Skip to main content

Advertisement

Log in

The Application of Induced Pluripotent Stem Cells in Cardiac Disease Modeling and Drug Testing

  • Review Paper
  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

In recent decades, cardiovascular diseases have become the greatest health threat to human beings, and thus it is particularly important to explore the subtle underlying pathogenesis of cardiovascular diseases. Although many molecular pathways have been explored to be essential in the development of cardiovascular diseases, their clinical significances are still uncertain. With the emergence of induced pluripotent stem cells (iPSCs), a unique platform for cardiovascular diseases has been established to model cardiovascular diseases on specific genetic background in vitro. This review summarizes current progresses of iPSCs in cardiovascular disease modeling and drug testing. This review highlighted iPSC-based cardiovascular disease modeling and drug testing. The technical advances in iPSC-based researches and various clinically relevant applications are discussed. With further intensive research, iPSC technology will shape the future of clinical translational research in cardiovascular diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Takahashi, K., Tanabe, K., Ohnuki, M., Narita, M., Ichisaka, T., Tomoda, K., & Yamanaka, S. (2007). Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell, 131, 861–872.

    Article  CAS  Google Scholar 

  2. Moretti, A., Bellin, M., Welling, A., Jung, C. B., Lam, J. T., Bott-Flugel, L., Dorn, T., Goedel, A., Hohnke, C., Hofmann, F., Seyfarth, M., Sinnecker, D., Schomig, A., & Laugwitz, K. L. (2010). Patient-specific induced pluripotent stem-cell models for long-QT syndrome. The New England Journal of Medicine, 363, 1397–1409.

    Article  CAS  Google Scholar 

  3. Wang, Y., Liang, P., Lan, F., Wu, H., Lisowski, L., Gu, M., Hu, S., Kay, M. A., Urnov, F. D., Shinnawi, R., Gold, J. D., Gepstein, L., & Wu, J. C. (2014). Genome editing of isogenic human induced pluripotent stem cells recapitulates long QT phenotype for drug testing. Journal of the American College of Cardiology, 64, 451–459.

    Article  CAS  Google Scholar 

  4. Ma, D., Wei, H., Lu, J., Huang, D., Liu, Z., Loh, L. J., Islam, O., Liew, R., Shim, W., & Cook, S. A. (2015). Characterization of a novel KCNQ1 mutation for type 1 long QT syndrome and assessment of the therapeutic potential of a novel IKs activator using patient-specific induced pluripotent stem cell-derived cardiomyocytes. Stem Cell Research & Therapy, 6, 39.

    Article  Google Scholar 

  5. Itzhaki, I., Maizels, L., Huber, I., Zwi-Dantsis, L., Caspi, O., Winterstern, A., Feldman, O., Gepstein, A., Arbel, G., Hammerman, H., Boulos, M., & Gepstein, L. (2011). Modelling the long QT syndrome with induced pluripotent stem cells. Nature, 471, 225–229.

    Article  CAS  Google Scholar 

  6. Matsa, E., Rajamohan, D., Dick, E., Young, L., Mellor, I., Staniforth, A., & Denning, C. (2011). Drug evaluation in cardiomyocytes derived from human induced pluripotent stem cells carrying a long QT syndrome type 2 mutation. European Heart Journal, 32, 952–962.

    Article  CAS  Google Scholar 

  7. Lahti, A., Kujala, V., Chapman, H., Koivisto, A., Pekkanen-Mattila, M., Kerkelä, E., Hyttinen, J., Kontula, K., Swan, H., Conklin, B., Yamanaka, S., Silvennoinen, O., & Aalto-Setälä, K. (2012). Model for long QT syndrome type 2 using human iPS cells demonstrates arrhythmogenic characteristics in cell culture. Disease Models & Mechanisms, 5, 220–230.

    Article  CAS  Google Scholar 

  8. Ma, D., Wei, H., Zhao, Y., Lu, J., Li, G., Sahib, N. B., Tan, T. H., Wong, K. Y., Shim, W., Wong, P., Cook, S. A., & Liew, R. (2013). Modeling type 3 long QT syndrome with cardiomyocytes derived from patient-specific induced pluripotent stem cells. International Journal of Cardiology, 168, 5277–5286.

    Article  Google Scholar 

  9. Terrenoire, C., Wang, K., Tung, K., Chung, W., Pass, R., Lu, J., Jean, J., Omari, A., Sampson, K., Kotton, D., Keller, G., & Kass, R. (2013). Induced pluripotent stem cells used to reveal drug actions in a long QT syndrome family with complex genetics. The Journal of General Physiology, 141, 61–72.

    Article  CAS  Google Scholar 

  10. Yazawa, M., Hsueh, B., Jia, X., Pasca, A., Bernstein, J., Hallmayer, J., & Dolmetsch, R. (2011). Using induced pluripotent stem cells to investigate cardiac phenotypes in Timothy syndrome. Nature, 471, 230–234.

    Article  CAS  Google Scholar 

  11. Limpitikul, W. B., Dick, I. E., Tester, D. J., Boczek, N. J., Limphong, P., Yang, W., Choi, M. H., Babich, J., DiSilvestre, D., Kanter, R. J., Tomaselli, G. F., Ackerman, M. J., & Yue, D. T. (2017). A precision medicine approach to the rescue of function on malignant calmodulinopathic long-QT syndrome. Circulation Research, 120, 39–48.

    Article  CAS  Google Scholar 

  12. Jung, C., Moretti, A., Mederos, M., Schnitzler, Y., Iop, L., Storch, U., Bellin, M., Dorn, T., Ruppenthal, S., Pfeiffer, S., Goedel, A., Dirschinger, R., Seyfarth, M., Lam, J., Sinnecker, D., Gudermann, T., Lipp, P., & Laugwitz, K. (2012). Dantrolene rescues arrhythmogenic RYR2 defect in a patient-specific stem cell model of catecholaminergic polymorphic ventricular tachycardia. EMBO Molecular Medicine, 4, 180–191.

    Article  CAS  Google Scholar 

  13. McNally, E. M., & Mestroni, L. (2017). Dilated cardiomyopathy: genetic determinants and mechanisms. Circulation Research, 121, 731–748.

    Article  CAS  Google Scholar 

  14. Walsh, R., Thomson, K. L., Ware, J. S., Funke, B. H., Woodley, J., McGuire, K. J., Mazzarotto, F., Blair, E., Seller, A., Taylor, J. C., Minikel, E. V., Exome Aggregation, C., MacArthur, D. G., Farrall, M., Cook, S. A., & Watkins, H. (2017). Reassessment of Mendelian gene pathogenicity using 7,855 cardiomyopathy cases and 60,706 reference samples. Genetics in Medicine, 19, 192–203.

    Article  Google Scholar 

  15. Niks, E., & Aartsma-Rus, A. (2017). Exon skipping: a first in class strategy for Duchenne muscular dystrophy. Expert Opinion on Biological Therapy, 17, 225–236.

    Article  CAS  Google Scholar 

  16. Sun, N., Yazawa, M., Liu, J., Han, L., Sanchez-Freire, V., Abilez, O., Navarrete, E., Hu, S., Wang, L., Lee, A., Pavlovic, A., Lin, S., Chen, R., Hajjar, R., Snyder, M., Dolmetsch, R., Butte, M., Ashley, E., Longaker, M., Robbins, R., & Wu, J. (2012). Patient-specific induced pluripotent stem cells as a model for familial dilated cardiomyopathy. Science Translational Medicine, 4, 130ra47.

    Article  Google Scholar 

  17. Wu, H., Lee, J., Vincent, L. G., Wang, Q., Gu, M., Lan, F., Churko, J. M., Sallam, K. I., Matsa, E., Sharma, A., Gold, J. D., Engler, A. J., Xiang, Y. K., Bers, D. M., & Wu, J. C. (2015). Epigenetic regulation of phosphodiesterases 2A and 3A underlies compromised beta-adrenergic signaling in an iPSC model of dilated cardiomyopathy. Cell Stem Cell, 17, 89–100.

    Article  CAS  Google Scholar 

  18. Siu, C. W., Lee, Y. K., Ho, J. C., Lai, W. H., Chan, Y. C., Ng, K. M., Wong, L. Y., Au, K. W., Lau, Y. M., Zhang, J., Lay, K. W., Colman, A., & Tse, H. F. (2012). Modeling of lamin A/C mutation premature cardiac aging using patient-specific induced pluripotent stem cells. Aging (Albany NY), 4, 803–822.

    Article  CAS  Google Scholar 

  19. Tse, H., Ho, J., Choi, S., Lee, Y., Butler, A., Ng, K., Siu, C., Simpson, M., Lai, W., Chan, Y., Au, K., Zhang, J., Lay, K., Esteban, M., Nicholls, J., Colman, A., & Sham, P. (2013). Patient-specific induced-pluripotent stem cells-derived cardiomyocytes recapitulate the pathogenic phenotypes of dilated cardiomyopathy due to a novel DES mutation identified by whole exome sequencing. Human Molecular Genetics, 22, 1395–1403.

    Article  CAS  Google Scholar 

  20. Gramlich, M., Pane, L., Zhou, Q., Chen, Z., Murgia, M., Schötterl, S., Goedel, A., Metzger, K., Brade, T., Parrotta, E., Schaller, M., Gerull, B., Thierfelder, L., Aartsma-Rus, A., Labeit, S., Atherton, J., McGaughran, J., Harvey, R., Sinnecker, D., Mann, M., Laugwitz, K., Gawaz, M., & Moretti, A. (2015). Antisense-mediated exon skipping: a therapeutic strategy for titin-based dilated cardiomyopathy. EMBO Molecular Medicine, 7, 562–576.

    Article  CAS  Google Scholar 

  21. Hinson, J., Chopra, A., Nafissi, N., Polacheck, W., Benson, C., Swist, S., Gorham, J., Yang, L., Schafer, S., Sheng, C., Haghighi, A., Homsy, J., Hubner, N., Church, G., Cook, S., Linke, W., Chen, C., Seidman, J., & Seidman, C. (2015). HEART DISEASE. Titin mutations in iPS cells define sarcomere insufficiency as a cause of dilated cardiomyopathy. Science, 349, 982–986.

    Article  CAS  Google Scholar 

  22. Marian, A., & Braunwald, E. (2017). Hypertrophic cardiomyopathy: genetics, pathogenesis, clinical manifestations, diagnosis, and therapy. Circulation Research, 121, 749–770.

    Article  CAS  Google Scholar 

  23. Lan, F., Lee, A., Liang, P., Sanchez-Freire, V., Nguyen, P., Wang, L., Han, L., Yen, M., Wang, Y., Sun, N., Abilez, O., Hu, S., Ebert, A., Navarrete, E., Simmons, C., Wheeler, M., Pruitt, B., Lewis, R., Yamaguchi, Y., Ashley, E., Bers, D., Robbins, R., Longaker, M., & Wu, J. (2013). Abnormal calcium handling properties underlie familial hypertrophic cardiomyopathy pathology in patient-specific induced pluripotent stem cells. Cell Stem Cell, 12, 101–113.

    Article  CAS  Google Scholar 

  24. Han, L., Li, Y., Tchao, J., Kaplan, A., Lin, B., Li, Y., Mich-Basso, J., Lis, A., Hassan, N., London, B., Bett, G., Tobita, K., Rasmusson, R., & Yang, L. (2014). Study familial hypertrophic cardiomyopathy using patient-specific induced pluripotent stem cells. Cardiovascular Research, 104, 258–269.

    Article  CAS  Google Scholar 

  25. Tanaka, A., Yuasa, S., Mearini, G., Egashira, T., Seki, T., Kodaira, M., Kusumoto, D., Kuroda, Y., Okata, S., Suzuki, T., Inohara, T., Arimura, T., Makino, S., Kimura, K., Kimura, A., Furukawa, T., Carrier, L., Node, K., & Fukuda, K. (2014). Endothelin-1 induces myofibrillar disarray and contractile vector variability in hypertrophic cardiomyopathy-induced pluripotent stem cell-derived cardiomyocytes. Journal of the American Heart Association, 3, e001263.

    Article  Google Scholar 

  26. Josowitz, R., Mulero-Navarro, S., Rodriguez, N., Falce, C., Cohen, N., Ullian, E., Weiss, L., Rauen, K., Sobie, E., & Gelb, B. (2016). Autonomous and non-autonomous defects underlie hypertrophic cardiomyopathy in BRAF-mutant hiPSC-derived cardiomyocytes. Stem Cell Reports, 7, 355–369.

    Article  CAS  Google Scholar 

  27. Kim, C., Wong, J., Wen, J., Wang, S., Wang, C., Spiering, S., Kan, N., Forcales, S., Puri, P., Leone, T., Marine, J., Calkins, H., Kelly, D., Judge, D., & Chen, H. (2013). Studying arrhythmogenic right ventricular dysplasia with patient-specific iPSCs. Nature, 494, 105–110.

    Article  CAS  Google Scholar 

  28. Ma, D., Wei, H., Lu, J., Ho, S., Zhang, G., Sun, X., Oh, Y., Tan, S., Ng, M., Shim, W., Wong, P., & Liew, R. (2013). Generation of patient-specific induced pluripotent stem cell-derived cardiomyocytes as a cellular model of arrhythmogenic right ventricular cardiomyopathy. European Heart Journal, 34, 1122–1133.

    Article  CAS  Google Scholar 

  29. Caspi, O., Huber, I., Gepstein, A., Arbel, G., Maizels, L., Boulos, M., & Gepstein, L. (2013). Modeling of arrhythmogenic right ventricular cardiomyopathy with human induced pluripotent stem cells. Circulation. Cardiovascular Genetics, 6, 557–568.

    Article  CAS  Google Scholar 

  30. Akdis, D., Saguner, A., Shah, K., Wei, C., Medeiros-Domingo, A., von Eckardstein, A., Lüscher, T., Brunckhorst, C., Chen, H., & Duru, F. (2017). Sex hormones affect outcome in arrhythmogenic right ventricular cardiomyopathy/dysplasia: from a stem cell derived cardiomyocyte-based model to clinical biomarkers of disease outcome. European Heart Journal, 38, 1498–1508.

    Article  Google Scholar 

  31. Te Riele, A., Agullo-Pascual, E., James, C., Leo-Macias, A., Cerrone, M., Zhang, M., Lin, X., Lin, B., Sobreira, N., Amat-Alarcon, N., Marsman, R., Murray, B., Tichnell, C., van der Heijden, J., Dooijes, D., van Veen, T., Tandri, H., Fowler, S., Hauer, R., Tomaselli, G., van den Berg, M., Taylor, M., Brun, F., Sinagra, G., Wilde, A., Mestroni, L., Bezzina, C., Calkins, H., Peter van Tintelen, J., Bu, L., Delmar, M., & Judge, D. (2017). Multilevel analyses of SCN5A mutations in arrhythmogenic right ventricular dysplasia/cardiomyopathy suggest non-canonical mechanisms for disease pathogenesis. Cardiovascular Research, 113, 102–111.

    Article  Google Scholar 

  32. Gu, M., Shao, N., Sa, S., Li, D., Termglinchan, V., Ameen, M., Karakikes, I., Sosa, G., Grubert, F., Lee, J., Cao, A., Taylor, S., Ma, Y., Zhao, Z., Chappell, J., Hamid, R., Austin, E., Gold, J., Wu, J., Snyder, M., & Rabinovitch, M. (2017). Patient-specific iPSC-derived endothelial cells uncover pathways that protect against pulmonary hypertension in BMPR2 mutation carriers. Cell Stem Cell, 20, 490–504.e5.

    Article  CAS  Google Scholar 

  33. Kinnear, C., Chang, W., Khattak, S., Hinek, A., Thompson, T., de Carvalho Rodrigues, D., Kennedy, K., Mahmut, N., Pasceri, P., Stanford, W., Ellis, J., & Mital, S. (2013). Modeling and rescue of the vascular phenotype of Williams-Beuren syndrome in patient induced pluripotent stem cells. Stem Cells Translational Medicine, 2, 2–15.

    Article  CAS  Google Scholar 

  34. Liu, G., Barkho, B., Ruiz, S., Diep, D., Qu, J., Yang, S., Panopoulos, A., Suzuki, K., Kurian, L., Walsh, C., Thompson, J., Boue, S., Fung, H., Sancho-Martinez, I., Zhang, K., Yates, J., & Izpisua Belmonte, J. (2011). Recapitulation of premature ageing with iPSCs from Hutchinson-Gilford progeria syndrome. Nature, 472, 221–225.

    Article  CAS  Google Scholar 

  35. Zhang, J., Lian, Q., Zhu, G., Zhou, F., Sui, L., Tan, C., Mutalif, R., Navasankari, R., Zhang, Y., Tse, H., Stewart, C., & Colman, A. (2011). A human iPSC model of Hutchinson Gilford Progeria reveals vascular smooth muscle and mesenchymal stem cell defects. Cell Stem Cell, 8, 31–45.

    Article  CAS  Google Scholar 

  36. Granata, A., Serrano, F., Bernard, W., McNamara, M., Low, L., Sastry, P., & Sinha, S. (2017). An iPSC-derived vascular model of Marfan syndrome identifies key mediators of smooth muscle cell death. Nature Genetics, 49, 97–109.

    Article  CAS  Google Scholar 

  37. Yoshida, Y., & Yamanaka, S. (2017). Induced pluripotent stem cells 10 years later: for cardiac applications. Circulation Research, 120, 1958–1968.

    Article  CAS  Google Scholar 

  38. Peters, M., Lamore, S., Guo, L., Scott, C., & Kolaja, K. (2015). Human stem cell-derived cardiomyocytes in cellular impedance assays: bringing cardiotoxicity screening to the front line. Cardiovascular Toxicology, 15, 127–139.

    Article  CAS  Google Scholar 

  39. Shaheen, N., Shiti, A., & Gepstein, L. (2017). Pluripotent stem cell-based platforms in cardiac disease modeling and drug testing. Clinical Pharmacology and Therapeutics, 102, 203–208.

    Article  CAS  Google Scholar 

  40. Liang, P., Lan, F., Lee, A., Gong, T., Sanchez-Freire, V., Wang, Y., Diecke, S., Sallam, K., Knowles, J., Wang, P., Nguyen, P., Bers, D., Robbins, R., & Wu, J. (2013). Drug screening using a library of human induced pluripotent stem cell-derived cardiomyocytes reveals disease-specific patterns of cardiotoxicity. Circulation, 127, 1677–1691.

    Article  CAS  Google Scholar 

  41. Burridge, P., Li, Y., Matsa, E., Wu, H., Ong, S., Sharma, A., Holmström, A., Chang, A., Coronado, M., Ebert, A., Knowles, J., Telli, M., Witteles, R., Blau, H., Bernstein, D., Altman, R., & Wu, J. (2016). Human induced pluripotent stem cell-derived cardiomyocytes recapitulate the predilection of breast cancer patients to doxorubicin-induced cardiotoxicity. Nature Medicine, 22, 547–556.

    Article  CAS  Google Scholar 

  42. Mehta, A., Sequiera, G. L., Ramachandra, C. J., Sudibyo, Y., Chung, Y., Sheng, J., Wong, K. Y., Tan, T. H., Wong, P., Liew, R., & Shim, W. (2014). Re-trafficking of hERG reverses long QT syndrome 2 phenotype in human iPS-derived cardiomyocytes. Cardiovascular Research, 102, 497–506.

    Article  CAS  Google Scholar 

  43. Sala, L., Yu, Z., Ward-van Oostwaard, D., van Veldhoven, J., Moretti, A., Laugwitz, K., Mummery, C., IJzerman, A., & Bellin, M. (2016). A new hERG allosteric modulator rescues genetic and drug-induced long-QT syndrome phenotypes in cardiomyocytes from isogenic pairs of patient induced pluripotent stem cells. EMBO Molecular Medicine, 8, 1065–1081.

    Article  CAS  Google Scholar 

  44. Huebsch, N., Loskill, P., Mandegar, M., Marks, N., Sheehan, A., Ma, Z., Mathur, A., Nguyen, T., Yoo, J., Judge, L., Spencer, C., Chukka, A., Russell, C., So, P., Conklin, B., & Healy, K. (2015). Automated video-based analysis of contractility and calcium flux in human-induced pluripotent stem cell-derived cardiomyocytes cultured over different spatial scales. Tissue Engineering. Part C, Methods, 21, 467–479.

    Article  CAS  Google Scholar 

  45. Agarwal, A., Goss, J., Cho, A., McCain, M., & Parker, K. (2013). Microfluidic heart on a chip for higher throughput pharmacological studies. Lab on a Chip, 13, 3599–3608.

    Article  CAS  Google Scholar 

  46. Scott, C., Zhang, X., Abi-Gerges, N., Lamore, S., Abassi, Y., & Peters, M. (2014). An impedance-based cellular assay using human iPSC-derived cardiomyocytes to quantify modulators of cardiac contractility. Toxicological Sciences, 142, 331–338.

    Article  CAS  Google Scholar 

  47. Mathur, A., Loskill, P., Shao, K., Huebsch, N., Hong, S., Marcus, S., Marks, N., Mandegar, M., Conklin, B., Lee, L., & Healy, K. (2015). Human iPSC-based cardiac microphysiological system for drug screening applications. Scientific Reports, 5, 8883.

    Article  CAS  Google Scholar 

  48. Cerignoli, F., Charlot, D., Whittaker, R., Ingermanson, R., Gehalot, P., Savchenko, A., Gallacher, D., Towart, R., Price, J., McDonough, P., & Mercola, M. (2012). High throughput measurement of Ca2+ dynamics for drug risk assessment in human stem cell-derived cardiomyocytes by kinetic image cytometry. Journal of Pharmacological and Toxicological Methods, 66, 246–256.

    Article  CAS  Google Scholar 

  49. Lee, P., Klos, M., Bollensdorff, C., Hou, L., Ewart, P., Kamp, T., Zhang, J., Bizy, A., Guerrero-Serna, G., Kohl, P., Jalife, J., & Herron, T. (2012). Simultaneous voltage and calcium mapping of genetically purified human induced pluripotent stem cell-derived cardiac myocyte monolayers. Circulation Research, 110, 1556–1563.

    Article  CAS  Google Scholar 

  50. Eder, A., Vollert, I., Hansen, A., & Eschenhagen, T. (2016). Human engineered heart tissue as a model system for drug testing. Advanced Drug Delivery Reviews, 96, 214–224.

    Article  CAS  Google Scholar 

  51. Stoehr, A., Neuber, C., Baldauf, C., Vollert, I., Friedrich, F., Flenner, F., Carrier, L., Eder, A., Schaaf, S., Hirt, M., Aksehirlioglu, B., Tong, C., Moretti, A., Eschenhagen, T., & Hansen, A. (2014). Automated analysis of contractile force and Ca2+ transients in engineered heart tissue. American Journal of Physiology. Heart and Circulatory Physiology, 306, H1353–H1363.

    Article  CAS  Google Scholar 

  52. Zhang, D., Shadrin, I., Lam, J., Xian, H., Snodgrass, H., & Bursac, N. (2013). Tissue-engineered cardiac patch for advanced functional maturation of human ESC-derived cardiomyocytes. Biomaterials, 34, 5813–5820.

    Article  CAS  Google Scholar 

  53. Nunes, S., Miklas, J., Liu, J., Aschar-Sobbi, R., Xiao, Y., Zhang, B., Jiang, J., Massé, S., Gagliardi, M., Hsieh, A., Thavandiran, N., Laflamme, M., Nanthakumar, K., Gross, G., Backx, P., Keller, G., & Radisic, M. (2013). Biowire: a platform for maturation of human pluripotent stem cell-derived cardiomyocytes. Nature Methods, 10, 781–787.

    Article  CAS  Google Scholar 

  54. Ebrahimkhani, M. R., Young, C. L., Lauffenburger, D. A., Griffith, L. G., & Borenstein, J. T. (2014). Approaches to in vitro tissue regeneration with application for human disease modeling and drug development. Drug Discovery Today, 19, 754–762.

    Article  CAS  Google Scholar 

  55. Parikh, S., Blackwell, D., Gomez-Hurtado, N., Frisk, M., Wang, L., Kim, K., Dahl, C., Fiane, A., Tønnessen, T., Kryshtal, D., Louch, W., & Knollmann, B. (2017). Thyroid and glucocorticoid hormones promote functional T-tubule development in human-induced pluripotent stem cell-derived cardiomyocytes. Circulation Research, 121, 1323–1330.

    Article  CAS  Google Scholar 

  56. Iglesias-García, O., Baumgartner, S., Macrí-Pellizzeri, L., Rodriguez-Madoz, J., Abizanda, G., Guruceaga, E., Albiasu, E., Corbacho, D., Benavides-Vallve, C., Soriano-Navarro, M., González-Granero, S., Gavira, J., Krausgrill, B., Rodriguez-Mañero, M., García-Verdugo, J., Ortiz-de-Solorzano, C., Halbach, M., Hescheler, J., Pelacho, B., & Prósper, F. (2015). Neuregulin-1β induces mature ventricular cardiac differentiation from induced pluripotent stem cells contributing to cardiac tissue repair. Stem Cells and Development, 24, 484–496.

    Article  Google Scholar 

  57. Feaster, T., Cadar, A., Wang, L., Williams, C., Chun, Y., Hempel, J., Bloodworth, N., Merryman, W., Lim, C., Wu, J., Knollmann, B., & Hong, C. (2015). Matrigel mattress: a method for the generation of single contracting human-induced pluripotent stem cell-derived cardiomyocytes. Circulation Research, 117, 995–1000.

    Article  CAS  Google Scholar 

  58. Hwang, H., Kryshtal, D., Feaster, T., Sánchez-Freire, V., Zhang, J., Kamp, T., Hong, C., Wu, J., & Knollmann, B. (2015). Comparable calcium handling of human iPSC-derived cardiomyocytes generated by multiple laboratories. Journal of Molecular and Cellular Cardiology, 85, 79–88.

    Article  CAS  Google Scholar 

Download references

Funding

This study was funded by the National Key R&D Program of China (2017YFA0103700), National Natural Science Foundation of China (NSFC) (91739106, 81770257, 81600218, and 81500277), Natural Science Foundation of Jiangsu Province (BK20150320, BK20170002, BK20150321, and BK20150345), Suzhou Municipal Science and Technology Foundation (SYS201675 and SYS201540), Natural Science Foundation for Colleges and Universities in Jiangsu Province (17KJA310006 and 15KJB180017), Training Innovation Foundation for Postgraduate in Jiangsu Province (KYLX16_0154), National Clinical Key Specialty of Cardiovascular Surgery, Jiangsu Clinical Research Center for Cardiovascular Surgery, and Jiangsu Province’s Key Discipline/Laboratory of Medicine (XK201118).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shijun Hu.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Associate Editor Lei Ye oversaw the review of this article

Lingqun Ye and Xuan Ni are co-first authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, L., Ni, X., Zhao, ZA. et al. The Application of Induced Pluripotent Stem Cells in Cardiac Disease Modeling and Drug Testing. J. of Cardiovasc. Trans. Res. 11, 366–374 (2018). https://doi.org/10.1007/s12265-018-9811-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-018-9811-3

Keywords

Navigation