Skip to main content

Advertisement

Log in

Comparison of different corneal imaging modalities using artificial intelligence for diagnosis of keratoconus: a systematic review and meta-analysis

  • Review Article
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

This review was designed to compare different corneal imaging modalities using artificial intelligence (AI) for the diagnosis of keratoconus (KCN), subclinical KCN (SKCN), and forme fruste KCN (FFKCN).

Methods

A comprehensive systematic search was conducted in scientific databases, including Web of Science, PubMed, Scopus, and Google Scholar based on the PRISMA statement. Two independent reviewers assessed all potential publications on AI and KCN up to March 2022. The Critical Appraisal Skills Program (CASP) 11-item checklist was used to evaluate the validity of the studies. Eligible articles were categorized into three groups (KCN, SKCN, and FFKCN) and included in the meta-analysis. The pooled estimate of accuracy (PEA) was calculated for all selected articles.

Results

The initial search yielded 575 relevant publications, of which 36 met the CASP quality criteria and were included in the analysis. Qualitative assessment showed that Scheimpflug and Placido combined with biomechanical and wavefront evaluations improved KCN detection (PEA, 99.2, and 99.0, respectively). The Scheimpflug system (92.25 PEA, 95% CI, 94.76–97.51) and a combination of Scheimpflug and Placido (96.44 PEA, 95% CI, 93.13–98.19) had the highest diagnostic accuracy for the detection of SKCN and FFKCN, respectively. The meta-analysis outcomes showed no significant difference between the CASP score and accuracy of the publications (all P > 0.05).

Conclusions

Simultaneous Scheimpflug and Placido corneal imaging methods provide high diagnostic accuracy for early detection of keratoconus. The use of AI models improves the discrimination of keratoconic eyes from normal corneas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Vega-Estrada A, Mimouni M, Espla E, del Barrio JA, Alio JL (2019) Corneal epithelial thickness intrasubject repeatability and its relation with visual limitation in keratoconus. Am J Ophthalmol 200:255–262. https://doi.org/10.1016/j.ajo.2019.01.015

    Article  PubMed  Google Scholar 

  2. Siganos CS, Tsiklis NS, Miltsakakis DG, Georgiadis NS, Georgiadou IN, Kymionis GD, Pallikaris IG (2010) Changing indications for penetrating keratoplasty in Greece, 1982–2006: a multicenter study. Cornea 29:372–374. https://doi.org/10.1097/ICO.0b013e3181bd44a1

    Article  PubMed  Google Scholar 

  3. Hashemi H, Heydarian S, Yekta A, Ostadimoghaddam H, Aghamirsalim M, Derakhshan A, Khabazkhoob M (2018) High prevalence and familial aggregation of keratoconus in an Iranian rural population: a population-based study. Ophthalmic Physiol Opt 38:447–455. https://doi.org/10.1111/opo.12448

    Article  PubMed  Google Scholar 

  4. Özalp O, Atalay E, Yıldırım N (2021) Prevalence and risk factors for keratoconus in a university-based population in Turkey. J Cataract Refract Surg 47(12):1524–1529. https://doi.org/10.1097/j.jcrs.0000000000000669

    Article  PubMed  Google Scholar 

  5. Reeves SW, Ellwein LB, Kim T, Constantine R, Lee PP (2009) Keratoconus in the Medicare population. Cornea 28:40–42. https://doi.org/10.1097/ICO.0b013e3181839b06

    Article  PubMed  PubMed Central  Google Scholar 

  6. Torres Netto EA, Al-Otaibi WM, Hafezi NL, Kling S, Al-Farhan HM, Randleman JB, Hafezi F (2018) Prevalence of keratoconus in paediatric patients in Riyadh, Saudi Arabia. Br J Ophthalmol 102:1436–1441. https://doi.org/10.1136/bjophthalmol-2017-311391

    Article  PubMed  Google Scholar 

  7. Armstrong BK, Smith SD, Romac Coc I, Agarwal P, Mustapha N, Navon S (2021) Screening for keratoconus in a high-risk adolescent population. Ophthalmic Epidemiol 28:191–197. https://doi.org/10.1080/09286586.2020.1804593

    Article  PubMed  Google Scholar 

  8. Assiri AA, Yousuf BI, Quantock AJ, Murphy PJ (2005) Incidence and severity of keratoconus in Asir province, Saudi Arabia. Br J Ophthalmol 89:1403–1406. https://doi.org/10.1136/bjo.2005.074955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hwang S, Lim DH, Chung TY (2018) Prevalence and incidence of keratoconus in South Korea: a nationwide population-based study. Am J Ophthalmol 192:56–64. https://doi.org/10.1016/j.ajo.2018.04.027

    Article  PubMed  Google Scholar 

  10. Henriquez MA, Hadid M, Izquierdo L Jr (2020) A systematic review of subclinical keratoconus and forme fruste keratoconus. J Refract Surg 36:270–279. https://doi.org/10.3928/1081597x-20200212-03

    Article  PubMed  Google Scholar 

  11. Ambrósio R Jr, Machado AP, Leão E et al (2022) Optimized artificial intelligence for enhanced ectasia detection using Scheimpflug-based corneal tomography and biomechanical data. Am J Ophthalmol 251:126–142. https://doi.org/10.1016/j.ajo.2022.12.016

    Article  PubMed  Google Scholar 

  12. Moher D, Liberati A, Tetzlaff J, Altman DG (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med 6:e1000097. https://doi.org/10.1371/journal.pmed.1000097

    Article  PubMed  PubMed Central  Google Scholar 

  13. Richardson WS, Wilson MC, Nishikawa J, Hayward RS (1995) The well-built clinical question: a key to evidence-based decisions. ACP J Club 123:A12-13

    Article  CAS  PubMed  Google Scholar 

  14. Schardt C, Adams MB, Owens T, Keitz S, Fontelo P (2007) Utilization of the PICO framework to improve searching PubMed for clinical questions. BMC Med Inform Decis Mak 7:16. https://doi.org/10.1186/1472-6947-7-16

    Article  PubMed  PubMed Central  Google Scholar 

  15. Viera AJ, Garrett JM (2005) Understanding interobserver agreement: the kappa statistic. Fam Med 37:360–363

    PubMed  Google Scholar 

  16. Oxman AD, Cook DJ, Guyatt GH, Bass E, Brill-Edwards P, Browman G, Detsky A, Farkouh M, Gerstein H, Haines T (1994) Users’ guides to the medical literature: VI How to use an overview. Jama 272:1367–1371. https://doi.org/10.1001/jama.272.17.1367

    Article  CAS  PubMed  Google Scholar 

  17. Noyes J, Booth A, Flemming K, Garside R, Harden A, Lewin S, Pantoja T, Hannes K, Cargo M, Thomas J (2018) Cochrane Qualitative and Implementation Methods Group guidance series-paper 3: methods for assessing methodological limitations, data extraction and synthesis, and confidence in synthesized qualitative findings. J Clin Epidemiol 97:49–58. https://doi.org/10.1016/j.jclinepi.2017.06.020

    Article  PubMed  Google Scholar 

  18. Alshammari G, Hamad AA, Abdullah ZM, Alshareef AM, Alhebaishi N, Alshammari A, Belay A (2021) Applications of deep learning on topographic images to improve the diagnosis for dynamic systems and unconstrained optimization. Wirel Commun Mob Comput 2021:1–7

    Article  Google Scholar 

  19. Maeda N, Klyce SD, Smolek MK (1995) Neural network classification of corneal topography. Preliminary demonstration. Invest Ophthalmol Vis Sci 36:1327–1335

    CAS  PubMed  Google Scholar 

  20. Kuo BI, Chang WY, Liao TS, Liu FY, Liu HY, Chu HS, Chen WL, Hu FR, Yen JY, Wang IJ (2020) Keratoconus screening based on deep learning approach of corneal topography. Transl Vis Sci Technol 9:53. https://doi.org/10.1167/tvst.9.2.53

    Article  PubMed  PubMed Central  Google Scholar 

  21. Lavric A, Valentin P (2019) KeratoDetect: keratoconus detection algorithm using convolutional neural networks. Comput Intell Neurosci 8162567. https://doi.org/10.1155/2019/8162567

  22. Mohammadpour M, Heidari Z (2021) Orbscan. In: Mohammadpour, M. (eds) Diagnostics in ocular imaging. Springer, Cham, pp 23–63. https://doi.org/10.1007/978-3-030-54863-6_2

  23. Zéboulon P, Debellemanière G, Bouvet M, Gatinel D (2020) Corneal topography raw data classification using a convolutional neural network. Am J Ophthalmol 219:33–39. https://doi.org/10.1016/j.ajo.2020.06.005

    Article  PubMed  Google Scholar 

  24. Souza MB, Medeiros FW, Souza DB, Garcia R, Alves MR (2010) Evaluation of machine learning classifiers in keratoconus detection from orbscan II examinations. Clinics (Sao Paulo) 65:1223–1228. https://doi.org/10.1590/s1807-59322010001200002

    Article  PubMed  Google Scholar 

  25. Chan C, Ang M, Saad A, Chua D, Mejia M, Lim L, Gatinel D (2015) Validation of an objective scoring system for forme fruste keratoconus detection and post-LASIK ectasia risk assessment in Asian eyes. Cornea 34:996–1004. https://doi.org/10.1097/ico.0000000000000529

    Article  PubMed  Google Scholar 

  26. Hernández-Camarena JC, Chirinos-Saldaña P, Navas A, Ramirez-Miranda A, de la Mota A, Jimenez-Corona A, Graue-Hernández EO (2014) Repeatability, reproducibility, and agreement between three different Scheimpflug systems in measuring corneal and anterior segment biometry. J Refract Surg 30:616–621. https://doi.org/10.3928/1081597X-20140815-02

    Article  PubMed  Google Scholar 

  27. Heidari Z, Hashemi H, Mohammadpour M, Amanzadeh K, Fotouhi A (2021) Evaluation of corneal topographic, tomographic and biomechanical indices for detecting clinical and subclinical keratoconus: a comprehensive three-device study. Int J Ophthalmol 14:228–239. https://doi.org/10.18240/ijo.2021.02.08

    Article  PubMed  PubMed Central  Google Scholar 

  28. Mohammadpour M, Heidari Z (2021) Pentacam. In: Mohammadpour, M. (eds) Diagnostics in ocular imaging. Springer, Cham, pp 65–162. https://doi.org/10.1007/978-3-030-54863-6_3

  29. Malyugin B, Sakhnov S, Izmailova S, Boiko E, Pozdeyeva N, Axenova L, Axenov K, Titov A, Terentyeva A, Zakaraiia T, Myasnikova V (2021) Keratoconus diagnostic and treatment algorithms based on machine-learning methods. Diagnostics (Basel, Switzerland) 11:1993. https://doi.org/10.3390/diagnostics11101933

    Article  Google Scholar 

  30. Abdelmotaal H, Abdou AA, Omar AF, El-Sebaity DM, Abdelazeem K (2021) Pix2pix conditional generative adversarial networks for Scheimpflug camera color-coded corneal tomography image generation. Transl Vis Sci Technol 10:21. https://doi.org/10.1167/tvst.10.7.21

    Article  PubMed  PubMed Central  Google Scholar 

  31. Al-Timemy AH, Mosa ZM, Alyasseri Z, Lavric A, Lui MM, Hazarbassanov RM, Yousefi S (2021) A hybrid deep learning construct for detecting keratoconus from corneal maps. Transl Vis Sci Technol 10:16. https://doi.org/10.1167/tvst.10.14.16

    Article  PubMed  PubMed Central  Google Scholar 

  32. Cao K, Verspoor K, Chan E, Daniell M, Sahebjada S, Baird PN (2021) Machine learning with a reduced dimensionality representation of comprehensive Pentacam tomography parameters to identify subclinical keratoconus. Comput Biol Med 138:104884. https://doi.org/10.1016/j.compbiomed.2021.104884

    Article  PubMed  Google Scholar 

  33. Cao K, Verspoor K, Sahebjada S, Baird PN (2020) Evaluating the performance of various machine learning algorithms to detect subclinical keratoconus. Transl Vis Sci Technol 9:24. https://doi.org/10.1167/tvst.9.2.24

    Article  PubMed  PubMed Central  Google Scholar 

  34. Feng R, Xu Z, Zheng X, Hu H, Jin X, Chen DZ, Yao K, Wu J (2021) KerNet: a novel deep learning approach for keratoconus and sub-clinical keratoconus detection based on raw data of the Pentacam HR system. IEEE J Biomed Health Inform 25:3898–3910. https://doi.org/10.1109/jbhi.2021.3079430

    Article  PubMed  Google Scholar 

  35. Moshirfar M, Motlagh MN, Murri MS, Momeni-Moghaddam H, Ronquillo YC, Hoopes PC (2019) Galilei corneal tomography for screening of refractive surgery candidates: a review of the literature, Part II. Med Hypothesis Discov Innov Ophthalmol 8:204–218

    PubMed  PubMed Central  Google Scholar 

  36. Smadja D, Touboul D, Cohen A, Doveh E, Santhiago MR, Mello GR, Krueger RR, Colin J (2013) Detection of subclinical keratoconus using an automated decision tree classification. Am J Ophthalmol 156:237-246.e231. https://doi.org/10.1016/j.ajo.2013.03.034

    Article  PubMed  Google Scholar 

  37. Mohammadpour M, Heidari Z, Hashemi H, Yaseri M, Fotouhi A (2022) Comparison of artificial intelligence-based machine learning classifiers for early detection of keratoconus. Eur J Ophthalmol 32:1352–1360. https://doi.org/10.1177/11206721211073442

    Article  PubMed  Google Scholar 

  38. Heidari Z, Jafarzadehpour E, Mohammadpour M, Hashemi H (2022) Best indices of dual Scheimpflug/Placido tomographer for keratoconus detection. Int Ophthalmol. https://doi.org/10.1007/s10792-022-02533-w

    Article  PubMed  Google Scholar 

  39. Prakash G, Agarwal A, Jacob S, Kumar DA, Agarwal A, Banerjee R (2009) Comparison of fourier-domain and time-domain optical coherence tomography for assessment of corneal thickness and intersession repeatability. Am J Ophthalmol 148:282-290.e282. https://doi.org/10.1016/j.ajo.2009.03.012

    Article  PubMed  Google Scholar 

  40. Hwang ES, Schallhorn JM, Randleman JB (2020) Utility of regional epithelial thickness measurements in corneal evaluations. Surv ophthalmol 65:187–204. https://doi.org/10.1016/j.survophthal.2019.09.003

    Article  PubMed  Google Scholar 

  41. Kanellopoulos A, Aslanides I, Asimellis G (2012) Correlation between epithelial thickness in normal corneas, untreated ectatic corneas, and ectatic corneas previously treated with CXL; is overall epithelial thickness a very early ectasia prognostic factor? Clin Ophthalmol 6:789–800. https://doi.org/10.2147/OPTH.S31524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Sella R, Zangwill LM, Weinreb RN, Afshari NA (2019) Repeatability and reproducibility of corneal epithelial thickness mapping with spectral-domain optical coherence tomography in normal and diseased cornea eyes. Am J Ophthalmol 197:88–97. https://doi.org/10.1016/j.ajo.2018.09.008

    Article  PubMed  Google Scholar 

  43. Ramos JLB, Li Y, Huang D (2009) Clinical and research applications of anterior segment optical coherence tomography–a review. J Clin Exp Ophthalmol 37:81–89. https://doi.org/10.1111/j.1442-9071.2008.01823.x

    Article  Google Scholar 

  44. Han SB, Liu Y-C, Noriega KM, Mehta JS (2016) Applications of anterior segment optical coherence tomography in cornea and ocular surface diseases. J Ophthalmol 2016:4971572. https://doi.org/10.1155/2016/4971572

    Article  PubMed  PubMed Central  Google Scholar 

  45. Fuentes E, Sandali O, El Sanharawi M, Basli E, Hamiche T, Goemaere I, Borderie V, Bouheraoua N, Laroche L (2015) Anatomic predictive factors of acute corneal hydrops in keratoconus: an optical coherence tomography study. Ophthalmology 122:1653–1659. https://doi.org/10.1016/j.ophtha.2015.04.031

    Article  PubMed  Google Scholar 

  46. Dong Y, Li D, Guo Z, Liu Y, Lin P, Lv B, Lv C, Xie G, Xie L (2022) Dissecting the profile of corneal thickness with keratoconus progression based on anterior segment optical coherence tomography. Front Neurosci 15:804273. https://doi.org/10.3389/fnins.2021.80427347

    Article  PubMed  PubMed Central  Google Scholar 

  47. Kundu G, Shetty R, Khamar P, Mullick R, Gupta S, Nuijts R, Sinha Roy A (2021) Universal architecture of corneal segmental tomography biomarkers for artificial intelligence-driven diagnosis of early keratoconus. Br J Ophthalmol. https://doi.org/10.1136/bjophthalmol-2021-319309

    Article  PubMed  Google Scholar 

  48. Khaled ML, Helwa I, Drewry M, Seremwe M, Estes A, Liu Y (2017) Molecular and histopathological changes associated with keratoconus. Biomed Res Int 2017:7803029. https://doi.org/10.1155/2017/7803029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Vinciguerra R, Ambrósio R Jr, Elsheikh A, Roberts CJ, Lopes B, Morenghi E, Azzolini C, Vinciguerra P (2016) Detection of keratoconus with a new biomechanical index. J Refract Surg 32:803–810. https://doi.org/10.3928/1081597x-20160629-01

    Article  PubMed  Google Scholar 

  50. Sedaghat MR, Momeni-Moghaddam H, Ambrósio R Jr, Heidari HR, Maddah N, Danesh Z, Sabzi F (2018) Diagnostic ability of corneal shape and biomechanical parameters for detecting frank keratoconus. Cornea 37:1025–1034. https://doi.org/10.1097/ico.0000000000001639

    Article  PubMed  Google Scholar 

  51. Yang K, Xu L, Fan Q, Gu Y, Song P, Zhang B, Zhao D, Pang C, Ren S (2020) Evaluation of new Corvis ST parameters in normal, Post-LASIK, Post-LASIK keratectasia and keratoconus eyes. Sci Rep 10:5676. https://doi.org/10.1038/s41598-020-62825-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Machado AP, Lyra JM, Ambrósio R, Ribeiro G, Araújo LP, Xavier C, Costa E (2011) Comparing machine-learning classifiers in keratoconus diagnosis from ORA examinations. In: Peleg, M., Lavrač, N., Combi, C. (eds) Artificial Intelligence in Medicine. (Lecture Notes in Computer Science) Springer, Berlin Heidelberg New York, pp 90–95. https://doi.org/10.1007/978-3-642-22218-4_12

  53. Pniakowska Z, Jurowski P (2016) Detection of the early keratoconus based on corneal biomechanical properties in the refractive surgery candidates. Indian J Ophthalmol 64:109–113. https://doi.org/10.4103/0301-4738.179725

    Article  PubMed  PubMed Central  Google Scholar 

  54. Ambrósio R Jr, Lopes BT, Faria-Correia F, Salomão MQ, Bühren J, Roberts CJ, Elsheikh A, Vinciguerra R, Vinciguerra P (2017) Integration of Scheimpflug-based corneal tomography and biomechanical assessments for enhancing ectasia detection. J Refract Surg 33:434–443. https://doi.org/10.3928/1081597x-20170426-02

    Article  PubMed  Google Scholar 

  55. Koc M, Aydemir E, Tekin K, Inanc M, Kosekahya P, Kiziltoprak H (2019) Biomechanical analysis of subclinical keratoconus with normal topographic, topometric, and tomographic findings. J Refract Surg 35:247–252. https://doi.org/10.3928/1081597x-20190226-01

    Article  PubMed  Google Scholar 

  56. Herber R, Pillunat LE, Raiskup F (2021) Development of a classification system based on corneal biomechanical properties using artificial intelligence predicting keratoconus severity. Eye Vis (Lond) 8:21. https://doi.org/10.1186/s40662-021-00244-4

    Article  PubMed  Google Scholar 

  57. Heidari Z, Mohammadpour M, Hashemi H, Jafarzadehpur E, Moghaddasi A, Yaseri M, Fotouhi A (2020) Early diagnosis of subclinical keratoconus by wavefront parameters using Scheimpflug, Placido and Hartmann-Shack based devices. Int Ophthalmol 40:1659–1671. https://doi.org/10.1007/s10792-020-01334-3

    Article  PubMed  Google Scholar 

  58. Carvalho LA (2005) Preliminary results of neural networks and zernike polynomials for classification of videokeratography maps. Optom Vis Sci 82:151–158. https://doi.org/10.1097/01.opx.0000153193.41554.a1

    Article  PubMed  Google Scholar 

  59. Castro-Luna GM, Martínez-Finkelshtein A, Ramos-López D (2020) Robust keratoconus detection with Bayesian network classifier for Placido-based corneal indices. Cont Lens Anterior Eye 43:366–372. https://doi.org/10.1016/j.clae.2019.12.006

    Article  PubMed  Google Scholar 

  60. de Almeida Jr GC, Guido RC, Neto JS, Rosa JM, Castiglioni L, de Mattos LC, Brandão CC (2021) Corneal Tomography Multivariate Index (CTMVI) effectively distinguishes healthy corneas from those susceptible to ectasia. Biomed Signal Process Control 70:102995. https://doi.org/10.1016/j.bspc.2021.102995

    Article  Google Scholar 

  61. Saad A, Gatinel D (2012) Evaluation of total and corneal wavefront high order aberrations for the detection of forme fruste keratoconus. Invest Ophthalmol Vis Sci 53:2978–2992. https://doi.org/10.1167/iovs.11-8803

    Article  PubMed  Google Scholar 

  62. Elsawy A, Eleiwa T, Chase C, Ozcan E, Tolba M, Feuer W, Abdel-Mottaleb M, Abou Shousha M (2021) Multidisease deep learning neural network for the diagnosis of corneal diseases. Am J Ophthalmol 226:252–261. https://doi.org/10.1016/j.ajo.2021.01.018

    Article  PubMed  Google Scholar 

  63. Ruiz Hidalgo I, Rozema JJ, Saad A, Gatinel D, Rodriguez P, Zakaria N, Koppen C (2017) Validation of an objective keratoconus detection system implemented in a Scheimpflug tomographer and comparison with other methods. Cornea 36:689–695. https://doi.org/10.1097/ico.0000000000001194

    Article  PubMed  Google Scholar 

  64. Abdelmotaal H, Mostafa MM, Mostafa ANR, Mohamed AA, Abdelazeem K (2020) Classification of color-coded Scheimpflug camera corneal tomography images using deep learning. Transl Vis Sci Technol 9:30. https://doi.org/10.1167/tvst.9.13.30

    Article  PubMed  PubMed Central  Google Scholar 

  65. Chen X, Zhao J, Iselin KC, Borroni D, Romano D, Gokul A, McGhee CNJ, Zhao Y, Sedaghat MR, Momeni-Moghaddam H, Ziaei M, Kaye S, Romano V, Zheng Y (2021) Keratoconus detection of changes using deep learning of colour-coded maps. BMJ Open Ophthalmol 6:e000824. https://doi.org/10.1136/bmjophth-2021-000824

    Article  PubMed  PubMed Central  Google Scholar 

  66. Issarti I, Consejo A, Jiménez-García M, Hershko S, Koppen C, Rozema JJ (2019) Computer aided diagnosis for suspect keratoconus detection. Comput Biol Med 109:33–42. https://doi.org/10.1016/j.compbiomed.2019.04.024

    Article  PubMed  Google Scholar 

  67. Lopes BT, Ramos IC, Salomão MQ, Canedo ALC, Ambrósio R Jr (2015) Horizontal pachymetric profile for the detection of keratoconus. Rev Bras Oftalmol 74:382–385. https://doi.org/10.5935/0034-7280.20150080

    Article  Google Scholar 

  68. Lopes BT, Ramos IC, Salomão MQ, Guerra FP, Schallhorn SC, Schallhorn JM, Vinciguerra R, Vinciguerra P, Price FW Jr, Price MO, Reinstein DZ, Archer TJ, Belin MW, Machado AP, Ambrósio R Jr (2018) Enhanced tomographic assessment to detect corneal ectasia based on artificial intelligence. Am J Ophthalmol 195:223–232. https://doi.org/10.1016/j.ajo.2018.08.005

    Article  PubMed  Google Scholar 

  69. Hidalgo IR, Rodriguez P, Rozema JJ, Dhubhghaill SN, Zakaria N, Tassignon M-J, Koppen C (2016) Evaluation of a machine-learning classifier for keratoconus detection based on Scheimpflug tomography. Cornea 35:827–832. https://doi.org/10.1097/ico.0000000000000834

    Article  Google Scholar 

  70. Xie Y, Zhao L, Yang X, Wu X, Yang Y, Huang X, Liu F, Xu J, Lin L, Lin H, Feng Q, Lin H, Liu Q (2020) Screening candidates for refractive surgery with corneal tomographic-based deep learning. JAMA ophthalmol 138:519–526. https://doi.org/10.1001/jamaophthalmol.2020.0507

    Article  PubMed  PubMed Central  Google Scholar 

  71. Saad A, Gatinel D (2010) Topographic and tomographic properties of forme fruste keratoconus corneas. Invest Ophthalmol Vis Sci 51:5546–5555. https://doi.org/10.1167/iovs.10-5369

    Article  PubMed  Google Scholar 

  72. Zéboulon P, Debellemanière G, Gatinel D (2020) Unsupervised learning for large-scale corneal topography clustering. Sci Rep 10:16973. https://doi.org/10.1038/s41598-020-73902-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Bessho K, Maeda N, Kuroda T, Fujikado T, Tano Y, Oshika T (2006) Automated keratoconus detection using height data of anterior and posterior corneal surfaces. Jpn J Ophthalmol 50:409–416. https://doi.org/10.1007/s10384-006-0349-6

    Article  PubMed  Google Scholar 

  74. Accardo PA, Pensiero S (2002) Neural network-based system for early keratoconus detection from corneal topography. J Biomed Inform 35:151–159. https://doi.org/10.1016/s1532-0464(02)00513-0

    Article  PubMed  Google Scholar 

  75. Saika M, Maeda N, Hirohara Y, Mihashi T, Fujikado T, Nishida K (2013) Four discriminant models for detecting keratoconus pattern using Zernike coefficients of corneal aberrations. Jpn J Ophthalmol 57:503–509. https://doi.org/10.1007/s10384-013-0269-1

    Article  PubMed  Google Scholar 

  76. Kamiya K, Ayatsuka Y, Kato Y, Shoji N, Mori Y, Miyata K (2021) Diagnosability of keratoconus using deep learning with Placido disk-based corneal topography. Front Med (Lausanne) 8:724902. https://doi.org/10.3389/fmed.2021.724902

    Article  PubMed  Google Scholar 

  77. Maeda N, Klyce SD, Smolek MK, Thompson HW (1994) Automated keratoconus screening with corneal topography analysis. Invest Ophthalmol Vis Sci 35:2749–2757

    CAS  PubMed  Google Scholar 

  78. Arbelaez MC, Versaci F, Vestri G, Barboni P, Savini G (2012) Use of a support vector machine for keratoconus and subclinical keratoconus detection by topographic and tomographic data. Ophthalmology 119:2231–2238. https://doi.org/10.1016/j.ophtha.2012.06.005

    Article  PubMed  Google Scholar 

  79. Chandapura R, Salomão MQ, Ambrósio R Jr, Swarup R, Shetty R, Sinha Roy A (2019) Bowman’s topography for improved detection of early ectasia. J Biophotonics 12:e201900126. https://doi.org/10.1002/jbio.201900126

    Article  PubMed  Google Scholar 

  80. Elsawy A, Abdel-Mottaleb M (2021) A novel network with parallel resolution encoders for the diagnosis of corneal diseases. IEEE Trans Biomed Eng 68:3671–3680. https://doi.org/10.1109/tbme.2021.3082152

    Article  PubMed  Google Scholar 

  81. Yousefi S, Yousefi E, Takahashi H, Hayashi T, Tampo H, Inoda S, Arai Y, Asbell P (2018) Keratoconus severity identification using unsupervised machine learning. PLoS One 13:e0205998. https://doi.org/10.1371/journal.pone.0205998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Kamiya K, Ayatsuka Y, Kato Y, Fujimura F, Takahashi M, Shoji N, Mori Y, Miyata K (2019) Keratoconus detection using deep learning of colour-coded maps with anterior segment optical coherence tomography: a diagnostic accuracy study. BMJ Open 9:e031313. https://doi.org/10.1136/bmjopen-2019-031313

    Article  PubMed  PubMed Central  Google Scholar 

  83. Shi C, Wang M, Zhu T, Zhang Y, Ye Y, Jiang J, Chen S, Lu F, Shen M (2020) Machine learning helps improve diagnostic ability of subclinical keratoconus using Scheimpflug and OCT imaging modalities. Eye Vis (Lond) 7:48. https://doi.org/10.1186/s40662-020-00213-3

    Article  PubMed  Google Scholar 

  84. Karimi A, Meimani N, Razaghi R, Rahmati SM, Jadidi K, Rostami M (2018) Biomechanics of the healthy and keratoconic corneas: a combination of the clinical data, finite element analysis, and artificial neural network. Curr Pharm Des 24:4474–4483. https://doi.org/10.2174/1381612825666181224123939

    Article  CAS  PubMed  Google Scholar 

  85. Castro-Luna G, Jiménez-Rodríguez D, Castaño-Fernández AB, Pérez-Rueda A (2021) Diagnosis of subclinical keratoconus based on machine learning techniques. J Clin Med 10:4281. https://doi.org/10.3390/jcm10184281

    Article  PubMed  PubMed Central  Google Scholar 

  86. Temstet C, Sandali O, Bouheraoua N, Hamiche T, Galan A, El Sanharawi M, Basli E, Laroche L, Borderie V (2015) Corneal epithelial thickness mapping using Fourier-domain optical coherence tomography for detection of form fruste keratoconus. J Cataract Refract Surg 41:812–820. https://doi.org/10.1016/j.jcrs.2014.06.043

    Article  PubMed  Google Scholar 

  87. Dos Santos VA, Schmetterer L, Stegmann H, Pfister M, Messner A, Schmidinger G, Garhofer G, Werkmeister RM (2019) CorneaNet: fast segmentation of cornea OCT scans of healthy and keratoconic eyes using deep learning. Biomed Opt Express 10:622–641. https://doi.org/10.1364/boe.10.000622

    Article  PubMed  PubMed Central  Google Scholar 

  88. Hwang ES, Perez-Straziota CE, Kim SW, Santhiago MR, Randleman JB (2018) Distinguishing highly asymmetric keratoconus eyes using combined Scheimpflug and spectral-domain OCT analysis. Ophthalmology 125:1862–1871. https://doi.org/10.1016/j.ophtha.2018.06.020

    Article  PubMed  Google Scholar 

  89. Issarti I, Consejo A, Jiménez-García M, Kreps EO, Koppen C, Rozema JJ (2020) Logistic index for keratoconus detection and severity scoring (Logik). Comput Biol Med 122:103809. https://doi.org/10.1016/j.compbiomed.2020.103809

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Hassan Hashemi, Farideh Doroodgar, and Zahra Heidari; methodology: Zahra Heidari and Mehdi Khabazkhoob; literature search and data analysis: Zahra Heidari and Mehdi Khabazkhoob; writing—original draft preparation: Zahra Heidari; review and editing: all authors; supervision: Hassan Hashemi. All authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Zahra Heidari.

Ethics declarations

Ethics approval

An ethics statement is not applicable because this study is based exclusively on published literature.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article has not been presented at any meeting.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hashemi, H., Doroodgar, F., Niazi, S. et al. Comparison of different corneal imaging modalities using artificial intelligence for diagnosis of keratoconus: a systematic review and meta-analysis. Graefes Arch Clin Exp Ophthalmol 262, 1017–1039 (2024). https://doi.org/10.1007/s00417-023-06154-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-023-06154-6

Keywords

Navigation