Skip to main content

Advertisement

Log in

Magnesium transport in olivine mantle: new insights from miniaturized study of volume and grain boundary diffusion in Mg2SiO4 bi-crystals

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

We report experimental measurements of volume and grain boundary diffusion of 26Mg in Mg2SiO4 bi-crystals at asthenosphere temperatures as a ground reference for olivine. By analysis of literature and combination with previous data, we provide Arrhenius laws D = D0 exp(− E/RT) at ambient pressure for volume diffusion of Mg in Mg2SiO4 in the intrinsic regime along the three crystallographic axes as well as grain boundary diffusion.

Parameters for average volume diffusion, calculated as geometrical mean of the three crystallographic axes, are

$$D_{0} = 10^{-2.12\,\pm\, 0.91}\,{\text{m}^{2}/{\text{s}}}\, {\text{and}}\, E = 443 \pm 42 {\text{kJ}}/{\text{mol}}.$$

Parameters for average grain boundary diffusion in aggregate are

$$D_{0} = 10^{-1.16\, \pm\, 0.49}\,{\text{m}^{2}/{\text{s}}}\, {\text{and}}\, E = 359 \pm 14 {\text{kJ}}/{\text{mol}}.$$

In the asthenosphere, the decrease of both volume and grain boundary diffusion coefficients as a function of pressure should remain negligible up to 1 GPa, and ~ 1 log unit at 10 GPa, while the increase in iron- and hydrogen-bearing olivine should range from ~ 1 to 2 log unit. The equilibration of Mg in olivine grains can be considered instantaneous with respect to geological timescales in the asthenosphere. However, the transport of Mg remains below km-scale even after 1 Gy at 1600 °C of volume or grain boundary diffusion. Long-range transport of major elements in the upper mantle is not possible by solid-state diffusion. Equilibration of long-range heterogeneities and large mass transport is rather controlled by diffusion in intergranular fluid or melt phase, liquid percolation and mantle convection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Adjaoud O, Marquardt K, Jahn S (2012) Atomic structures and energies of grain boundaries in Mg2SiO4 forsterite from atomistic modelling. Phys Chem Minerals 39:749–760

    Article  Google Scholar 

  • Allo J, Jouen S, Roussel M, Gibouin D, Sauvage X (2021) Influence of sulfur and water vapor on high-temperature oxidation resistance of an alumina-forming austenitic alloy. Oxid Met 95:359–376

    Article  Google Scholar 

  • Béjina F, Blanchard M, Wright K, Price GD (2009) A computer simulation study of the effect of pressure on Mg diffusion in forsterite. Phys Earth Planet Inter 172:13–19

    Article  Google Scholar 

  • Carslaw HS, Jaeger JC (1959) Conduction of heat in solids, 2nd edn. Oxford Science Publications, Oxford

    Google Scholar 

  • Chakraborty S (2010) Diffusion coefficients in olivine, wadsleyite and ringwoodite. Rev Mineral Geochem 72:603–639

    Article  Google Scholar 

  • Chakraborty S, Farver JR, Yund RA, Rubie DC (1994) Mg tracer diffusion in synthetic forsterite and as a function of P, T and fO2. Phys Chem Minerals 21:489–500

    Article  Google Scholar 

  • Chen Y, Zhang Y (2008) Olivine dissolution in basaltic melt. Geochim Cosmochim Acta 72:4756–4777

    Article  Google Scholar 

  • Constable S (2006) SEO3: A new model of olivine electrical conductivity. Geophys J Int 166:435–437

    Article  Google Scholar 

  • Crank J (1975) The mathematics of diffusion, 2nd edn. Oxford University Press

    Google Scholar 

  • Demouchy S (2021) Defects in olivine. Eur J Mineral 33:249–282

    Article  Google Scholar 

  • Demouchy S, Mackwell SJ (2006) Mechanisms of hydrogen incorporation and diffusion in iron-bearing olivine. Phys Chem Minerals 33:347–355

    Article  Google Scholar 

  • Desmaele E, Sator N, Vuilleumier R, Guillot B (2019) The MgCO3–CaCO3–Li2CO3–Na2CO3–K2CO3 melts: thermodynamics and transport properties by atomistic simulations. J Chem Phys 150:214503

    Article  Google Scholar 

  • Dohmen R, Becker HW, Chakraborty S (2007) Fe–Mg diffusion in olivine I: experimental determination between 700 and 1,200°C as a function of composition, crystal orientation and oxygen fugacity. Phys Chem Minerals 34:389–407

    Article  Google Scholar 

  • Farver JR, Yund RA, Rubie DC (1994) Magnesium grain boundary diffusion in forsterite aggregates at 1000°-1300°C and 0.1 MPa to 10 GPa. J Geophys Res 99:19809–19819

    Article  Google Scholar 

  • Fei H, Koizumi S, Sakamoto N, Hashiguchi M, Yurimoto H, Marquardt K, Miyajima N, Katsura T (2018a) Mg lattice diffusion in iron-free olivine and implications to conductivity anomaly in the oceanic asthenosphere. Earth Planet Sci Lett 484:204–212

    Article  Google Scholar 

  • Fei H, Koizumi S, Sakamoto N, Hashiguchi M, Yurimoto H, Marquardt K, Miyajima N, Katsura T (2018b) Pressure, temperature, water content, and oxygen fugacity dependence of the Mg grain-boundary diffusion coefficient in forsterite. Am Mineral 103:1354–1361

    Article  Google Scholar 

  • Gaillard F, Sator N, Gardés E, Guillot B, Massuyeau M, Sifré D, Hammouda T, Richard G (2019) The link between the physical and chemical properties of carbon-bearing melts and their application for geophysical imaging of Earth’s mantle. In: Orcutt B, Daniel I, Dasgupta R (eds) Deep carbon: past to present. Cambridge University Press, pp 163–187

    Chapter  Google Scholar 

  • Gardés E, Heinrich W (2011) Growth of multilayered polycrystalline reaction rims in the MgO–SiO2 system, part II: modelling. Contrib Mineral Petrol 162:37–49

    Article  Google Scholar 

  • Gardés E, Montel JM (2009) Opening and resetting temperatures in heating geochronological systems. Contrib Mineral Petrol 158:185–195

    Article  Google Scholar 

  • Gardés E, Jaoul O, Montel JM, Seydoux-Guillaume AM, Wirth R (2006) Pb diffusion in monazite: an experimental study of Pb2+ + Th4+ ↔ 2Nd3+ interdiffusion. Geochim Cosmochim Acta 70:2325–2336

    Article  Google Scholar 

  • Gardés E, Wunder B, Marquardt K, Heinrich W (2012) The effect of water on intergranular mass transport: new insights from diffusion-controlled reaction rims in the MgO–SiO2 system. Contrib Mineral Petrol 164:1–16

    Article  Google Scholar 

  • Gardés E, Gaillard F, Tarits P (2014) Toward a unified hydrous olivine electrical conductivity law. Geochem Geophys Geosyst 15:4984–5000

    Article  Google Scholar 

  • Gardés E, Laumonier M, Massuyeau M, Gaillard F (2020) Unravelling partial melt distribution in the oceanic low velocity zone. Earth Planet Sci Lett 540:116242

    Article  Google Scholar 

  • Hartmann K, Wirth R, Heinrich W (2010) Synthetic near Σ5 (210)/[100] grain boundary in YAG fabricated by direct bonding: structure and stability. Phys Chem Minerals 37:291–300

    Article  Google Scholar 

  • Hier-Majumder S, Anderson IM, Kohlstedt DL (2005) Influence of protons on Fe-Mg interdiffusion in olivine. J Geophys Res 110:B02202

    Google Scholar 

  • Ingrin J, Blanchard M (2006) Diffusion of hydrogen in minerals. Rev Miner Geochem 62:291–320

    Article  Google Scholar 

  • Jollands MC, Padrón-Navarta JA, Hermann J, O’Neill HSC (2016) Hydrogen diffusion in Ti-doped forsterite and the preservation of metastable point defects. Am Mineral 101:1571–1583

    Article  Google Scholar 

  • Jollands MC, Zhukova I, O’Neill HSC, Hermann J (2020) Mg diffusion in forsterite from 1250–1600°C. Am Mineral 105:525–537

    Article  Google Scholar 

  • Kohlstedt DL, Mackwell SJ (1998) Diffusion of hydrogen and intrinsic point defects in olivine. Z Phys Chem 207:147–162

    Article  Google Scholar 

  • Le Voyer M, Kelley KA, Cottrell E, Hauri EH (2017) Heterogeneity in mantle carbon content from CO2-undersaturated basalts. Nat Commun 8:14062

    Article  Google Scholar 

  • LeClaire AD (1963) The analysis of grain boundary diffusion measurements. J Appl Phys 14:351–356

    Google Scholar 

  • Lide DR (ed) (2005) CRC Handbook of chemistry and physics: a ready-reference book of chemical and physical data, 86th edn. CRC Press

  • Marquardt K, Faul UH (2018) The structure and composition of olivine grain boundaries: 40 years of studies, status and current developments. Phys Chem Minerals 45:139–172

    Article  Google Scholar 

  • Massuyeau M, Gardés E, Rogerie G, Aulbach S, Tappe S, Le Trong E, Sifré D, Gaillard F (2021) MAGLAB: a computing platform connecting geophysical signatures to melting processes in Earth’s mantle. Phys Earth Planet Inter 314:106638

    Article  Google Scholar 

  • Milke R, Neusser G, Kolzer K, Wunder B (2013) Very little water is necessary to make a dry solid silicate system wet. Geology 41:247–250

    Article  Google Scholar 

  • Morrison SM, Downs RT, Flake DF, Prabhu A, Eleish A, Vaniman DT, Ming DW, Rampe EB, Hazen RM, Achilles CN, Treiman AH, Yen AS, Morris RV, Bristow TF, Chipera SJ, Sarrazin PC, Fendrich KV, Morookian JM, Farmer JD, Des Marais DJ, Craig PI (2018) Relationships between unit-cell parameters and composition for rock-forming minerals on Earth, Mars, and other extraterrestrial bodies. Am Mineral 103:848–856

    Article  Google Scholar 

  • Muir JMR, Jollands MC, Zhang F, Walker AM (2020) Explaining the dependence of M-site diffusion in forsterite on silica activity: a density functional theory approach. Phys Chem Minerals 47:55

    Article  Google Scholar 

  • Müller G (2007) Review: the Czochralski method—Where we are 90 years after Jan Czochralski’s invention. Cryst Res Technol 42:1150–1161

    Article  Google Scholar 

  • Oelkers EH, Helgeson HC (1988) Calculation of the thermodynamic and transport properties of aqueous species at high pressures and temperatures: aqueous tracer diffusion coefficients of ions to 1000°C and 5 kb. Geochim Cosmochim Acta 52:63–85

    Article  Google Scholar 

  • Philibert J (1991) Atom movements—diffusion and mass transport in solids, Les Editions de Physique, Les Ulis, Paris

  • Polednia J, Dohmen R, Marquardt K (2020) Grain boundary diffusion and its relation to segregation of multiple elements in yttrium aluminum garnet. Eur J Mineral 32:675–696

    Article  Google Scholar 

  • Simpson F, Tommasi A (2005) Hydrogen diffusivity and electrical anisotropy of a peridotite mantle. Geophys J Int 160:1092–1102

    Article  Google Scholar 

  • Suzuoka T (1961) Lattice and grain boundary diffusion in polycrystals. Trans Jpn Inst Met 2:25–32

    Article  Google Scholar 

  • Wagner J, Adjaoud O, Marquardt K, Jahn S (2016) Anisotropy of self-diffusion in forsterite grain boundaries derived from molecular dynamics simulations. Contrib Mineral Petrol 171:98

    Article  Google Scholar 

  • Walker AM, Woodley SM, Slater B, Wright K (2009) A computational study of magnesium point defects and diffusion in forsterite. Phys Earth Planet Inter 172:20–27

    Article  Google Scholar 

  • Whipple RTP (1954) Concentration contours in grain boundary diffusion. Phil Mag 45:1225–1236

    Article  Google Scholar 

  • Yoshino T, Matsuzaki T, Shatskiy A, Katsura T (2009) The effect of water on the electrical conductivity of olivine aggregates and its implications for the electrical structure of the upper mantle. Earth Planet Sci Lett 288:291–300

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to M. C. Jollands and an anonymous reviewer for their helpful comments. We thank Y. Buret for trace element analysis at the Imaging and Analysis Centre of the Natural History Museum, London. This work was supported by the French Agence Nationale de la Recherche (ANR) through the projects LabEx EMC3 (ANR-10-LABX-09-01) and EquipEx GENESIS (ANR-11-EQPX-0020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emmanuel Gardés.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Othmar Müntener.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 95 KB)

Supplementary file2 (XLSX 43 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gardés, E., Gibouin, D., Radiguet, B. et al. Magnesium transport in olivine mantle: new insights from miniaturized study of volume and grain boundary diffusion in Mg2SiO4 bi-crystals. Contrib Mineral Petrol 176, 99 (2021). https://doi.org/10.1007/s00410-021-01859-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00410-021-01859-5

Keywords

Navigation