Skip to main content

Advertisement

Log in

Corneal biomechanics in early diagnosis of keratoconus using artificial intelligence

  • Mini Review
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Keratoconus is a blinding eye disease that affects activities of daily living; therefore, early diagnosis is crucial. Great efforts have been made toward an early diagnosis of keratoconus. Recent studies have shown that corneal biomechanics is associated with the occurrence and progression of keratoconus. Hence, detecting changes in corneal biomechanics may provide a novel strategy for early diagnosis. However, an early keratoconus diagnosis remains challenging due to the subtle and localized nature of its lesions. Artificial intelligence has been used to help address this problem. Herein, we reviewed the literature regarding three aspects of keratoconus (keratoconus, early keratoconus, and keratoconus grading) based on corneal biomechanical properties using artificial intelligence. Furthermore, we summarized the current research progress, limitations, and possible prospects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Not applicable.

Abbreviations

AI:

Artificial intelligence

AUROC:

The area under the receiver-operating characteristic curve

CART:

Classification and regression tree

CH:

Corneal hysteresis

CRF:

Corneal resistance factor

FFKC:

Forme fruste keratoconus

ML:

Machine learning

RF:

Random forest

SKC:

Subclinical keratoconus

SVM:

Support vector machine

TBI:

Tomographic and Biomechanical Index

TKC:

Topographical keratoconus classification system

References

  1. Salomão MQ, Hofling-Lima AL, Gomes Esporcatte LP, Lopes B, Vinciguerra R, Vinciguerra P, Bühren J, Sena N, Luz Hilgert GS, Ambrósio R (2020) The role of corneal biomechanics for the evaluation of ectasia patients. Int J Environ Res Public Health 17:2113. https://doi.org/10.3390/ijerph17062113

    Article  PubMed  PubMed Central  Google Scholar 

  2. Ma J, Wang Y, Wei P, Jhanji V (2018) Biomechanics and structure of the cornea: implications and association with corneal disorders. Surv Ophthalmol 63:851–861. https://doi.org/10.1016/j.survophthal.2018.05.004

    Article  PubMed  Google Scholar 

  3. Chong J, Dupps WJ Jr (2021) Corneal biomechanics: measurement and structural correlations. Exp Eye Res 205:108508. https://doi.org/10.1016/j.exer.2021.108508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Keratoconus RYS (1998) Surv Ophthalmol 42:297–319. https://doi.org/10.1016/s0039-6257(97)00119-7

    Article  Google Scholar 

  5. Johnson RD, Nguyen MT, Lee N, Hamilton DR (2011) Corneal biomechanical properties in normal, forme fruste keratoconus, and manifest keratoconus after statistical correction for potentially confounding factors. Cornea 30:516–523. https://doi.org/10.1097/ICO.0b013e3181f0579e

    Article  PubMed  Google Scholar 

  6. Viswanathan D, Kumar NL, Males JJ, Graham SL (2015) Relationship of structural characteristics to biomechanical profile in normal, keratoconic, and crosslinked eyes. Cornea 34:791–796. https://doi.org/10.1097/ICO.0000000000000434

    Article  PubMed  Google Scholar 

  7. Kenney MC, Chwa M, Atilano SR, Tran A, Carballo M, Saghizadeh M, Vasiliou V, Adach W, Brown DJ (2005) Increased levels of catalase and cathepsin V/L2 but decreased TIMP-1 in keratoconus corneas: evidence that oxidative stress plays a role in this disorder. Invest Ophthalmol Vis Sci 46:823–832. https://doi.org/10.1167/iovs.04-0549

    Article  PubMed  Google Scholar 

  8. Zhou L, Sawaguchi S, Twining SS, Sugar J, Feder RS, Yue BY (1998) Expression of degradative enzymes and protease inhibitors in corneas with keratoconus. Invest Ophthalmol Vis Sci 39:1117–1124

    CAS  PubMed  Google Scholar 

  9. Daxer A, Fratzl P (1997) Collagen fibril orientation in the human corneal stroma and its implication in keratoconus. Invest Ophthalmol Vis Sci 38:121–129

    CAS  PubMed  Google Scholar 

  10. Santodomingo-Rubido J, Carracedo G, Suzaki A, Villa-Collar C, Vincent SJ, Wolffsohn JS (2022) Keratoconus: an updated review. Cont Lens Anterior Eye 45:101559. https://doi.org/10.1016/j.clae.2021.101559

    Article  PubMed  Google Scholar 

  11. Steinberg J, Aubke-Schultz S, Frings A, Hülle J, Druchkiv V, Richard G, Katz T, Linke SJ (2015) Correlation of the KISA% index and Scheimpflug tomography in ‘normal’, ‘subclinical’, ‘keratoconus-suspect’ and ‘clinically manifest’ keratoconus eyes. Acta Ophthalmol 93:e199–e207. https://doi.org/10.1111/aos.12590

    Article  PubMed  Google Scholar 

  12. Shetty R, Rao H, Khamar P, Sainani K, Vunnava K, Jayade C, Kaweri L (2017) Keratoconus screening indices and their diagnostic ability to distinguish normal from ectatic corneas. Am J Ophthalmol 181:140–148. https://doi.org/10.1016/j.ajo.2017.06.031

    Article  PubMed  Google Scholar 

  13. Zhang X, Munir SZ, Sami Karim SA, Munir WM (2021) A review of imaging modalities for detecting early keratoconus. Eye 35:173–187. https://doi.org/10.1038/s41433-020-1039-1

    Article  PubMed  Google Scholar 

  14. Tummanapalli SS, Potluri H, Vaddavalli PK, Sangwan VS (2015) Efficacy of axial and tangential corneal topography maps in detecting subclinical keratoconus. J Cataract Refract Surg 41:2205–2214. https://doi.org/10.1016/j.jcrs.2015.10.041

    Article  PubMed  Google Scholar 

  15. Alkanaan A, Barsotti R, Kirat O, Khan A, Almubrad T, Akhtar S (2019) Collagen fibrils and proteoglycans of peripheral and central stroma of the keratoconus cornea - ultrastructure and 3D transmission electron tomography. Sci Rep 9:19963. https://doi.org/10.1038/s41598-019-56529-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Götzinger E, Pircher M, Dejaco-Ruhswurm I, Kaminski S, Skorpik C, Hitzenberger CK (2007) Imaging of birefringent properties of keratoconus corneas by polarization-sensitive optical coherence tomography. Invest Ophthalmol Vis Sci 48:3551–3558. https://doi.org/10.1167/iovs.06-0727

    Article  PubMed  Google Scholar 

  17. Padmanabhan P, Elsheikh A (2022) Keratoconus: a biomechanical perspective. Curr Eye Res 1-9. https://doi.org/10.1080/02713683.2022.2088798

  18. Kling S, Hafezi F (2017) Corneal biomechanics - a review. Ophthalmic Physiol Opt 37:240–252. https://doi.org/10.1111/opo.12345

    Article  PubMed  Google Scholar 

  19. Roberts CJ, Dupps WJ Jr (2014) Biomechanics of corneal ectasia and biomechanical treatments. J Cataract Refract Surg 40:991–998. https://doi.org/10.1016/j.jcrs.2014.04.013

    Article  PubMed  PubMed Central  Google Scholar 

  20. Esporcatte LPG, Salomão MQ, Lopes BT, Sena N, Ferreira É, Filho JBRF, Machado AP, Ambrósio R (2022) Biomechanics in keratoconus diagnosis. Curr Eye Res 1-7. https://doi.org/10.1080/02713683.2022.2041042

  21. Vinciguerra R, Ambrósio R Jr, Elsheikh A, Roberts CJ, Lopes B, Morenghi E, Azzolini C, Vinciguerra P (2016) Detection of keratoconus with a new biomechanical index. J Refract Surg 32:803–810. https://doi.org/10.3928/1081597X-20160629-01

    Article  PubMed  Google Scholar 

  22. Tian L, Ko MW, Wang LK, Zhang JY, Li TJ, Huang YF, Zheng YP (2014) Assessment of ocular biomechanics using dynamic ultra high-speed Scheimpflug imaging in keratoconic and normal eyes. J Refract Surg 30:785–791. https://doi.org/10.3928/1081597X-20140930-01

    Article  PubMed  Google Scholar 

  23. Hogarty DT, Mackey DA, Hewitt AW (2019) Current state and future prospects of artificial intelligence in ophthalmology: a review. Clin Exp Ophthalmol 47:128–139. https://doi.org/10.1111/ceo.13381

    Article  PubMed  Google Scholar 

  24. Cheung CY, Tang F, Ting DSW, Tan GSW, Wong TY (2019) Artificial intelligence in diabetic eye disease screening. Asia Pac J Ophthalmol. 8(2):158–164. https://doi.org/10.22608/APO.201976

    Article  Google Scholar 

  25. Cao K, Verspoor K, Sahebjada S, Baird PN (2022) Accuracy of machine learning assisted detection of keratoconus: a systematic review and meta-analysis. J Clin Med 11:478. https://doi.org/10.3390/jcm11030478

    Article  PubMed  PubMed Central  Google Scholar 

  26. Ting DSW, Peng L, Varadarajan AV, Keane PA, Burlina PM, Chiang MF, Schmetterer L, Pasquale LR, Bressler NM, Webster DR, Abramoff M, Wong TY (2019) Deep learning in ophthalmology: the technical and clinical considerations. Prog Retin Eye Res 72:100759. https://doi.org/10.1016/j.preteyeres.2019.04.003

    Article  PubMed  Google Scholar 

  27. Luce DA (2005) Determining in vivo biomechanical properties of the cornea with an ocular response analyzer. J Cataract Refract Surg 31:156–162. https://doi.org/10.1016/j.jcrs.2004.10.044

    Article  PubMed  Google Scholar 

  28. Roberts CJ (2014) Concepts and misconceptions in corneal biomechanics. J Cataract Refract Surg 40:862–869. https://doi.org/10.1016/j.jcrs.2014.04.019

    Article  PubMed  Google Scholar 

  29. Piñero DP, Alcón N (2014) In vivo characterization of corneal biomechanics. J Cataract Refract Surg 40:870–887. https://doi.org/10.1016/j.jcrs.2014.03.021

    Article  PubMed  Google Scholar 

  30. Shah S, Laiquzzaman M, Bhojwani R, Mantry S, Cunliffe I (2007) Assessment of the biomechanical properties of the cornea with the ocular response analyzer in normal and keratoconic eyes. Invest Ophthalmol Vis Sci 48:3026–3031. https://doi.org/10.1167/iovs.04-0694

    Article  PubMed  Google Scholar 

  31. Fontes BM, Ambrósio R Jr, Jardim D, Velarde GC, Nosé W (2010) Corneal biomechanical metrics and anterior segment parameters in mild keratoconus. Ophthalmology 117:673–679. https://doi.org/10.1016/j.ophtha.2009.09.023

    Article  PubMed  Google Scholar 

  32. Fontes BM, Ambrósio R Jr, Jardim D, Velarde GC, Nosé W (2010) Ability of corneal biomechanical metrics and anterior segment data in the differentiation of keratoconus and healthy corneas. Arq Bras Oftalmol 73:333–337. https://doi.org/10.1590/s0004-27492010000400006

    Article  PubMed  Google Scholar 

  33. Labiris G, Gatzioufas Z, Sideroudi H, Giarmoukakis A, Kozobolis V Seitz, B (2013) Biomechanical diagnosis of keratoconus: evaluation of the keratoconus match index and the keratoconus match probability. Acta Ophthalmol 91:e258-e262. https://doi.org/10.1111/aos.12056

  34. Lopes BT, Roberts CJ, Elsheikh A, Vinciguerra R, Vinciguerra P, Reisdorf S, Berger S, Koprowski R, Ambrósio R (2017) Repeatability and reproducibility of intraocular pressure and dynamic corneal response parameters assessed by the Corvis ST. J Ophthalmol. 2017:8515742. https://doi.org/10.1155/2017/8515742

    Article  PubMed  PubMed Central  Google Scholar 

  35. Salouti R, Alishiri AA, Gharebaghi R, Naderi M, Jadidi K, Shojaei-Baghini A, Talebnejad M, Nasiri Z, Hosseini S, Heidary F (2018) Comparison among Ocular Response Analyzer, Corvis ST and Goldmann applanation tonometry in healthy children. Int J Ophthalmol 11:1330–1336. https://doi.org/10.18240/ijo.2018.08.13

    Article  PubMed  PubMed Central  Google Scholar 

  36. Ambrósio R, Lopes BT, Faria-Correia F, Salomão MQ, Bühren J, Roberts CJ, Elsheikh A, Vinciguerra R, Vinciguerra P (2017) Integration of scheimpflug-based corneal tomography and biomechanical assessments for enhancing ectasia detection. J Refract Surg 33:434–443. https://doi.org/10.3928/1081597X-20170426-02

    Article  PubMed  Google Scholar 

  37. Tan Z, Chen X, Li K, Liu Y, Cao H, Li J, Jhanji V, Zou H, Liu F, Wang R, Wang Y (2022) Artificial intelligence-based diagnostic model for detecting keratoconus using videos of corneal force deformation. Transl Vis Sci Technol 11:32. https://doi.org/10.1167/tvst.11.9.32

    Article  PubMed  PubMed Central  Google Scholar 

  38. Arnalich-Montiel F, Alió Del Barrio JL, Alió JL (2016) Corneal surgery in keratoconus: which type, which technique, which outcomes? Eye Vis 3:2. https://doi.org/10.1186/s40662-016-0033-y

    Article  Google Scholar 

  39. Klyce SD (2009) Chasing the suspect: keratoconus. Br J Ophthalmol 93:845–847. https://doi.org/10.1136/bjo.2008.147371

    Article  PubMed  Google Scholar 

  40. Gomes JA, Tan D, Rapuano CJ, Belin MW, Ambrósio R Jr, Guell JL, Malecaze F, Nishida K, Sangwan VS, Group of Panelists for the Global Delphi Panel of Keratoconus, Ectatic Diseases (2015) Global consensus on keratoconus and ectatic diseases. Cornea 34:359–369. https://doi.org/10.1097/ICO.0000000000000408

    Article  PubMed  Google Scholar 

  41. Bao F, Geraghty B, Wang Q, Elsheikh A (2016) Consideration of corneal biomechanics in the diagnosis and management of keratoconus: is it important? Eye Vis 3:18. https://doi.org/10.1186/s40662-016-0048-4

    Article  Google Scholar 

  42. Ventura BV, Machado AP, Ambrósio R Jr, Ribeiro G, Araújo LN, Luz A, Lyra JM (2013) Analysis of waveform-derived ORA parameters in early forms of keratoconus and normal corneas. J Refract Surg 29:637–643. https://doi.org/10.3928/1081597X-20130819-05

    Article  PubMed  Google Scholar 

  43. Krumeich JH, Daniel J, Knülle A (1998) Live-epikeratophakia for keratoconus. J Cataract Refract Surg 24:456–463. https://doi.org/10.1016/s0886-3350(98)80284-8

    Article  CAS  PubMed  Google Scholar 

  44. Luz A, Lopes B, Hallahan KM, Valbon B, Ramos I, Faria-Correia F, Schor P, Dupps WJ, Ambrósio R (2016) Enhanced combined tomography and biomechanics data for distinguishing forme fruste keratoconus. J Refract Surg 32:479–494. https://doi.org/10.3928/1081597X-20160502-02

    Article  PubMed  PubMed Central  Google Scholar 

  45. Zhang H, Tian L, Guo L, Qin X, Zhang D, Li L, Jie Y, Zhang H (2021) Comprehensive evaluation of corneas from normal, forme fruste keratoconus and clinical keratoconus patients using morphological and biomechanical properties. Int Ophthalmol 41:1247–1259. https://doi.org/10.1007/s10792-020-01679-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Atalay E, Özalp O, Erol MA, Bilgin M, Yıldırım N (2020) A combined biomechanical and tomographic model for identifying cases of subclinical keratoconus. Cornea 39:461–467. https://doi.org/10.1097/ICO.0000000000002205

    Article  PubMed  Google Scholar 

  47. Peña-García P, Peris-Martínez C, Abbouda A, Ruiz-Moreno JM (2016) Detection of subclinical keratoconus through non-contact tonometry and the use of discriminant biomechanical functions. J Biomech 49:353–363. https://doi.org/10.1016/j.jbiomech.2015.12.031

    Article  PubMed  Google Scholar 

  48. Francis M, Pahuja N, Shroff R, Gowda R, Matalia H, Shetty R, Remington Nelson EJ, Sinha Roy A (2017) Waveform analysis of deformation amplitude and deflection amplitude in normal, suspect, and keratoconic eyes. J Cataract Refract Surg 43:1271–1280. https://doi.org/10.1016/j.jcrs.2017.10.012

    Article  PubMed  Google Scholar 

  49. Matalia J, Francis M, Tejwani S, Dudeja G, Rajappa N, Sinha Roy AS (2016) Role of age and myopia in simultaneous assessment of corneal and extraocular tissue stiffness by air-puff applanation. J Refract Surg 32:486–493. https://doi.org/10.3928/1081597X-20160512-02

    Article  PubMed  Google Scholar 

  50. Tian L, Zhang D, Guo L, Qin X, Zhang H, Zhang H, Jie Y, Li L (2021) Comparisons of corneal biomechanical and tomographic parameters among thin normal cornea, forme fruste keratoconus, and mild keratoconus. Eye Vis 8:44. https://doi.org/10.1186/s40662-021-00266-y

    Article  Google Scholar 

  51. Huseynli S, Salgado-Borges J, Alio JL (2018) Comparative evaluation of Scheimpflug tomography parameters between thin non-keratoconic, subclinical keratoconic, and mild keratoconic corneas. Eur J Ophthalmol 28:521–534. https://doi.org/10.1177/1120672118760146

    Article  PubMed  Google Scholar 

  52. Song P, Ren S, Liu Y, Li P, Zeng Q (2022) Detection of subclinical keratoconus using a novel combined tomographic and biomechanical model based on an automated decision tree. Sci Rep 12:5316. https://doi.org/10.1038/s41598-022-09160-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Pérez-Rueda A, Jiménez-Rodríguez D, Castro-Luna G (2021) Diagnosis of subclinical keratoconus with a combined model of biomechanical and topographic parameters. J Clin Med 10:2746. https://doi.org/10.3390/jcm10132746

    Article  PubMed  PubMed Central  Google Scholar 

  54. Shiga S, Kojima T, Nishida T, Nakamura T, Ichikawa K (2021) Evaluation of CorvisST biomechanical parameters and anterior segment optical coherence tomography for diagnosing forme fruste keratoconus. Acta Ophthalmol 99:644–651. https://doi.org/10.1111/aos.14700

    Article  PubMed  Google Scholar 

  55. Lu NJ, Elsheikh A, Rozema JJ, Hafezi N, Aslanides IM, Hillen M, Eckert D, Funck C, Koppen C, Cui LL, Hafezi F (2022) Combining spectral-domain OCT and air-puff tonometry analysis to diagnose keratoconus. J Refract Surg 38:374–380. https://doi.org/10.3928/1081597X-20220414-02

    Article  CAS  PubMed  Google Scholar 

  56. Karimi A, Meimani N, Razaghi R, Rahmati SM, Jadidi K, Rostami M (2018) Biomechanics of the healthy and keratoconic corneas: a combination of the clinical data, finite element analysis, and artificial neural network. Curr Pharm Des 24:4474–4483. https://doi.org/10.2174/1381612825666181224123939

    Article  CAS  PubMed  Google Scholar 

  57. Alió Del Barrio JL, Arnalich-Montiel F, De Miguel MP, El Zarif ME, Alió JL (2021) Corneal stroma regeneration: preclinical studies. Exp Eye Res 202:108314. https://doi.org/10.1016/j.exer.2020.108314

    Article  CAS  PubMed  Google Scholar 

  58. Herber R, Pillunat LE, Raiskup F (2021) Development of a classification system based on corneal biomechanical properties using artificial intelligence predicting keratoconus severity. Eye Vis 8:21. https://doi.org/10.1186/s40662-021-00244-4

    Article  Google Scholar 

  59. Langenbucher A, Häfner L, Eppig T, Seitz B, Szentmáry N, Flockerzi E (2021) Keratoconus detection and classification from parameters of the Corvis®ST: a study based on algorithms of machine learning. Ophthalmologe 118:697–706. https://doi.org/10.1007/s00347-020-01231-1

    Article  PubMed  Google Scholar 

  60. Flockerzi E, Vinciguerra R, Belin MW, Vinciguerra P, Ambrósio R Jr, Seitz B (2022) Correlation of the Corvis Biomechanical Factor with tomographic parameters in keratoconus. J Cataract Refract Surg 48:215–221. https://doi.org/10.1097/j.jcrs.0000000000000740

    Article  PubMed  Google Scholar 

  61. Flockerzi E, Vinciguerra R, Belin MW, Vinciguerra P, Ambrósio R Jr, Seitz B (2022) Combined biomechanical and tomographic keratoconus staging: adding a biomechanical parameter to the ABCD keratoconus staging system. Acta Ophthalmol 100:e1135–e1142. https://doi.org/10.1111/aos.15044

    Article  PubMed  Google Scholar 

  62. Belin MW, Duncan JK (2016) Keratoconus: the ABCD grading system. Klin Monbl Augenheilkd 233:701–707. https://doi.org/10.1055/s-0042-100626

    Article  CAS  PubMed  Google Scholar 

  63. Ruberti JW, Sinha Roy A, Roberts CJ (2011) Corneal biomechanics and biomaterials. Annu Rev Biomed Eng 13:269–295. https://doi.org/10.1146/annurev-bioeng-070909-105243

    Article  CAS  PubMed  Google Scholar 

  64. Patel S, Mclaren J, Hodge D, Bourne W (2001) Normal human keratocyte density and corneal thickness measurement by using confocal microscopy in vivo. Invest Ophthalmol Vis Sci 42:333–339

    CAS  PubMed  Google Scholar 

  65. Dupps WJ Jr (2007) Hysteresis: new mechanospeak for the ophthalmologist. J Cataract Refract Surg 33:1499–1501. https://doi.org/10.1016/j.jcrs.2007.07.008

    Article  PubMed  Google Scholar 

  66. Glass DH, Roberts CJ, Litsky AS, Weber PA (2008) A viscoelastic biomechanical model of the cornea describing the effect of viscosity and elasticity on hysteresis. Invest Ophthalmol Vis Sci 49:3919–3926. https://doi.org/10.1167/iovs.07-1321

    Article  PubMed  Google Scholar 

  67. Viidik A (1973) Functional properties of collagenous tissues. Int Rev Connect Tissue Res 6:127–215. https://doi.org/10.1016/b978-0-12-363706-2.50010-6

    Article  CAS  PubMed  Google Scholar 

  68. Vinciguerra R, Ambrósio R Jr, Roberts CJ, Azzolini C, Vinciguerra P (2017) Biomechanical characterization of subclinical keratoconus without topographic or tomographic abnormalities. J Refract Surg 33:399–407. https://doi.org/10.3928/1081597X-20170213-01

    Article  PubMed  Google Scholar 

  69. Ali NQ, Patel DV, Mcghee CN (2014) Biomechanical responses of healthy and keratoconic corneas measured using a noncontact scheimpflug-based tonometer. Invest Ophthalmol Vis Sci 55:3651–3659. https://doi.org/10.1167/iovs.13-13715

    Article  PubMed  Google Scholar 

  70. Romero-Jiménez M, Santodomingo-Rubido J, González-Méijome JM (2013) The thinnest, steepest, and maximum elevation corneal locations in noncontact and contact lens wearers in keratoconus. Cornea 32:332–337. https://doi.org/10.1097/ICO.0b013e318259c98a

    Article  PubMed  Google Scholar 

  71. Liu Q, Gu Q, Wu Z (2017) Feature selection method based on support vector machine and shape analysis for high-throughput medical data. Comput Biol Med 91:103–111. https://doi.org/10.1016/j.compbiomed.2017.10.008

    Article  PubMed  Google Scholar 

  72. Steinberg J, Siebert M, Katz T, Frings A, Mehlan J, Druchkiv V, Bühren J, Linke SJ (2018) Tomographic and biomechanical scheimpflug imaging for keratoconus characterization: a validation of current indices. J Refract Surg 34:840–847. https://doi.org/10.3928/1081597X-20181012-01

    Article  PubMed  Google Scholar 

  73. Elsheikh A, Geraghty B, Rama P, Campanelli M, Meek KM (2010) Characterization of age-related variation in corneal biomechanical properties. J R Soc Interface 7:1475–1485. https://doi.org/10.1098/rsif.2010.0108

    Article  PubMed  PubMed Central  Google Scholar 

  74. Vinciguerra R, Elsheikh A, Roberts CJ, Ambrósio R Jr, Kang DSY, Lopes BT, Morenghi E, Azzolini C, Vinciguerra P (2016) Influence of pachymetry and intraocular pressure on dynamic corneal response parameters in healthy patients. J Refract Surg 32:550–561. https://doi.org/10.3928/1081597X-20160524-01

    Article  PubMed  Google Scholar 

  75. Vinciguerra R, Herber R, Wang Y, Zhang F, Zhou X, Bai J, Yu K, Chen S, Fang X, Raiskup F, Vinciguerra P (2022) Corneal biomechanics differences between Chinese and Caucasian healthy subjects. Front Med 9:834663. https://doi.org/10.3389/fmed.2022.834663

    Article  Google Scholar 

  76. Ambrósio R Jr, Machado AP, Leão E, Lyra JMG, Salomão MQ, Esporcatte LGP, Filho JBRDF, Ferreira-Meneses E, Sena NB, Haddad JS et al (2022) Optimized artificial intelligence for enhanced ectasia detection using Scheimpflug-based corneal tomography and biomechanical data. Am J Ophthalmol 251:126–142. https://doi.org/10.1016/j.ajo.2022.12.016

    Article  PubMed  Google Scholar 

  77. Hashemi H, Heydarian S, Hooshmand E, Saatchi M, Yekta A, Aghamirsalim M, Valadkhan M, Mortazavi M, Hashemi A, Khabazkhoob M (2020) The prevalence and risk factors for keratoconus: a systematic review and meta-analysis. Cornea 39:263–270. https://doi.org/10.1097/ICO.0000000000002150

    Article  PubMed  Google Scholar 

  78. Henriquez MA, Hadid M, Izquierdo L Jr (2020) A systematic review of subclinical keratoconus and forme fruste keratoconus. J Refract Surg 36:270–279. https://doi.org/10.3928/1081597X-20200212-03

    Article  PubMed  Google Scholar 

  79. Huo Y, Chen X, Cao H, Li J, Hou J, Wang Y (2022) Biomechanical properties analysis of forme fruste keratoconus and subclinical keratoconus. Graefes Arch Clin Exp Ophthalmol 261:1311–1320. https://doi.org/10.1007/s00417-022-05916-y

    Article  PubMed  Google Scholar 

  80. Martínez-Abad A, Piñero DP (2017) New perspectives on the detection and progression of keratoconus. J Cataract Refract Surg 43:1213–1227. https://doi.org/10.1016/j.jcrs.2017.07.021

    Article  PubMed  Google Scholar 

  81. Nichols JJ, Steger-May K, Edrington TB, Zadnik K, CLEK study group (2004) The relation between disease asymmetry and severity in keratoconus. Br J Ophthalmol 88:788-791. https://doi.org/10.1136/bjo.2003.034520

  82. Li X, Rabinowitz YS, Rasheed K, Yang H (2004) Longitudinal study of the normal eyes in unilateral keratoconus patients. Ophthalmology 111:440–446. https://doi.org/10.1016/j.ophtha.2003.06.020

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank all the participants who made this study possible and Editage (www.editage.cn) for English-language editing assistance.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Yan Huo, Xuan Chen; literature search: Yan Huo, Xuan Chen; data analysis: Yan Huo, Xuan Chen, Gauhar Ali Khan; draft preparation: Yan Huo, Xuan Chen, Gauhar Ali Khan; review editing: Yan Huo, Xuan Chen, Gauhar Ali Khan, Yan Wang. Supervision: Yan Wang; Project administration: Yan Wang. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Yan Wang.

Ethics declarations

Ethics approval

Not applicable.

Consent

Not applicable.

Conflict of interest

The authors declare no competing interests. This study was supported by the National Natural Science Foundation of China (No. 81873684 and 82271118).

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huo, Y., Chen, X., Khan, G.A. et al. Corneal biomechanics in early diagnosis of keratoconus using artificial intelligence. Graefes Arch Clin Exp Ophthalmol 262, 1337–1349 (2024). https://doi.org/10.1007/s00417-023-06307-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-023-06307-7

Keywords

Navigation