Skip to main content

Artificial Intelligence in Keratoconus Diagnosis

  • Chapter
  • First Online:
Keratoconus

Abstract

Artificial intelligence aims to develop machines capable of simulating the human ability to think and act. Machine learning can be defined as the branch of artificial intelligence that aims to endow the machine with the ability to learn. Developing an efficient technique to assist practitioners in objectively detecting early keratoconus is of paramount importance. Various machine learning techniques have been developed for keratoconus detection and refractive surgery screening. This is a burgeoning field of study, with significant potential for continued advancement as screening devices and techniques become more sophisticated. Understanding these aspects and the revolution we are experiencing is important to guide the construction process and the validation of these decision-making assistant algorithms before deploying them to patient care.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ting DSJ, Foo VH, Yang LWY, Sia JT, Ang M, Lin H, et al. Artificial intelligence for anterior segment diseases: emerging applications in ophthalmology. Br J Ophthalmol. 2021;105(2):158–68. http://dx.doi.org/10.1136/bjophthalmol-2019-315651.

  2. Turing AM. I.—Computing machinery and intelligence. Mind. 1950;LIX(236):433–60.

    Google Scholar 

  3. Russell S, Norvig P. Artificial intelligence: a modern approach. 3rd edition. Hoboken: Pearson; 2009.

    Google Scholar 

  4. LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;521(7553):436–44.

    Article  CAS  PubMed  Google Scholar 

  5. Ting DSW, Peng L, Varadarajan AV, Keane PA, Burlina PM, Chiang MF, et al. Deep learning in ophthalmology: the technical and clinical considerations. Prog Retin Eye Res. 2019;72:100759.

    Google Scholar 

  6. Issarti I, Consejo A, Jiménez-García M, Hershko S, Koppen C, Rozema JJ. Computer aided diagnosis for suspect keratoconus detection. Comput Biol Med. 2019;109:33–42.

    Article  PubMed  Google Scholar 

  7. Lin SR, Ladas JG, Bahadur GG, Al-Hashimi S, Pineda R. A review of machine learning techniques for keratoconus detection and refractive surgery screening. Semin Ophthalmol. 2019;34(4):317–26.

    Google Scholar 

  8. Klyce SD. The future of keratoconus screening with artificial intelligence. Ophthalmology. 2018;125(12):1872–3.

    Google Scholar 

  9. Maeda N, Klyce SD, Smolek MK. Neural network classification of corneal topography. Preliminary demonstration. Invest Ophthalmol Vis Sci. 1995;36(7):1327–35.

    Google Scholar 

  10. Smolek MK, Klyce SD. Current keratoconus detection methods compared with a neural network approach. Invest Ophthalmol Vis Sci. 1997;38(11):2290–9.

    Google Scholar 

  11. Lavric A, Valentin P. KeratoDetect: keratoconus detection algorithm using convolutional neural networks. Comput Intell Neurosci. 2019;2019:8162567. https://doi.org/10.1155/2019/8162567.

  12. Lopes BT, Ramos IC, Salomão MQ, Guerra FP, Schallhorn SC, Schallhorn JM, et al. Enhanced tomographic assessment to detect corneal ectasia based on artificial intelligence. Am J Ophthalmol. 2018;195:223–32.

    Article  PubMed  Google Scholar 

  13. Saad A, Gatinel D. Topographic and tomographic properties of forme fruste keratoconus corneas. Invest Ophthalmol Vis Sci. 2010;51(11):5546–55.

    Google Scholar 

  14. Smadja D, Touboul D, Cohen A, Doveh E, Santhiago MR, Mello GR, et al. Detection of subclinical keratoconus using an automated decision tree classification. Am J Ophthalmol. 2013;156(2):237–46.e1.

    Google Scholar 

  15. Ruiz Hidalgo I, Rodriguez P, Rozema JJ, Ní Dhubhghaill S, Zakaria N, Tassignon M-J, et al. Evaluation of a machine-learning classifier for keratoconus detection based on Scheimpflug tomography. Cornea. 2016;35(6):827–32.

    Article  PubMed  Google Scholar 

  16. Kovács I, Miháltz K, Kránitz K, Juhász É, Takács Á, Dienes L, et al. Accuracy of machine learning classifiers using bilateral data from a Scheimpflug camera for identifying eyes with preclinical signs of keratoconus. J Cataract Refract Surg. 2016;42(2):275–83.

    Article  PubMed  Google Scholar 

  17. Cao K, Verspoor K, Sahebjada S, Baird PN. Evaluating the performance of various machine learning algorithms to detect subclinical keratoconus. Transl Vis Sci Technol. 2020;9(2):24–4.

    Google Scholar 

  18. Kamiya K, Ayatsuka Y, Kato Y, Fujimura F, Takahashi M, Shoji N, et al. Keratoconus detection using deep learning of colour-coded maps with anterior segment optical coherence tomography: a diagnostic accuracy study. BMJ Open. 2019;9(9):e031313.

    Google Scholar 

  19. Yousefi S, Yousefi E, Takahashi H, Hayashi T, Tampo H, Inoda S, et al. Keratoconus severity identification using unsupervised machine learning. PLoS One. 2018;13(11):e0205998.

    Google Scholar 

  20. Xie Y, Zhao L, Yang X, Wu X, Yang Y, Huang X, et al. Screening candidates for refractive surgery with corneal tomography–based deep learning. JAMA Ophthalmol. 2020;138(5):519–26.

    Google Scholar 

  21. Santhiago MR, Smadja D, Gomes BF, Mello GR, Monteiro MLR, Wilson SE, et al. Association between the percent tissue altered and post-laser in situ keratomileusis ectasia in eyes with normal preoperative topography. Am J Ophthalmol. 2014;158(1):87–95.e1.

    Google Scholar 

  22. Ambrósio R Jr, Ramos I, Lopes B, Canedo ALC, Correa R, Guerra F, et al. Assessing ectasia susceptibility prior to LASIK: the role of age and residual stromal bed (RSB) in conjunction to Belin–Ambrósio deviation index (BAD-D). Rev Bras Oftalmol. 2014;73(2):75–80.

    Google Scholar 

  23. Lyra JM, Machado AP, Ambrósio Jr. R, Ribeiro GB, Leão E, Ramos IC, et al. Data integration: key to improving decision-making in refractive surgery screening. ASCRS/ASOA 2017: virtual films. http://ascrs2017.conferencefilms.com/acover.wcs?entryid=0178&bp=1. Accessed 13 Nov 2020.

  24. Ventura BV, Machado AP, Ambrósio R, Ribeiro G, Araújo LN, Luz A, et al. Analysis of waveform-derived ORA parameters in early forms of keratoconus and normal corneas. J Refract Surg. 2013;29(9):637–43.

    Google Scholar 

  25. Koprowski R, Ambrósio R. Quantitative assessment of corneal vibrations during intraocular pressure measurement with the air-puff method in patients with keratoconus. Comput Biol Med. 2015;66:170–8.

    Article  PubMed  Google Scholar 

  26. Steinberg J, Katz T, Lücke K, Frings A, Druchkiv V, Linke SJ. Screening for keratoconus with new dynamic biomechanical in vivo Scheimpflug analyses. Cornea. 2015;34(11):1404–12.

    Article  PubMed  Google Scholar 

  27. Vinciguerra R, Ambrósio R, Elsheikh A, Roberts CJ, Lopes B, Morenghi E, et al. Detection of keratoconus with a new biomechanical index. J Refract Surg. 2016;32(12):803–10.

    Google Scholar 

  28. Mercer RN, Waring GO, Roberts CJ, Jhanji V, Wang Y, Filho JS, et al. Comparison of corneal deformation parameters in keratoconic and normal eyes using a non-contact tonometer with a dynamic ultra-high-speed Scheimpflug camera. J Refract Surg. 2017;33(9):625–31.

    Google Scholar 

  29. Vinciguerra R, Ambrósio R, Roberts CJ, Azzolini C, Vinciguerra P. Biomechanical characterization of subclinical keratoconus without topographic or tomographic abnormalities. J Refract Surg. 2017;33(6):399–407.

    Google Scholar 

  30. Wang YM, Chan TCY, Yu M, Jhanji V. Comparison of corneal dynamic and tomographic analysis in normal, forme fruste keratoconic, and keratoconic eyes. J Refract Surg. 2017;33(9):632–8.

    Google Scholar 

  31. Ambrósio R, Lopes BT, Faria-Correia F, Salomão MQ, Bühren J, Roberts CJ, et al. Integration of Scheimpflug-based corneal tomography and biomechanical assessments for enhancing ectasia detection. J Refract Surg. 2017;33(7):434–43.

    Google Scholar 

  32. Karimi A, Meimani N, Razaghi R, Rahmati SM, Jadidi K, Rostami M. Biomechanics of the healthy and keratoconic corneas: a combination of the clinical data, finite element analysis, and artificial neural network. Curr Pharm Des. 2018;24(37):4474–83.

    Article  CAS  PubMed  Google Scholar 

  33. Leão E, Ing Ren T, Lyra JM, Machado A, Koprowski R, Lopes B, et al. Corneal deformation amplitude analysis for keratoconus detection through compensation for intraocular pressure and integration with horizontal thickness profile. Comput Biol Med. 2019;109:263–71.

    Article  PubMed  Google Scholar 

  34. Hosoda Y, Miyake M, Meguro A, Tabara Y, Iwai S, Ueda-Arakawa N, et al. Keratoconus-susceptibility gene identification by corneal thickness genome-wide association study and artificial intelligence IBM Watson. Commun Biol. 2020;3(1):1–9.

    Google Scholar 

  35. Lyra D, Ribeiro G, Torquetti L, Ferrara P, Machado A, Lyra JM. Computational models for optimization of the intrastromal corneal ring choice in patients with keratoconus using corneal tomography data. J Refract Surg. 2018;34(8):547–50.

    Google Scholar 

  36. Russakovsky O, Deng J, Su H, Krause J, Satheesh S, Ma S, et al. ImageNet large scale visual recognition challenge. Int J Comput Vis. 2015;115(3):211–52.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

de Almeida Gusmão Lyra, J.M., Leão, E.V., Machado, A.P. (2022). Artificial Intelligence in Keratoconus Diagnosis. In: Almodin, E., Nassaralla, B.A., Sandes, J. (eds) Keratoconus . Springer, Cham. https://doi.org/10.1007/978-3-030-85361-7_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-85361-7_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-85360-0

  • Online ISBN: 978-3-030-85361-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics