiency as a cause of dilated cardiomyopathy. Science 349:982–986. https://doi.org/10.1126/science.aaa5458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hoekstra M, Mummery CL, Wilde AA, Bezzina CR, Verkerk AO (2012) Induced pluripotent stem cell derived cardiomyocytes as models for cardiac arrhythmias. Front Physiol 3:346. https://doi.org/10.3389/fphys.2012.00346

    Article  PubMed  PubMed Central  Google Scholar 

  32. Hulot JS (2019) Modeling cardiac arrhythmias with organoids. J Am Coll Cardiol 73:2325–2327. https://doi.org/10.1016/j.jacc.2019.01.076

    Article  PubMed  Google Scholar 

  33. Itzhaki I, Maizels L, Huber I, Zwi-Dantsis L, Caspi O, Winterstern A, Feldman O, Gepstein A, Arbel G, Hammerman H, Boulos M, Gepstein L (2011) Modelling the long QT syndrome with induced pluripotent stem cells. Nature 471:225–229. https://doi.org/10.1038/nature09747

    Article  CAS  PubMed  Google Scholar 

  34. Jelinkova S, Vilotic A, Pribyl J, Aimond F, Salykin A, Acimovic I, Pesl M, Caluori G, Klimovic S, Urban T, Dobrovolna H, Soska V, Skladal P, Lacampagne A, Dvorak P, Meli AC, Rotrekl V (2020) DMD pluripotent stem cell derived cardiac cells recapitulate in vitro human cardiac pathophysiology. Frontiers in Bioengineering and Biotechnology 8:535. https://doi.org/10.3389/fbioe.2020.00535

    Article  PubMed  PubMed Central  Google Scholar 

  35. Jung CB, Moretti A, Schnitzler MMy, Iop L, Storch U, Bellin M, Dorn T, Ruppenthal S, Pfeiffer S, Goedel A, Dirschinger RJ, Seyfarth M, Lam JT, Sinnecker D, Gudermann T, Lipp P, Laugwitz K-L (2012) Dantrolene rescues arrhythmogenic RYR2 defect in a patient-specific stem cell model of catecholaminergic polymorphic ventricular tachycardia. EMBO Mol Med 4:180-191. https://doi.org/10.1002/emmm.201100194

  36. Kamdar F, Das S, Gong W, Klaassen Kamdar A, Meyers TA, Shah P, Ervasti JM, Townsend D, Kamp TJ, Wu JC, Garry MG, Zhang J, Garry DJ (2020) Stem cell–derived cardiomyocytes and beta-adrenergic receptor blockade in duchenne muscular dystrophy cardiomyopathy. Journal of the American College of Cardiology 75:1159–1174. https://doi.org/10.1016/j.jacc.2019.12.066

    Article  CAS  PubMed  Google Scholar 

  37. Karakikes I, Senyei GD, Hansen J, Kong C-W, Azeloglu EU, Stillitano F, Lieu DK, Wang J, Ren L, Hulot J-S, Iyengar R, Li RA, Hajjar RJ (2014) Small molecule-mediated directed differentiation of human embryonic stem cells toward ventricular cardiomyocytes. STEM CELLS Translational Medicine 3:18–31. https://doi.org/10.5966/sctm.2013-0110

    Article  CAS  PubMed  Google Scholar 

  38. Kim C, Wong J, Wen J, Wang S, Wang C, Spiering S, Kan NG, Forcales S, Puri PL, Leone TC, Marine JE, Calkins H, Kelly DP, Judge DP, Chen H-SV (2013) Studying arrhythmogenic right ventricular dysplasia with patient-specific iPSCs. Nature 494:105–110. https://doi.org/10.1038/nature11799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kim HJ, Kim BG, Park JE, Ki CS, Huh J, Youm JB, Kang JS, Cho H (2019) Characterization of a novel LQT3 variant with a selective efficacy of mexiletine treatment. Sci Rep 9:12997. https://doi.org/10.1038/s41598-019-49450-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kinnear C, Chang WY, Khattak S, Hinek A, Thompson T, de Carvalho RD, Kennedy K, Mahmut N, Pasceri P, Stanford WL, Ellis J, Mital S (2013) Modeling and rescue of the vascular phenotype of Williams-Beuren syndrome in patient induced pluripotent stem cells. Stem Cells Transl Med 2:2–15. https://doi.org/10.5966/sctm.2012-0054

    Article  CAS  PubMed  Google Scholar 

  41. Knoll R (2012) Myosin binding protein C: implications for signal-transduction. J Muscle Res Cell Motil 33:31–42. https://doi.org/10.1007/s10974-011-9281-6

    Article  CAS  PubMed  Google Scholar 

  42. Kondo T, Asai M, Tsukita K, Kutoku Y, Ohsawa Y, Sunada Y, Imamura K, Egawa N, Yahata N, Okita K, Takahashi K, Asaka I, Aoi T, Watanabe A, Watanabe K, Kadoya C, Nakano R, Watanabe D, Maruyama K, Hori O, Hibino S, Choshi T, Nakahata T, Hioki H, Kaneko T, Naitoh M, Yoshikawa K, Yamawaki S, Suzuki S, Hata R, Ueno S, Seki T, Kobayashi K, Toda T, Murakami K, Irie K, Klein WL, Mori H, Asada T, Takahashi R, Iwata N, Yamanaka S, Inoue H (2013) Modeling Alzheimer's disease with iPSCs reveals stress phenotypes associated with intracellular Abeta and differential drug responsiveness. Cell Stem Cell 12:487–496. https://doi.org/10.1016/j.stem.2013.01.009

    Article  CAS  PubMed  Google Scholar 

  43. Lee J, Termglinchan V, Diecke S, Itzhaki I, Lam CK, Garg P, Lau E, Greenhaw M, Seeger T, Wu H, Zhang JZ, Chen X, Gil IP, Ameen M, Sallam K, Rhee JW, Churko JM, Chaudhary R, Chour T, Wang PJ, Snyder MP, Chang HY, Karakikes I, Wu JC (2019) Activation of PDGF pathway links LMNA mutation to dilated cardiomyopathy. Nature 572:335–340. https://doi.org/10.1038/s41586-019-1406-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lee SH, Sung JH (2018) Organ-on-a-chip technology for reproducing multiorgan physiology. Adv Healthc Mater 7. https://doi.org/10.1002/adhm.201700419

  45. Lei W, Feng T, Fang X, Yu Y, Yang J, Zhao ZA, Liu J, Shen Z, Deng W, Hu S (2018) Signature of circular RNAs in human induced pluripotent stem cells and derived cardiomyocytes. Stem Cell Res Ther 9:56. https://doi.org/10.1186/s13287-018-0793-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Li HL, Fujimoto N, Sasakawa N, Shirai S, Ohkame T, Sakuma T, Tanaka M, Amano N, Watanabe A, Sakurai H, Yamamoto T, Yamanaka S, Hotta A (2015) Precise correction of the dystrophin gene in duchenne muscular dystrophy patient induced pluripotent stem cells by TALEN and CRISPR-Cas9. Stem Cell Rep 4:143–154. https://doi.org/10.1016/j.stemcr.2014.10.013

    Article  CAS  Google Scholar 

  47. Liang P, Sallam K, Wu H, Li Y, Itzhaki I, Garg P, Zhang Y, Vermglinchan V, Lan F, Gu M, Gong T, Zhuge Y, He C, Ebert AD, Sanchez-Freire V, Churko J, Hu S, Sharma A, Lam CK, Scheinman MM, Bers DM, Wu JC (2016) Patient-specific and genome-edited induced pluripotent stem cell-derived cardiomyocytes elucidate single-cell phenotype of Brugada syndrome. J Am Coll Cardiol 68:2086–2096. https://doi.org/10.1016/j.jacc.2016.07.779

    Article  PubMed  PubMed Central  Google Scholar 

  48. Limpitikul WB, Dick IE, Tester DJ, Boczek NJ, Limphong P, Yang W, Choi MH, Babich J, DiSilvestre D, Kanter RJ, Tomaselli GF, Ackerman MJ, Yue DT (2017) A precision medicine approach to the rescue of function on malignant calmodulinopathic long-QT syndrome. Circ Res 120:39–48. https://doi.org/10.1161/circresaha.116.309283

    Article  CAS  PubMed  Google Scholar 

  49. Lin B, Li Y, Han L, Kaplan AD, Ao Y, Kalra S, Bett GCL, Rasmusson RL, Denning C, Yang L (2015) Modeling and study of the mechanism of dilated cardiomyopathy using induced pluripotent stem cells derived from individuals with Duchenne muscular dystrophy. Disease Models & Mechanisms 8:457–466. https://doi.org/10.1242/dmm.019505

    Article  CAS  Google Scholar 

  50. Loh Y-H, Agarwal S, Park I-H, Urbach A, Huo H, Heffner GC, Kim K, Miller JD, Ng K, Daley GQ (2009) Generation of induced pluripotent stem cells from human blood. Blood 113:5476–5479. https://doi.org/10.1182/blood-2009-02-204800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Long C, Li H, Tiburcy M, Rodriguez-Caycedo C, Kyrychenko V, Zhou H, Zhang Y, Min Y-L, Shelton JM, Mammen PPA, Liaw NY, Zimmermann W-H, Bassel-Duby R, Schneider JW, Olson EN (2018) Correction of diverse muscular dystrophy mutations in human engineered heart muscle by single-site genome editing. Sci Adv 4:eaap9004. https://doi.org/10.1126/sciadv.aap9004

  52. Lopaschuk GD, Jaswal JS (2010) Energy metabolic phenotype of the cardiomyocyte during development, differentiation, and postnatal maturation. J Cardiovasc Pharmacol 56:130–140. https://doi.org/10.1097/FJC.0b013e3181e74a14

    Article  CAS  PubMed  Google Scholar 

  53. Luo Y, Fan Y, Chen X, Yue L, Yu B, Li Q, Chen Y, Sun X (2013) Modeling induced pluripotent stem cells from fibroblasts of Duchenne muscular dystrophy patients. International Journal of Neuroscience 124:12–21. https://doi.org/10.3109/00207454.2013.789514

    Article  Google Scholar 

  54. Ma D, Wei H, Lu J, Huang D, Liu Z, Loh LJ, Islam O, Liew R, Shim W, Cook SA (2015) Characterization of a novel KCNQ1 mutation for type 1 long QT syndrome and assessment of the therapeutic potential of a novel IKs activator using patient-specific induced pluripotent stem cell-derived cardiomyocytes. Stem Cell Res Ther 6:39. https://doi.org/10.1186/s13287-015-0027-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Ma D, Wei H, Zhao Y, Lu J, Li G, Sahib NB, Tan TH, Wong KY, Shim W, Wong P, Cook SA, Liew R (2013) Modeling type 3 long QT syndrome with cardiomyocytes derived from patient-specific induced pluripotent stem cells. Int J Cardiol 168:5277–5286. https://doi.org/10.1016/j.ijcard.2013.08.015

    Article  PubMed  Google Scholar 

  56. Maizels L, Huber I, Arbel G, Tijsen AJ, Gepstein A, Khoury A, Gepstein L (2017) Patient-specific drug screening using a human induced pluripotent stem cell model of catecholaminergic polymorphic ventricular tachycardia type 2. Circ Arrhythm Electrophysiol 10:e004725. https://doi.org/10.1161/circep.116.004725/-/dc1

    Article  CAS  PubMed  Google Scholar 

  57. Malan D, Zhang M, Stallmeyer B, Muller J, Fleischmann BK, Schulze-Bahr E, Sasse P, Greber B (2016) Human iPS cell model of type 3 long QT syndrome recapitulates drug-based phenotype correction. Basic Res Cardiol 111:14. https://doi.org/10.1007/s00395-016-0530-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Matsa E, Ahrens JH, Wu JC (2016) Human induced pluripotent stem cells as a platform for personalized and precision cardiovascular medicine. Physiological Reviews 96:1093–1126. https://doi.org/10.1152/physrev.00036.2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. McDermott-Roe C, Marquez M, Lai S, Lv W, Maximova T, Wada S, Bukowy J, Shehu A, Benjamin I, Geurts A, Musunuru K (2019) Investigation of a dilated cardiomyopathy-associated variant in BAG3 using genome-edited iPSC-derived cardiomyocytes. JCI Insight 4:e128799. https://doi.org/10.1172/jci.insight.128799

    Article  PubMed Central  Google Scholar 

  60. Mehta A, Sequiera GL, Ramachandra CJ, Sudibyo Y, Chung Y, Sheng J, Wong KY, Tan TH, Wong P, Liew R, Shim W (2014) Re-trafficking of hERG reverses long QT syndrome 2 phenotype in human iPS-derived cardiomyocytes. Cardiovasc Res 102:497–506. https://doi.org/10.1093/cvr/cvu060

    Article  CAS  PubMed  Google Scholar 

  61. Merla G, Brunetti-Pierri N, Piccolo P, Micale L, Loviglio MN (2012) Supravalvular aortic stenosis: elastin arteriopathy. Circ Cardiovasc Genet 5:692–696. https://doi.org/10.1161/CIRCGENETICS.112.962860

    Article  CAS  PubMed  Google Scholar 

  62. Messer AE, Marston SB (2014) Investigating the role of uncoupling of troponin I phosphorylation from changes in myofibrillar Ca2+-sensitivity in the pathogenesis of cardiomyopathy. Front Physiol 5:315. https://doi.org/10.3389/fphys.2014.00315

    Article  PubMed  PubMed Central  Google Scholar 

  63. Meurs KM (2017) Arrhythmogenic right ventricular cardiomyopathy in the boxer dog: an update. Vet Clin North Am Small Anim Pract 47:1103–1111. https://doi.org/10.1016/j.cvsm.2017.04.007

    Article  PubMed  Google Scholar 

  64. Miao S, Zhao D, Wang X, Ni X, Fang X, Yu M, Ye L, Yang J, Wu H, Han X, Qu L, Li L, Lan F, Shen Z, Lei W, Zhao Z-A, Hu S (2020) Retinoic acid promotes metabolic maturation of human embryonic stem cell-derived cardiomyocytes. Theranostics 10:9686–9701. https://doi.org/10.7150/thno.44146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Müller P, Lemcke H, David R (2018) Stem cell therapy in heart diseases—cell types, mechanisms and improvement strategies. Cell Physiol Biochem 48:2607–2655. https://doi.org/10.1159/000492704

    Article  CAS  PubMed  Google Scholar 

  66. Mungenast AE, Siegert S, Tsai L-H (2016) Modeling Alzheimer's disease with human induced pluripotent stem (iPS) cells. Mol Cell Neurosci 73:13–31. https://doi.org/10.1016/j.mcn.2015.11.010

    Article  CAS  PubMed  Google Scholar 

  67. Musunuru K, Sheikh F, Gupta RM, Houser SR, Maher KO, Milan DJ, Terzic A, Wu JC, American Heart Association Council on Functional G, Translational B, Council on Cardiovascular Disease in the Y, Council on C, Stroke N (2018) Induced pluripotent stem cells for cardiovascular disease modeling and precision medicine: a scientific statement from the American Heart Association. Circ Genom Precis Med 11:e000043. https://doi.org/10.1161/HCG.0000000000000043

    Article  PubMed  PubMed Central  Google Scholar 

  68. Novak A, Barad L, Zeevi-Levin N, Shick R, Shtrichman R, Lorber A, Itskovitz-Eldor J, Binah O (2012) Cardiomyocytes generated from CPVTD307H patients are arrhythmogenic in response to beta-adrenergic stimulation. J Cell Mol Med 16:468–482. https://doi.org/10.1111/j.1582-4934.2011.01476.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Nugraha B, Buono MF, Lv B, Hoerstrup SP, Emmert MY (2019) Human cardiac organoids for disease modeling. Clin Pharmacol Ther 105:79–85. https://doi.org/10.1002/cpt.1286

    Article  PubMed  Google Scholar 

  70. Nugraha B, Buono MF, Emmert MY (2018) Modelling human cardiac diseases with 3D organoid. Eur Heart J 39:4234–4237. https://doi.org/10.1093/eurheartj/ehy765

    Article  CAS  PubMed  Google Scholar 

  71. Paci M, Passini E, Severi S, Hyttinen J, Rodriguez B (2017) Phenotypic variability in LQT3 human induced pluripotent stem cell-derived cardiomyocytes and their response to antiarrhythmic pharmacologic therapy: An in silico approach. Heart Rhythm 14:1704–1712. https://doi.org/10.1016/j.hrthm.2017.07.026

    Article  PubMed  PubMed Central  Google Scholar 

  72. Penttinen K, Swan H, Vanninen S, Paavola J, Lahtinen AM, Kontula K, Aalto-Setala K (2015) Antiarrhythmic effects of dantrolene in patients with catecholaminergic polymorphic ventricular tachycardia and replication of the responses using iPSC models. PLoS One 10:e0125366. https://doi.org/10.1371/journal.pone.0125366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Rosenkranz S, Howard LS, Gomberg-Maitland M, Hoeper MM (2020) Systemic consequences of pulmonary hypertension and right-sided heart failure. Circulation 141:678–693. https://doi.org/10.1161/CIRCULATIONAHA.116.022362

    Article  PubMed  Google Scholar 

  74. Seeger T, Shrestha R, Lam CK, Chen C, McKeithan WL, Lau E, Wnorowski A, McMullen G, Greenhaw M, Lee J, Oikonomopoulos A, Lee S, Yang H, Mercola M, Wheeler M, Ashley EA, Yang F, Karakikes I, Wu JC (2019) A premature termination codon mutation in MYBPC3 causes hypertrophic cardiomyopathy via chronic activation of nonsense-mediated decay. Circulation 139:799–811. https://doi.org/10.1161/CIRCULATIONAHA.118.034624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Selga E, Sendfeld F, Martinez-Moreno R, Medine CN, Tura-Ceide O, Wilmut SI, Perez GJ, Scornik FS, Brugada R, Mills NL (2018) Sodium channel current loss of function in induced pluripotent stem cell-derived cardiomyocytes from a Brugada syndrome patient. J Mol Cell Cardiol 114:10–19. https://doi.org/10.1016/j.yjmcc.2017.10.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Sendfeld F, Selga E, Scornik FS, Perez GJ, Mills NL, Brugada R (2019) Experimental models of Brugada syndrome. Int J Mol Sci 20. https://doi.org/10.3390/ijms20092123

  77. Sleiman Y, Souidi M, Kumar R, Yang E, Jaffré F, Zhou T, Bernardin A, Reiken S, Cazorla O, Kajava AV, Moreau A, Pasquié J-L, Marks AR, Lerman BB, Chen S, Cheung JW, Evans T, Lacampagne A, Meli AC (2020) Modeling polymorphic ventricular tachycardia at rest using patient-specific induced pluripotent stem cell-derived cardiomyocytes. EBioMedicine 60:60. https://doi.org/10.1016/j.ebiom.2020.103024

    Article  Google Scholar 

  78. Streckfuss-Bömeke K, Tiburcy M, Fomin A, Luo X, Li W, Fischer C, Özcelik C, Perrot A, Sossalla S, Haas J, Vidal RO, Rebs S, Khadjeh S, Meder B, Bonn S, Linke WA, Zimmermann W-H, Hasenfuss G, Guan K (2017) Severe DCM phenotype of patient harboring RBM20 mutation S635A can be modeled by patient-specific induced pluripotent stem cell-derived cardiomyocytes. J Mol Cell Cardiol 113:9–21. https://doi.org/10.1016/j.yjmcc.2017.09.008

    Article  CAS  PubMed  Google Scholar 

  79. Sun N, Yazawa M, Liu J, Han L, Sanchez-Freire V, Abilez OJ, Navarrete EG, Hu S, Wang L, Lee A, Pavlovic A, Lin S, Chen R, Hajjar RJ, Snyder MP, Dolmetsch RE, Butte MJ, Ashley EA, Longaker MT, Robbins RC, Wu JC (2012) Patient-specific induced pluripotent stem cells as a model for familial dilated cardiomyopathy. Sci Transl Med 4:130ra147. https://doi.org/10.1126/scitranslmed.3003552

  80. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131:861–872. https://doi.org/10.1016/j.cell.2007.11.019

    Article  CAS  PubMed  Google Scholar 

  81. Tanaka A, Yuasa S, Mearini G, Egashira T, Seki T, Kodaira M, Kusumoto D, Kuroda Y, Okata S, Suzuki T, Inohara T, Arimura T, Makino S, Kimura K, Kimura A, Furukawa T, Carrier L, Node K, Fukuda K (2014) Endothelin-1 induces myofibrillar disarray and contractile vector variability in hypertrophic cardiomyopathy-induced pluripotent stem cell-derived cardiomyocytes. J Am Heart Assoc 3:e001263. https://doi.org/10.1161/JAHA.114.001263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Te Riele AS, Agullo-Pascual E, James CA, Leo-Macias A, Cerrone M, Zhang M, Lin X, Lin B, Sobreira NL, Amat-Alarcon N, Marsman RF, Murray B, Tichnell C, van der Heijden JF, Dooijes D, van Veen TA, Tandri H, Fowler SJ, Hauer RN, Tomaselli G, van den Berg MP, Taylor MR, Brun F, Sinagra G, Wilde AA, Mestroni L, Bezzina CR, Calkins H, Peter van Tintelen J, Bu L, Delmar M, Judge DP (2017) Multilevel analyses of SCN5A mutations in arrhythmogenic right ventricular dysplasia/cardiomyopathy suggest non-canonical mechanisms for disease pathogenesis. Cardiovasc Res 113:102–111. https://doi.org/10.1093/cvr/cvw234

    Article  CAS  Google Scholar 

  83. Urbach A, Schuldiner M, Benvenisty N (2004) Modeling for Lesch-Nyhan disease by gene targeting in human embryonic stem cells. Stem Cells Int 22:635–641. https://doi.org/10.1634/stemcells.22-4-635

    Article  CAS  Google Scholar 

  84. Wang G, McCain ML, Yang L, He A, Pasqualini FS, Agarwal A, Yuan H, Jiang D, Zhang D, Zangi L, Geva J, Roberts AE, Ma Q, Ding J, Chen J, Wang DZ, Li K, Wang J, Wanders RJ, Kulik W, Vaz FM, Laflamme MA, Murry CE, Chien KR, Kelley RI, Church GM, Parker KK, Pu WT (2014) Modeling the mitochondrial cardiomyopathy of Barth syndrome with induced pluripotent stem cell and heart-on-chip technologies. Nat Med 20:616–623. https://doi.org/10.1038/nm.3545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. West JD, Austin ED, Gaskill C, Marriott S, Baskir R, Bilousova G, Jean J-C, Hemnes AR, Menon S, Bloodworth NC, Fessel JP, Kropski JA, Irwin D, Ware LB, Wheeler L, Hong CC, Meyrick B, Loyd JE, Bowman AB, Ess KC, Klemm DJ, Young PP, Merryman WD, Kotton D, Majka SM (2014) Identification of a common Wnt-associated genetic signature across multiple cell types in pulmonary arterial hypertension. Am J Physiol Cell Physiol 307:C415–C430. https://doi.org/10.1152/ajpcell.00057.2014.-Understanding

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Wu H, Yang H, Rhee JW, Zhang JZ, Lam CK, Sallam K, Chang ACY, Ma N, Lee J, Zhang H, Blau HM, Bers DM, Wu JC (2019) Modelling diastolic dysfunction in induced pluripotent stem cell-derived cardiomyocytes from hypertrophic cardiomyopathy patients. Eur Heart J 40:3685–3695. https://doi.org/10.1093/eurheartj/ehz326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Yamamoto Y, Makiyama T, Harita T, Sasaki K, Wuriyanghai Y, Hayano M, Nishiuchi S, Kohjitani H, Hirose S, Chen J, Yokoi F, Ishikawa T, Ohno S, Chonabayashi K, Motomura H, Yoshida Y, Horie M, Makita N, Kimura T (2017) Allele-specific ablation rescues electrophysiological abnormalities in a human iPS cell model of long-QT syndrome with a CALM2 mutation. Hum Mol Genet 26:1670–1677. https://doi.org/10.1093/hmg/ddx073

    Article  CAS  PubMed  Google Scholar 

  88. Yang C, Al-Aama J, Stojkovic M, Keavney B, Trafford A, Lako M, Armstrong L (2015) Concise review: cardiac disease modeling using induced pluripotent stem cells. Stem Cells 33:2643–2651. https://doi.org/10.1002/stem.2070

    Article  PubMed  Google Scholar 

  89. Yazawa M, Dolmetsch RE (2013) Modeling Timothy syndrome with iPS cells. J Cardiovasc Transl Res 6:1–9. https://doi.org/10.1007/s12265-012-9444-x

    Article  PubMed  PubMed Central  Google Scholar 

  90. Ye L, Ni X, Zhao Z-A, Lei W, Hu S (2018) The application of induced pluripotent stem cells in cardiac disease modeling and drug testing. J Cardiovasc Transl 11:366–374. https://doi.org/10.1007/s12265-018-9811-3

    Article  Google Scholar 

  91. Yoshida Y, Yamanaka S (2017) Induced Pluripotent Stem Cells 10 Years Later. Circ Res 120:1958–1968. https://doi.org/10.1161/circresaha.117.311080

    Article  CAS  PubMed  Google Scholar 

  92. Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, Nie J, Jonsdottir GA, Ruotti V, Stewart R, Slukvin II, Thomson JA (2007) Induced pluripotent stem cell lines derived from human somatic cells. Science 318:1917–1920. https://doi.org/10.1126/science.1151526

    Article  CAS  PubMed  Google Scholar 

  93. Zhang J, Wilson GF, Soerens AG, Koonce CH, Yu J, Palecek SP, Thomson JA, Kamp TJ (2009) Functional cardiomyocytes derived from human induced pluripotent stem cells. Circulation Research 104:104–e41. https://doi.org/10.1161/circresaha.108.192237

    Article  Google Scholar 

  94. Zhang M, D'Aniello C, Verkerk AO, Wrobel E, Frank S, Ward-van Oostwaard D, Piccini I, Freund C, Rao J, Seebohm G, Atsma DE, Schulze-Bahr E, Mummery CL, Greber B, Bellin M (2014) Recessive cardiac phenotypes in induced pluripotent stem cell models of Jervell and Lange-Nielsen syndrome: disease mechanisms and pharmacological rescue. Proc Natl Acad Sci U S A 111:E5383–E5392. https://doi.org/10.1073/pnas.1419553111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Zhou T, Benda C, Dunzinger S, Huang Y, Ho JC, Yang J, Wang Y, Zhang Y, Zhuang Q, Li Y, Bao X, Tse H-F, Grillari J, Grillari-Voglauer R, Pei D, Esteban MA (2012) Generation of human induced pluripotent stem cells from urine samples. Nat Protoc 7:2080–2089. https://doi.org/10.1038/nprot.2012.115

    Article  CAS  PubMed  Google Scholar 

  96. Zhou W, Bos JM, Ye D, Tester DJ, Hrstka S, Maleszewski JJ, Ommen SR, Nishimura RA, Schaff HV, Kim CS, Ackerman MJ (2019) Induced pluripotent stem cell-derived cardiomyocytes from a patient with MYL2-R58Q-mediated apical hypertrophic cardiomyopathy show hypertrophy, myofibrillar disarray, and calcium perturbations. J Cardiovasc Transl Res 12:394–403. https://doi.org/10.1007/s12265-019-09873-6

    Article  PubMed  Google Scholar 

  97. Zhu W-Z, Xie Y, Moyes KW, Gold JD, Askari B, Laflamme MA (2010) Neuregulin/ErbB signaling regulates cardiac subtype specification in differentiating human embryonic stem cells. Circulation Research 107:776–786. https://doi.org/10.1161/circresaha.110.223917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was funded by the National Key R&D Program of China (2017YFA0103700), the National Natural Science Foundation of China (91949111, 81770257, 81970223), Natural Science Foundation of Jiangsu Province (BK20201409), Top Six Talents in Jiangsu Province (SWYY-081), the Space Medical Experiment Project of China Manned Space Program (HYZHXM01018), Jiangsu Province’s Key Discipline/Laboratory of Medicine (XK201118), National Center for International Research (2017B01012), and Introduction Project of Clinical Medicine Expert Team for Suzhou (SZYJTD201704)

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhenya Shen or Shijun Hu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the special issue on Recent Progress with hPSCs for Drug Discovery in Pflügers Archiv—European Journal of Physiology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Lei, W., Yang, J. et al. The updated view on induced pluripotent stem cells for cardiovascular precision medicine. Pflugers Arch - Eur J Physiol 473, 1137–1149 (2021). https://doi.org/10.1007/s00424-021-02530-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-021-02530-5

Keywords

Navigation